The invention relates inflatable rock bolts. In particular, the invention relates to reinforcement for inflatable rock bolts. The invention also relates to a method for reinforcing an inflatable rock bolt.
Rock is removed from the ground in a number of contexts, such as in mining and tunnel construction. Voids, or cavities, are created by the removal of the rock. Underground voids formed by removing material leaves walls and ceilings of surrounding rock. The remaining surrounding rock is subject to gravity and without the removed material to support the surrounding material may tend to converge. Convergence is the decrease of tunnel size caused by gravity and relieving residual ground stresses. Controlling convergence is a critical safety activity.
One technique for controlling convergence includes drilling holes in the surrounding material and anchoring bolts in the material to reinforce and stabilize the material. Rock bolts are anchored between stable rock deep in the hole and the surface of a void. Together, the bolts act as a field of tensile bridges that, to a certain depth, prevent the surface from fracturing and falling into the void.
If ground convergence exceeds the elongation limit of any of the rock bolts, they will fracture. If a bolt or group of bolts fail and no longer constrain a given mass of rock, that mass will fall into the void with the potential to cause injury or death and property damage.
One group of rock bolt anchors is referred to as the inflatable rock bolt. Swellex is the trademarked Atlas Copco brand and is the original of this family of ground support anchor. The inflatable rock bolt is comprised of a long, folded tube welded to an end bushing and inflation bushing at each of its ends. High-pressure fluid is pumped through a small hole in the inflation bushing and inflates the folded tube inside a bore hole and tightens the tube against the wall of the hole, creating a friction and mechanical lock. The bushing at one end may extend through a plate included at the rock face. The length of an inflatable bolt may be determined by structural requirements of the tunnel design.
Though this device has high tensile capacity and installation time is low, one drawback is that the shear strength and stiffness of the inflation tube may be poor compared to other ground control devices that use solid profiles and grout and/or resin to create the bolt/ground interlock. The low shear strength may be at least in part due to the thin walled material utilized to form the inflatable element(s). However, it is inherent that an inflatable material is thin to have the ability to be inflated and create a compression field in surrounding rock and a friction interface along its length.
One attempt to reinforce an inflatable bolt includes a reinforcing member inserted into an inflatable bolt. However, there are a number of shortcomings associated with such an arrangement. For example, an inflatable bolt has a small interior cross-sectional area in which a reinforcing member may be inserted. This will make it difficult to insert and accommodate a reinforcing structure within the inflatable bolt, particularly if the reinforcing member is round.
Additionally, inflatable bolts have a complex shape that is formed in many stages. This makes it difficult if not impossible to form the bolt around the reinforcing structure, particularly for high volume production. Additionally, inserting a reinforcing member within the inflatable bolt would be difficult if not impossible, due to the length of the bolts. For example, the reinforcing member could easily be jammed within the bold during insertion, leaving it only partially inserted.
Furthermore, securing a reinforcing member inserted into an inflatable bolt would be difficult. For example, the ends of the bolts are pinched by bushings, which are a few inches long. As a result, the reinforcing structure would need to be welded to the interior of the bolt. This would be impractical or impossible for welding equipment to be inserted into the bolt. If the reinforcing member is heat treated or hardened, tempering would be required before welding for the weld to hold. The chemical composition of hardened material does not react well to the welding process.
If a reinforcing member were inserted into an inflatable bolt, the reinforcing member could also block the inflation port. As a result, the bolt would not inflate properly. Since the bolt would be inserted into a hole at this stage, the installer would have no indication that the bolt is not properly inflated.
Still further, the reduced surface area of the bolt to accommodate the reinforcing member would reduce the force the bolt applies on the bore hole. This would lower the bolt's grip on the rock. If the bolt surface area were maintained, the reinforcing member would be too small to make a significant increase in the bolt's performance.
Embodiments of the invention include an inflatable rock bolt including an expansion tube, a bushing arranged at each end of the expansion tube, and at least one reinforcing member arranged outside the expansion tube. The at least one reinforcing member includes at least one of a strand extending along the expansion tube or a sleeve at least partially surrounding the expansion tube.
Additionally, embodiments of the invention include a method for reinforcing an inflatable rock bolt. The method includes extending at least one reinforcing member along an exterior surface of an expansion tube. The at least one reinforcing member includes at least one of a strand extending along the expansion tube or a sleeve at least partially surrounding the expansion tube. A bushing is arranged at each end of the expansion tube. The expansion tube and at least reinforcing member are inserted into a hole. The expansion tube is expanded, thereby frictionally clamping the at least one reinforcing member between the expansion tube and a wall of the hole in which the bolt is inserted.
Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from the following detailed description, wherein is shown and described only the preferred embodiments of the invention, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
The above-mentioned objects and advantages of the present invention will be more clearly understood when considered in conjunction with the accompanying drawings, in which:
Inflatable bolts may have limited shear strength and stiffness as compared to solid, non-inflatable bolts and/or bolts utilizing grout and/or resin. Loading to a rock bolt may also include sliding of fracture planes inside the walls or ceiling. Such fracturing can impose large shear loading to bolts, particularly to the thin walled material utilized in the inflatable member. Divergently moving planes of rock will apply force in different directions to directly adjacent regions of the inflatable bolt. If shear loading is not resisted adequately the bolt can deform excessively in the shear and fail. This is a very dangerous situation because not only is a failed bolt no longer bearing load, but failure of a bolt in a rock formation is difficult or impossible to detect. The thin walled material utilized to form inflatable bolts may also result in the bolts having low stiffness.
Embodiments of the reinforcement structure may provide enhanced shear and/or tensile resistance for inflatable bolts. The reinforcement structure may increase shear strength and/or shear stiffness. In fact, the reinforcement structure may dramatically increase strength of inflatable blots, such as on the order of about doubling the shear and tensile strength. The reinforcement provides additional strength along the length of the thin walled inflatable section.
Embodiments of the reinforcement do not require resin or grout. Additionally, embodiments of the reinforcement may be utilized with existing inflatable bolts. Embodiments of the reinforcement may be installed on existing inflatable bolt designs before or during installation of the bolts.
Embodiments of the reinforcing structure may increase tensile strength of an inflatable bolt far beyond industry standard for a given bore hole size. A bolt with increased tensile strength and stiffness can reduce tunnel convergence. Additional shear capacity can prevent internal rock shifting and resulting bolt failure due to shear. In some cases, the capacity to withstand shear and tensile forces may be doubled as compared to inflatable bolts with reinforcement.
Embodiments of the reinforcement may include at least one reinforcement element arranged on an exterior surface of an inflatable bolt. Some embodiments of the reinforcement may include at least one strand arranged on the exterior of the inflatable bolt. For example, the strand could include a wire, rope, rod, cylinder or cable. The strand could be rigid or non-rigid. Additionally, the strand could be hollow or solid. If the strand is hollow, it could be filled with a material. The strand could be a single element or made up of many strands, such a rope.
Additionally, the strand could be slack, to provide passive support, or taught, to as to be pre-tensioned upon inflation of the bolt to provide active support. The strand could be made of steel, carbon fiber or any other suitable material. If steel is utilized, the steel could be high-tensile steel wire. One example is CrSi wire. Alternatively, a steel rope or cable could be utilized. If carbon fiber is utilized, the carbon fiber could be in the form of a rope. Any suitable material could be utilized in any suitable form to provide additional tensile and/or shear reinforcement. Also, more than one strand could be utilized. The strands could all be of the same material or differing materials. Similarly, the strands could all have the same form or be of different forms.
Any strand typically will be thicker than the thin walled material utilized in the inflatable bolt. This will make the strand better able to resist shear and tensile forces. Additional strength may come from forming the strand of multiple elements or strands to form a rope or cable. A thicker and stronger material will be much better able to resist shear forces such as from fracturing planes. The strand may also be better able to resist tensile forces applied to an inflatable bolt by shifting rock formation.
If at least one strand is utilized, the strand could be attached to the inflatable bolt. Typically, when deflated, an inflatable bolt has a shape that is generally U-shaped or a horseshoe shape. A reinforcing strand could be arranged anywhere about the exterior surface of the inflatable bolt. Typically, a reinforcing strand is arranged in the U or horseshoe shape. This may help to maintain the position of the strand as the bolt is inflated.
An alternative embodiment of the reinforcement member is shown in
The sleeve or tube may be solid or a mesh. A number of different materials may be utilized to form the sleeve or tube. For example, the sleeve or tube could be made of steel, fiberglass or carbon fiber. The sleeve or tube could be made of a woven material. A number of other high-strength materials could also be utilized. If a bolt is exposed to shearing forces, the tube or sleeve provides additional shear capacity.
The reinforcement structure could be secured to the inflatable bolt. For example, the reinforcement could be glued to the inflatable bolt. The reinforcement structure could also be welded to the inflatable bolt. Securing the reinforcement structure to the inflatable bolt could provide additional shear resistance. As the inflatable element is inflated, the reinforcement member may be held in place by friction between the rock on the surface of the hole and the inflatable member.
The bushings may at least partially clamp the reinforcement structure to the inflatable bolt. The reinforcement structure could be secured only to the bushings and not to the inflatable bolt. The reinforcement structure may be held in place at least partially by forces between the bolt and the wall of the hole in which the bolt and reinforcement structure are inserted. Additionally or alternatively, the reinforcing structure could be mechanically fastened to at least some portion of the inflatable bolt structure.
If the reinforcement structure is mechanically fastened, it could be at least partially fastened with a friction or knot interlock. Such connections could provide both shear and tensile strength. If the reinforcement structure extends protrudes into or extends through the end bushings. The mechanical friction fastener may be engaged to the strand after insertion in the bushing.
The mechanical faster may be configured to engage the end bushings as the bolt elongates under load. As such, the mechanical fasten may apply the tensile loading capacity of the reinforcing structure between the end bushings. At the same time, holding the reinforcing structure in place provides shear load capacity. Additionally, a load condition causing a large shear deformation may result in the reinforcing structure connecting the bushings through a longer route, thereby incurring an addition tension force between each bushing, compressing the entire bolt. If the reinforcing structure is non-rigid, such as a cable, the reinforcing structure may be slack for passive support upon inflation, or taught then pre-tensioned upon inflation for active support.
The clamp 10 directly contacts the reinforcing structure. Typically, the reinforcing structure secured by such an embodiment of a fastener is a strand. The strand extends into or through the clamp. The clamp 10 has an interior diameter that is slightly larger than a diameter of the strand. This permits the strand to slide through the clamp.
The clamp includes at least one slit 6a that extends through the thickness of the clamp body and partially along the length of the clamp body. As the clamp is drawn into the cup 9, the at least one slit 12 collapses around the strand, thereby clamping the strand. This may happen as the fastener is assembled and/or as the strand is placed in tension during use. Additionally, as shown in
The clamp 10 is received by a cup 9. The cup 9 has an outer surface 15 that may be contoured at one end. For example, the embodiment shown in
The interior surface 19 of the cup 9 may include different contoured portions. For example, the interior surface may include an angled portion 20 that is angled similar to the exterior surface of the clamp 10. This may facilitate insertion of the clamp and fixing of the clamp in the cup. The interior surface of the cup may also include a curved portion 21. The curved portion may help to hold the clamp once inserted. The angled and curved portions of the interior surface of the cup may compress the clamp as the clamp is drawn into the cup to help clamp the strand, particular, as the inflatable bolt and strand experience tension and shear forces.
The fastener may also include a clamp ring 11. As shown in
Rather that fixing a tensile strand to the end bushings, a tensile strand may be fixed only through inflation of the inflatable bolt and may not be fixed to end bushings. Along these lines, the tensile strand 1 may be routed through the inflation profile 4 such that the strand does not protrude into the end bushings 2 and 3. The strand may be glued or mechanically fastened in place for ease of shipping or installation. Such a strand may provide a significant increase in the shear capacity of the bolt in the event of a load condition causing large shear deformation.
The foregoing description of the invention illustrates and describes the present invention. Additionally, the disclosure shows and describes only the preferred embodiments of the invention, but as aforementioned, it is to be understood that the invention is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or the skill or knowledge of the relevant art. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with the various modifications required by the particular applications or uses of the invention. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2016/050789 | 7/6/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62191040 | Jul 2015 | US |