Exemplary embodiments of the present disclosure relate to couplings. More particularly, exemplary embodiments of the present disclosure relate to shear couplings that preferentially fail and separate into two halves upon the application of a tension force above a threshold level.
Downhole pumps are positioned and activated in a wellbore by a rod string extending from surface. The rod string is typically either one continuous member or a plurality of sucker rods, connected end-to-end through standard threaded couplings. In some cases, sand or other debris can get lodged between the pump and the wellbore, causing the pump to become stuck in the wellbore. The pump can get stuck at the downhole pumping location or as the pump is being retrieved from the wellbore.
A downhole pump is usually removed from a wellbore by applying a pulling or tension force on the associated rod string. A shear coupling is typically used to connect the pump and the lower end of the rod string. In the event that the pump becomes lodged in the wellbore, the shear coupling separates (to disconnect the rod string and the pump) to allow the rod string to be removed from the wellbore without being damaged. Once the rod string is removed, specialized equipment can be inserted into the wellbore to dislodge and remove the pump. Without the use of a shear coupling, the rod string may break at a location along the length of the rod string that is unknown and largely unpredictable, and which can be problematic for retrieving the pump. Also, a continuous member rod string needs to be replaced, which is considerably more expensive than just replacing the shear coupling.
Typical shear couplings use transversely extending shear pins for joining male and female coupling members between the pump and the rod string. The shear pins are known to be prone to premature fatigue which arises from cyclic compressive stress induced in the shear pins in a reciprocating pump if the rod string taps down at the base of each reciprocating stroke. Additionally, when the shear pins break, fragments fall downhole and can become lodged between the pump and the wellbore, making it more difficult to retrieve the pump. In some cases, the only way to retrieve a lodged pump is to pull the whole tubing, which requires bigger, more expensive equipment than the equipment used to pull the pump only.
Thus, there is additional room for improvement in the area of shear couplings.
Exemplary embodiments of the present disclosure relate to shear couplings that preferentially fail upon the application of a tension force above a predetermined threshold. For example, a shear coupling can include a first half, a second half, and a shear pin connected therebetween. The connection between the first half and the second half substantially isolates the shear pin from torsional, bending, and compression forces experienced by the first half or the second half. The connections between the shear pin and the first half and the second half transfer tension forces experienced by the first half and the second half to the shear pin. A tension force above a predetermined threshold causes the shear pin to separate into two pieces that remain connected to the first and second halves, respectively. In some embodiments, the shear pin includes a shear groove where the shear pin predictably separates upon the application of the tension force above the predetermined level.
In some cases, a first end of the shear pin is connected to the first half with a bushing. The bushing can be disposed about a shaft portion of the shear pin. The bushing can be a split bushing having a first half and a second half. The first half of the bushing and the second half of the bushing can cooperate to define a bore through the bushing. The bore can be adapted to receive the shaft portion of the shear pin therein. The bushing can engage a shoulder on the shear pin to retain the first end of the shear pin within the first half and a retention ring can retain the bushing within the first half. In some embodiments, the bushing includes external threads that engage threads on an interior surface of the first half.
In some embodiments, a second end of the shear pin includes external threads that engage threads on an interior surface of the second half. Additionally, a retention assembly can be connected between the second end of the shear pin and the second half to prevent unintentional disengagement (e.g., unthreading) of the shear pin and the second half.
The shear coupling can include interlocking fingers on the first half and the second half. The interlocking fingers can be adapted to transfer torsional, bending, or compression forces between the first half and the second half.
Another example embodiment includes a shear pin that can be used in a shear coupling. The shear pin can include a shaft portion having a generally circular cross-sectional shape. A shoulder can be formed adjacent to the shaft portion and a first end of the shear pin. An externally threaded portion can be disposed adjacent to a second end of the shear pin. A shear groove can be formed in a surface of the shear pin. The shear pin can be adapted to predictably separate at the shear groove when a tension force above a predetermined level is applied to the shear pin. In some embodiments, the shoulder and the externally threaded portion are formed on opposite sides of the shear groove. The shoulder can have a diameter that is larger than a diameter of the shaft portion.
These and other objects and features of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the disclosed embodiments as set forth hereinafter.
To further clarify the above and other advantages and features of the present disclosure, a more particular description will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments and are therefore not to be considered limiting of its scope, nor are the drawings necessarily drawn to scale. The disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made to the drawings to describe various aspects of exemplary embodiments of the disclosure. It is understood that the drawings are diagrammatic and schematic representations of such exemplary embodiments, and are not limiting of the present disclosure. While the drawings are not necessarily drawn to scale, the drawings may be to scale for some embodiments. No inference should therefore be drawn from the drawings as to the dimensions of any embodiment or element, unless indicated otherwise. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be obvious, however, to one of ordinary skill in the art that the present disclosure may be practiced without these specific details.
While the various features of the present disclosure are hereinafter illustrated and described as being particularly adaptable to downhole systems, it is to be understood that various features of the present disclosure can be utilized singly or in any combination thereof to provide shear couplings for use in any field where a shear coupling is desired.
Turning now to
As can be seen in
In the illustrated embodiment, the first half 102 and the second half 104 each include flats 106 formed an exterior surfaces thereof. The flats 106 can facilitate the attachment of the first half 102 and the second half 104 to other components. For instance, a wrench or other tool can engage the flats 106 on the second half 104 and the wrench or other tool can be used to rotate the second half 104 to threadably engage a threaded portion 108 of the second half 104 into another component (e.g., a rod string). Similarly, a wrench or other tool can engage the flats on the first half 102 and the wrench or other tool can be used to rotate the first half 102 to threadably engage a threaded portion 110 (see
As can be seen in
The number and configuration of the fingers 112, 114 can vary from one embodiment to another. For instance, in the illustrated embodiment, there are four fingers 112 and four fingers 114, each of which is generally square or rectangular in shape. In other embodiments, there may be as few as one finger on each of the first half 102 and the second half 104 or any number desired. Similarly, some or all of the fingers may have non-square or non-rectangular shapes. For instance, some or all of the fingers may be triangular or semi-circular.
Attention is now directed to
As can be seen in
The first end of the shear pin 116 can be secured within the first half 102 via the bushing 118 and the retention ring 120. The bushing 118 can be disposed about a shaft portion 124 of the shear pin 116. More specifically, as shown in
When the bushing 118 is disposed about the shaft portion 124, the bushing 118 engages a shoulder 129 disposed adjacent to the first end of the shear pin 116. When the bushing 118 is threaded into the first half 102, the engagement between the bushing 118 and the shoulder 129 causes the first end of the shear pin 116 to be advanced into the first half 102. Once the bushing 118 is threaded into the first half 102, the retention ring 120 (e.g., C-shaped snap ring) can be inserted into the first half 102 to prevent the bushing 118 from unthreading from the first half 102. The retention ring 120 can interface with a groove 130 or other structural feature on an interior surface of the first half 102 to maintain the retention ring 120 in place and prevent the bushing 118 from unthreading from the first half 102.
As can also be seen in
The retention assembly 122 can further secure the second end of the shear pin 116 within the second half 104 and prevent the shear pin 116 from undesirably unthreading from the second half 104. For instance, the retention assembly 122 can include a retention ring (e.g., C-shaped snap ring) and/or a star-shaped ring that engages both the second end of the shear pin 116 and the interior of the second half 104. In some embodiments, the retention assembly 122 engages a groove 136 or other structural feature formed in an exterior surface of the shear pin 116. Likewise, in some embodiments the retention assembly 122 engages a groove or other structural feature formed on an interior surface of the second half 104.
Disposing and securing the shear pin 116 within the first half 102 and the second half 104 as described above substantially isolates the shear pin 116 from many forces, including torsional forces, experienced by the first and second halves 102, 104, except for tension forces. More specifically, securing the first end of the shear pin 116 within the first half 102 via the bushing 118 allows for relative torsional movement between the shear pin 116 and the bushing 118 because the bushing 118 can rotate or twist about the shear pin 116. As a result, any torsional forces applied to either the first half 102 or the second half 104 are transferred to the other via the fingers 112, 114 and not through the shear pin 116.
The primary forces that are transferred from the first and second halves 102, 104 to the shear pin 116 are tension forces. For example, when a tension force is applied to the rod string to pull the rod string up the wellbore, the tension force is transferred to the shear coupling 100 via the connection between the rod string and the second half 104. The second half 104 is connected to the first half 102 via the connections between the shear pin 116 and the first and second halves 102, 104. Thus, the tension force is transferred from the second half 104 to the shear pin 116 via the threaded connection therebetween and/or the engagement of the retention assembly 122 therebetween. The tension force is then transferred from the shear pin 116 to the first half 102 via the bushing 118. More specifically, the tension force is transferred from the shear pin 116 to the bushing 118 via the engagement of the shoulder 129 with the bushing 118. The bushing 118 then transfers the tension force to the first half 102 via the threaded connection therebetween. The tension force is then transferred from the first half 102 to a component connected thereto (e.g., a downhole pump).
In the event the tension force applied to the shear coupling 100 exceeds a predetermined threshold, the shear pin 116 can separate or break in half. For example, if a downhole pump becomes lodged within a wellbore and a tension force applied to a rod string exceeds the predetermined threshold, the shear pin 116 can break or separate into two pieces. Breaking or separating the shear pin 116 into two pieces can disengage the rod string from the downhole pump and prevent damage being done to either the downhole pump or the rod string.
In some embodiments, including the illustrated embodiment, the shear pin 116 is designed to predictably break or separate into two pieces or halves upon the application of a tension force above the predetermined threshold. For instance, the shear pin 116 may include an area of weakness or reduced strength that is designed to preferentially and predictably fail upon the application of a tension force above a predetermined threshold. In the illustrated embodiment (see
Notably, even when the shear pin 116 breaks into two halves at the shear groove 138, the two halves remain connected to the respective first and second halves 102, 104. For instance,
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to and the benefit of U.S. Provisional Application No. 62/529,813, filed Jul. 7, 2017, and entitled SHEAR COUPLING, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5470118 | Burton | Nov 1995 | A |
5586611 | Dorosz | Dec 1996 | A |
9803449 | Good, III | Oct 2017 | B2 |
10221633 | Wollmann | Mar 2019 | B2 |
20020179305 | Mack | Dec 2002 | A1 |
20110150596 | Wolodko | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20190010768 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62529813 | Jul 2017 | US |