Milling and grinding machines are commonly used in the asphalt and pavement industries. In many cases, maintaining paved surfaces with grinding and milling machines may significantly increase the life of the roadway. For example, a road surface that has developed high points is at greater risk for failure because vehicles and heavy trucks that hit the high point may bounce on the road. The impact force of the bouncing overtime may damage to the road surface.
Additionally, portions of the road surface may occasionally need to be ground down to remove road markings, such as centerlines or crosswalk markings. For instance, when roads are expanded or otherwise changed, the road markings also may need to be changed. In any event, at least a portion of material forming a road surface may be removed for any number of reasons.
Typically, removal of material forming the road surface wears the tools and equipment used therefor. Moreover, tool and equipment wear may reduce useful life thereof. Therefore, manufacturers and users continue to seek improved road-removal systems and apparatuses to extend the useful life of such system and apparatuses.
Embodiments of the invention relate to methods and apparatus for using polycrystalline compacts (“PDC”) to mill a road surface. In particular, a PDC can be positioned and configured such that a substantially planar working surface of the PDC engages the road surface. Engaging the road surface with the substantially planar working surface may shear and/or cut through the road surface. Such PDCs may perform better in a shearing function than in a crushing function.
At least one embodiment is directed to a system for removing a road material. In particular, the system includes a milling drum rotatable about a rotation axis, and a plurality of picks mounted on the milling drum. Each of the plurality of picks includes a pick body and a polycrystalline diamond compact (“PDC”) attached to the pick body. The PDC has a substantially planar working surface and a nonlinear cutting edge at least partially surrounding the working surface.
Additional or alternative embodiments involve a method of removing road material. The method includes advancing a plurality of picks toward road material, each of the plurality of picks including a polycrystalline diamond compact (“PDC”) that forms a substantially planar working surface and a nonlinear cutting edge at least partially surrounding the working surface. The method also includes advancing the nonlinear cutting edges and the substantially planar working surfaces of the picks into the road material, thereby failing at least some of the road material while having the substantially planar working surfaces oriented at one or more of a positive rake angle or negative rake angle.
Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.
The drawings illustrate several embodiments, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.
Embodiments of the invention relate to road-removal devices, systems, and methods. In particular, embodiments include road-removal devices and systems that incorporate superhard material, such as PDC. For instance, the PDCs may include one or more cutting edges that may be sized and configured to engage the road surface during road-removal operations. Moreover, engaging the road material with the cutting edge(s) may cut, shear, grind, or otherwise fail the road material and may facilitate removal thereof. In some embodiments, failing the road material may produce a relatively smooth or flat road surface, which may increase the useful life of the road.
Generally, any number of picks 120 may be attached to the milling drum 110. Moreover, particular sizes, shapes, and configurations of picks may vary from one embodiment to the next. In some instances, a pick configuration that may be used for removing an entire thickness or all of the road material 10 may be different from another pick configuration that may be used to smooth the road surface and/or remove imperfections therefrom.
In some instances, bumpy and uneven road surfaces may lead to excessive wear and shorten the life of the road surface. In one or more embodiments, the picks 120 may be configured to remove at least a portion of the road material 10 and recreate or renew the road surface. In particular, in an embodiment, the picks 120 may grind, cut, or otherwise fail the road material 10 as the milling drum 110 rotates, and the failed road material may be subsequently removed (e.g., by the road-removal system 100). In some embodiments, the picks 120 do not remove all of the road material but only remove some road material, such as a limited or predetermined thicknesses thereof (e.g., measured from the road surface), which may remove abnormalities, bulges, etc., from the road surface.
The road-removal system 100 may also be used for adding and removing road markings, such as epoxy or paint lines. Road markings may include highly visible and wear-resistant material. In some cases, the road marking material may be difficult to remove from the road surface without damaging or destroying the road surface. Furthermore, some instances may require removal of existing road markings and placement of new road markings (e.g., a construction project may temporarily or permanently reroute traffic and may require new lane markings).
Insufficient or incomplete removal of road markings, however, may lead to dangerous road conditions. For example, a driver may be unable to distinguish between the former lanes and the new lanes. In some cases, removing road markings may involve removing at least some of the road material 10 together with the markings that are affixed thereto. In any event, in an embodiment, the picks 120 may be configured to remove paint and/or epoxy from the road material 10. In some instances, a relatively narrow milling drum with a relatively narrow or tight pick distribution may be used to remove road markings, such as paint and epoxy, which may localize the removal of the road material 10 to the area that approximates the size and shape of the removed road markings. In other words, in an embodiment, the picks 120 may be set to remove the road marking and a thin layer of road material 10 below the road marking such that no trace of the marking remains.
Similarly, in an embodiment, the road-removal system 100 may be used to inlay paint or epoxy within the road material 10. Inlaying paint or epoxy within the road surface can provide protection to the paint of epoxy. Thus, similar to the one or more embodiments described above, the road-removal system 100 may be used to create narrow strips or recesses within the road material 10 (e.g., at a predetermined depth from the road surface). In particular, for instance, created recesses may be sized and shaped to approximately the desired size and shape of the road markings (e.g., epoxy, paint, etc.). In an embodiment, the picks 120 may be operated dry, such as without or with limited amount of fluid or coolant provided to the picks 120 during the removal of the road material 10. Absence of fluid on the road material 10 may facilitate application of paint, epoxy, or other road marking material to the road surface (e.g., reducing time between removal of road material 10 and application of road markings).
Further, in an embodiment, the road-removal system 100 may be used to create water flow channels. Improper or ineffective water drainage on road surfaces 10 may create safety problems and may lead to road damage. For instance, if standing water is left on the road surface, hydroplaning and/or ice may result, which may cause accidents. Additionally, the expansion of freezing water on the road material 10 may cause the road material 10 to buckle and/or crack. Accordingly, in an embodiment, the road-removal system 100 may be used to form water flow channels in the road material 10.
The particular type of pick as well as mounting position and/or orientation thereof on the milling drum 110 may affect removal of road material 10.
In some instances, the mounting bases 150 may be larger than pick bodies of the picks 120, which may limit the density of picks 120 in a single row as well as the number of rows on the milling drum and/or combined length of cutting edges (i.e., the sum of lengths of all cutting edges), by limiting minimum distance between adjacent picks 120. Hence, in an embodiment, the milling drum may produce a reconditioned surface 20 that includes multiple grooves or striations formed by the picks 120. Alternatively, however, the milling drum may produce a substantially uniform or flat surface, without groove or with minimal grooves. For example, the picks 120 may be offset one from another in a manner that provides overlap of cutting edges along a width of the milling drum in a manner that produces a flat surface.
In an embodiment, the pick 120 includes a PDC 140 affixed to an end region or portion of a pick body, as described below in more detail. Moreover, in an embodiment, the PDC 140 includes a cutting edge (described below in more detail), which extends between a substantially planar working surface 141 and at least one side surface. For example, the cutting edge may be adapted to cut, grind, scrape, or otherwise fail the road material 10. Additionally or alternatively, in some instances, the cutting edge or face of the pick 120 may have a conical or rounded peripheral shape, which may create a grooved or uneven surface (e.g., as compared to a flat and smooth reconditioned road surface 20, which may be formed by the picks 120 with planar working surfaces).
In some instances, the pick 120 may remove an upper layer or portion of the road material 10. Specifically, in an embodiment, in contrast to using an impact and crushing force to break apart the road surface, the cutting edge of the pick 120 may scrape, shear, cut, or otherwise fail the road material 10 (e.g., to a predetermined depth). In some instances, cutting through the road material 10 (e.g., through upper portion of the road material 10) may provide substantially more control over the amount of road material 10 that is removed from the road surface than removing road material 10 by crushing and impacting the road material 10.
In some embodiments, at least a portion of the cutting edge of the pick 120 may be substantially straight or linear. Accordingly, in an embodiment, the road-removal system 100 that includes multiple picks 120 may produce a substantially flat or planar reconditioned road surface 20. Also, in some embodiments, the unfinished road surface 30 that is in front of the pick 120 may be rough and uneven. In an embodiment, as the milling drum 110 rotates and causes the pick 120 to engage the unfinished road surface 30, the cutting edge of the pick 120 grinds and/or scrapes the unfinished road surface 30 and road material 10, thereby removing imperfections and undesirable artifacts from the unfinished road surface 30 and producing the reconditioned road surface 20.
Additionally, the substantially planar working surface 141 of the PDC 140 may form a suitable or an effective back rake angle α, as described in further detail below. In particular, the back rake angle α may be formed between the working surface 141 and a vertical reference axis (e.g., an axis perpendicular to a tangent line at the lowermost point of contact between the pick 120 and the road material 10). In one example, the vertical reference axis may be approximately perpendicular to the reconditioned road surface 20. Accordingly, in some embodiments, the working surface 141 of the PDC 140 may be oriented at a non-perpendicular angle relative to the reconditioned road surface 20, when the cutting edge of the PDC 140 is at the lowermost position relative to the surface of the road material 10. In other words, the working surface may be oriented at a non-perpendicular angle relative to an imaginary line tangent to the rotational path of the cutting edge of the pick.
The back rake angle α may aid in evacuating or clearing cuttings or failed road material during the material removal process. In some embodiments, as shown in
Additionally, under some operating conditions, the road-removal system 100 may remove road material to a specific or predetermined depth. In some cases, such as with especially thick or multiple layers of the road material 10, the system may remove the road material 10 over multiple passes or in a single pass having a sufficiently deep cut. In contrast, a thin layer of road material 10 may be removed with a shallow cut. In any event, a variety of cutting depths can be set without interfering with the shearing configuration of the PDCs.
The depth of placement or positioning of the milling drum 110, which may determine the depth to which the pick 120 engages the road material 10, may be controlled by any number of suitable methods and apparatuses. Also, in some embodiments, the picks 120 and the road-removal system may be configured to remove less than approximately 60 cm of road surface during the grinding operation. Furthermore, in an embodiment, the picks 120 and the road-removal system may be configured to remove less than approximately 30 cm of road surface, less than approximately 20 cm of road surface, less than approximately 10 cm of road surface, less than approximately 1 cm, or approximately 4 mm to approximately 6 mm of road surface.
In some applications, removing an excessive amount of road material may lead to a significant reduction in the life of the road. Hence, it should be appreciated that the picks may have any number of suitable sizes, shapes, or configurations (e.g., PDCs and pick bodies may have various configurations), which may vary from one embodiment to the next and may affect removal of the road material 10. In any case, however, a pick may include polycrystalline diamond that includes a cutting edge configured to grind, mill, or otherwise fail a layer or portion of the road material 10 that may be subsequently removed.
In one or more embodiments, the PDC 140a may have a generally cylindrical shape (i.e., an approximately circular cross-sectional shape). Moreover, the working surface 141a may have an approximately circular shape. As such, in an embodiment, the cutting edge 160a may be substantially nonlinear. For instance, the cutting edge 160a may be circular or semicircular, rounded, etc. Hence, in an embodiment, the cutting edge 160a may at least partially surround the working surface 141a. Alternatively, the PDC 140a and/or the working surface 141a may have any number of suitable shapes, such as square, hexagonal (or other multi-faceted), triangular, etc. In any event, in an embodiment, the working surface 141a may be substantially flat or planar.
In some instances, the PDC 140a also may include chamfers, filets, or similar features that may smooth or round otherwise sharp edges of the PDC 140a. For example, the PDC 140a may include one or more chamfers that extend between the working surface 141a and one or more sides thereof, such as chamfer 146a. In addition, the chamfer 146a may extend about at least a portion of the perimeter of the working surface 141a (i.e., the chamfer 146a may at least partially surround the working surface 141a). As such, for example, the chamfer 146a may have a circular cross-sectional shape, which may be similar to or the same as the shape of the working surface 141a. Under some operating conditions, rounded or chamfered edges may improve crack and/or fracture resistance of the PDC 140a (as compared with a PDC having sharp corners and/or edges that engage road material). For instance, fillets or chamfers may reduce or minimize chipping, cracking, etc., of PDC 140a during operation.
Thus, for example, a portion of the chamfer 146a may form or define the cutting edge 160a. For example, the cutting edge 146a may be formed at the interface (or sharp corner) between the working surface 141a and the chamfer 146a. Additionally or alternatively, the cutting edge 160a may be formed at the interface between the chamfer 146a and a peripheral surface of the PDC 140a. Also, in some instances, the surface of the chamfer 146a may engage and fail road material and/or may facilitate entry of the PDC 140a into the road material.
In an embodiment, the PDC 140a may include a polycrystalline diamond (“PCD”) table 142a bonded to a substrate 143a. For example, PCD table 142a may include the working surface 141a, which may be substantially flat. The substrate 143a may comprise cobalt-cemented tungsten carbide or another suitable superhard material, such as another type of cemented carbide material.
In some embodiments, the working surface 141a may have or form a negative back rake angle θ during operation of the pick 120a. For example, the back rake angle θ may be in one or more of the following ranges: between approximately 0 and approximately 45 degrees; between approximately 0 and approximately 30 degrees; between approximately 0 and approximately 25 degrees, between approximately 0 and approximately 20 degrees; between approximately 0 and approximately 15 degrees; between approximately 0 and approximately 10 degrees; or between approximately 0 and approximately 5 degrees. Additionally, the back rake angle θ may be an angle of approximately 6 to approximately 14 degrees, approximately 8 to approximately 12 degrees, or approximately 10 degrees. In an embodiment, each of the recited back rank angles may be a positive back rake angle. In some instances, as noted above, the back rake may aid in evacuating cuttings during a grinding, milling, or other removal of the road material.
As noted above, in some embodiments, the PDC 140a may include a chamfer 146a that may at least partially or entirely surround the working surface 141a. The chamfer 146a may also engage and fail the target road material (e.g., in a similar manner as the working surface 141a engages the target material). Furthermore, a suitable large chamfer 146a may provide a side rake on opposing sides of the PDC 140a. Accordingly, in at least one embodiment, the PDC 140a may include one or more portions that may have side rake angles. Also, as the chamfer 146a extends about the working surface 141a, angular orientation of the surface formed by the chamfer 146a may vary in a manner that provides varying back rake and/or side rake angles.
Generally, the back rake angle and/or side rake angle(s) may be produced in any number of suitable ways. In some embodiments, the PCD table 142a of the PDC 140a may have an approximately uniform thickness and/or the working surface 141a of the PDC 140a may be approximately parallel to a bottom surface of the substrate 143a. Hence, the PDC 140a may be oriented relative to the pick body 210a and/or relative to the milling drum in a manner that forms desired or suitable side and/or back rake angles. Additionally or alternatively, the mounting side of the PDC 140a may be angled relative to the working surface of the PDC (e.g., the PCD table may have non-uniform or inconsistent thickness and/or the substrate may have a non-uniform thickness), which may form desired or suitable side and/or back rake angles. Furthermore, in an embodiment, the pick may be oriented relative to the milling drum in a manner that forms desired or suitable side and/or back rake angles. Also, in at least one embodiment, the side rake angle and/or back rake angle may be adjustable. For example, an attachment of the PDC may provide for angular adjustment.
In an embodiment, the substrate 143a may be positioned in a pocket or recess in the pick body 210a, such as in a recess 213a, and brazed or press-fit within the recess. In an embodiment, the recess 213a may at least partially secure the PDC 140a to the pick body 210a. Furthermore, the recess 213a may locate the PDC 140a relative to one or more surfaces and/or features of the pick body 210a. For instance, the recess 213a may orient the working surface 141a relative to a front surface 211a of the pick body 210a.
In an embodiment, a portion of the pick body 210a may be oriented substantially parallel to the working surface 141a. For example, the pick body 210a may include an angled portion 212a, which may be angled relative to the front surface 211a and/or may be approximately parallel to the working surface 141a. Hence, at least a portion of the pick body 210a (e.g., the angled portion 212a) may channel failed road material away from the pick 120a, which may reduce wear of the pick body 210a and/or of the PDC 140a.
Generally, the PDC 140a may be attached to the pick body 210a by brazing, fastening, press fitting, or other suitable methods or mechanisms, or combinations thereof. Moreover, the recess 213a also may facilitate attachment of the PDC 140a to the pick body 210a and/or may at least partially restrain the PDC 140a from movement relative to the pick body 210a during operation of the pick 120a. For example, the recess 213a may terminate at a bottom surface 214a, which may prevent or restrict movement of the PDC 140a away from the front surface 211a of the pick body 210a. Under some operating conditions, as the working surface 141a engages the target road material, the PDC 140a may experience a force (e.g., directed tangentially relative to the rotation of the pick 120a and/or away from the front surface of the pick), which may press the PDC 140a against the bottom surface 214a of the recess 213a; the bottom surface 214a, however, may impede movement of or restrain the PDC 140a.
In some embodiments, at least a portion of the PDC 140a (in addition to the working surface 141a) may be exposed outside of the pick body 210a. For instance, a top portion 144a of the substrate 140a may protrude out of the recess 213a and above the pick body 210a. As such, in some instances, at least a portion of the substrate 143a (e.g., the top portion 144a) may contact or engage and/or fail the road material during operation of the pick 120a.
In an embodiment, the top portion 144a of the PDC 140a may form a relief angle relative to the road material and/or relative to the reconditioned surface thereon. For instance, the relief angle formed by the top portion 144a relative to the reconditioned surface may be the same as the back rake angle θ. Furthermore, in an embodiment, when the pick 120a is operating, the lowermost point or points of the pick 120a (which contact and fail the road material) may be located on the PCD table 142a. Hence, for example, depending on the depth of cut or penetration of the pick 120a into the road material, the relief angle may provide clearance between the top surface 144a of substrate 143a and the road material. In other words, in some embodiments, the relief angle may prevent or limit contact between the substrate 143a and road material, thereby extending useful life of the PDC 140a and of the pick 120a.
In some embodiments, the pick may include a single PDC attached to the pick body. It should be appreciated, however, that this disclosure is not so limited. For example, the pick may include multiple PDCs.
In an embodiment, the PDCs 140b, 140b′ may have substantially the same size and/or shape as each other. In other words, the PDCs 140b, 140b′ may be interchangeable. Moreover, in an embodiment, one or more of the PDCs 140b, 140b′ may be smaller than a width 214b of the pick body 210b. For example, collective width of the PDCs 140b, 140b′ may be smaller than the width 214b of the pick body 210b. Accordingly, in an embodiment, the pick body 210b may include one or more portions of a top surface 215b that are exposed or not covered by the PDCs 140b, 140b′.
In some embodiments, when the pick 120b is in operation, the lowermost portions of the pick 120b may be formed by the PDCs 140b, 140b′ (e.g., the portions of the PDCs 140b, 140b′ farthest from the pick body 210b). Under some operating conditions, cutting points or edges 160b, 160b′ of the PDCs 140b, 140b′ may be configured to engage the road material at approximately the same depth or depths as each other. In an embodiment, centers of the PDCs 140b, 140b′ may be generally aligned along a reference line 25b. For instance, the reference line 25b may be approximately parallel to the rotation axis of the milling drum and/or parallel to the reconditioned surface.
In an embodiment, the pick body 210b may have a substantially flat top surface 215b. Hence, in some instances, the PDCs 140b, 140b′ may protrude above the top surface 215b. For example, a half of each of the PDCs 140b, 140b′ may protrude above the top surface 215b (e.g., the top surface 215b of the pick body 210b may be parallel to and aligned with the reference line 25b).
Additionally or alternatively, in at least one embodiment, the pick may include multiple PDCs at least two of which may have different sizes and/or shapes from each other. For example,
In an embodiment, the PDC 140c′ may be bigger than the PDC 140c. Accordingly, in at least some instances, the PDC 140c′ may engage the road material at a greater depth than the PDC 140c. For example, the PDCs 140c, 140c′ may lie along a reference line 25c (i.e., centers of the PDCs 140c, 140c′ may lie on the reference line 25c), which may have an approximately parallel orientation relative to the rotation axis of the milling drum and/or relative to the reconditioned surface. Hence, the PDC 140c′ may engage and/or fail the road material at a greater depth than the PDC 140c.
In an embodiment, the milling drum may include multiple picks, such as the pick 120c, which may be arranged in a manner that removes road material to the same final cut depth. For example, the picks may be arranged such that a larger PDC of one pick follows a path of a smaller PDC of another pick. Hence, the smaller PDC may first remove road material to a first depth, and the larger PDC may subsequently remove additional road material to the second depth. Moreover, in some examples, operation of the milling drum may remove road material to the second (or final) depth produced by the larger PDCs.
In some embodiments, the pick may include multiple PDCs aligned along multiple centerlines.
In an embodiment, the PDCs 140d, 140d′, 140e may form a pyramid-like or triangular configuration that may engage the road material. In particular, for instance, the PDCs 140d, 140d′ may be aligned along a first reference line 25d, while the PDC 140e may lie on a second reference line 25e, which may be substantially perpendicular to the first reference line 25d (e.g., the center of the PDC 140e may be offset from the first reference line 25d). Also, in some examples, the second reference line 25e may generally coincide with a centerline of the pick body 210d (e.g., portions of the pick body on opposing sides of the second reference line 25e may be symmetrical mirror images of each other). Hence, in some instances, cutting surfaces or edges of the PDCs 140d, 140d′ may engage the road material at a first depth, and the cutting edges and/or surfaces of the PDC 140e may engage the road material at a second depth. In some embodiment, the second depth (produced by the PDC 140e) may be greater than the first depth (produced by the PDCs 140d, 140d′).
Furthermore, the PDCs 140d, 140d′ may be spaced apart from each other and/or from the reference line 25e. For example, the width of cut or removed road material produced by the pick 120d may be at least partially defined by the distance between the outer cutting edges of PDCs 140d, 140d′, while the depth of cut or removed road material may be defined by the PDC 140e. In an embodiment, the pick body 210d may have a tapered or angled top surface 215d. In some examples, the outer portions of the PDCs 140d, 140d′, 140e, which may defined or determine the depth and/or width of cut or grove produced in the road material by the pick 120d, may protrude above and/or past the top surface 215d of the pick body 210d. In other words, under some operating conditions, the top surface 215d may not contact or fail the road material during operation of the pick 120d.
As noted above, the pick 120d may include the PDC 140e′. Particularly, in an embodiment, the PDC 140e′ may be positioned on the pick body 210d in a manner that the PDC 140e′ does not protrude past the top surface 215d. For example, the PDC 140e′ may include a working surface 141e′ that may protrude above or out of a front surface 211d of the pick body 210d, while the outer periphery or contour of the PDC 140e′ may remain within the pick body 210d.
Also, in some examples, the PDC 140e′ may be aligned along the reference line 25e. For example, centers of the PDCs 140e, 140e′ may lie on the reference line 25e. As mentioned above, in some instances, the reference line 25d may be substantially parallel to the rotation axis of the milling drum and/or to the reconditioned surface produced by picks attached to the milling drum. As such, the reference line 25e may be substantially perpendicular to the rotation axis of the milling drum and/or to the reconditioned surface.
The working surface 141e′ of the PDC 140e′ may engage the road material and/or protect at least a portion of the pick body 210d from wear during operation. Similarly, PDCs 140d, 140d′, 140e may include respective working surfaces 141d, 141d′, 141e, which may also engage the road material and/or protect at least a portion of the pick body 210d. In any event, one or more of the PDCs 140d, 140d′, 140e, 140e′ may engage and fail road material and may protect the pick body 210d from wear. Furthermore, it should be appreciated that the pick may include any suitable number of PDCs, which may be arranged on the pick body in any number of suitable patterns or configurations.
Additionally, while the picks described above may include multiple cylindrical or approximately cylindrical PDCs, this disclosure is not so limited. For instance,
Generally, the PDCs 140g, 140g′ may be positioned at any suitable location on the pick body 210g, which may vary from one embodiment to the next. In an embodiment, PDCs 140g, 140g′ of the pick 120g may be spaced apart from each other. For example, the PDCs 140g, 140g′ may be positioned near opposing sides of the pick body 210g (e.g., the PDC 140g may be positioned near a first side 217g and the PDC 140g′ may be positioned near a second side 218g.
As noted above, the PDCs 140g, 140g′ may be approximately rectangular. Hence, in some embodiments, the PDCs 104g, 140g′ may have respective cutting edges 160g, 161g, 162g, 160g′, 161g′, 162g′. In particular, in an embodiment, the cutting edges 160g, 161g, 162g may be approximately perpendicular to one another. Similarly, the cutting edges 160g′, 161g′, 162g′ may be approximately perpendicular to one another. Also, one or more of the cutting edges 160g, 161g, 160g′, 161g′ may be exposed from the pick body 210g and may engage the road material.
Moreover, in an embodiment, one or more of the cutting edges 160g, 161g, 162g, 160g′, 161g′, 162g′ may form an obtuse or acute angle relative to a center axis 25g and/or one or more of the first and second sides 217g, 218g of the pick body 210g. In some examples, the angles formed between the cutting edges 160g, 161g, 162g, 160g′, 161g′, 162g′ and the centerline 25g (and/or first and/or second sides 217g, 218g) may be in one or more ranges described above in connection with the back rake angle.
In alternative embodiments, one or more of the cutting edges 160g, 161g, 162g, 160g′, 161g′, 162g′ may be have a substantially perpendicular or parallel orientation relative to the center axis 25g and/or first and/or sides 217g, 218g. Also, as noted above, the PDCs 140g, 140g′ may include a back rake angle and/or side rake angle. In some examples, back rake and side rake angles may be the same, while in other examples the back and side rake angles may be different from one another. Likewise, the angles formed by the cutting edges 160g, 161g, 162g, 160g′, 161g′, 162g′ and, for instance, the centerline 25g may be the same as any of the back rake or side rake angles formed by the PDCs 140g, 140g′ or different therefrom.
Furthermore, the PDC 140j may include a working surface 141j. As noted above, in an embodiment, the working surface 141j may have a zero degree rake angle (or no rake angle) when mounted on the milling drum. For example, the working surface 141j may be approximately parallel to a front face 211j of the pick body 210j. Additionally or alternatively, the working surface 141j may be offset from the front face 211j of the pick body 210j. In other words, the PDC 140j may protrude outward from the pick body 210j and the front face 211j thereof.
In some embodiments, the pick 120j may include a shield 230j that may be positioned near the PDC 140j. In an embodiment, a front face 231j of the shield 230j may be approximately coplanar with the front face 211j of the pick body. Hence, in an embodiment, the front face 231j of the shield may be recessed from the working surface 141j of the PDC 140j (e.g., in a manner that may reduce or minimize contact of the shield 230j with the road material during operation of the pick 120j.
Generally, the shield 230j may include any suitable material. In an embodiment, the shield 230j may include material(s) that may be harder and/or more wear resistant than the material(s) of the pick body 210j. For example, the shield 230j may include carbide, polycrystalline diamond, or other suitable material that may protect the portion of the pick body 210j located behind the shield 230j.
Additionally, in an embodiment, as shown in
Furthermore, in some embodiments, the pick 120k may include a shield 230k, which may be similar to the shield 230j (
As mentioned above, the pick may have a working surface that has a positive back rake angle.
In an embodiment, the first PDC 140n′ may include a cutting edge 160n. Furthermore, the first and second PDCs 140n′, 140n″ may include respective working faces 141n′, 141n″. More specifically, in an embodiment, the working faces 141n′, 141n″ may fail road material and/or deflect failed road material away from the pick 120n. Additionally or alternatively, the second PDC 140n″ may protect at least a portion of the pick body 120n. For example, the second PDC 140n″ may protect a portion of the pick body 210n near the first PDC 140n′.
While at least one of the above described embodiments includes a linear cutting edge, it should be appreciated that this disclosure is not so limited. For instance,
In an embodiment, the cutting edge 160p may be at least partially formed by a PDC 140p, which may be secured to a pick body 210p. Furthermore, the cutting edge 160p may at least partially define the perimeter of the PDC 140p. Hence, in at least one embodiment, the PDC 140p may have a semicircular shape that may protrude away from the pick body 210p.
In some instances, the pick 120p may include a shield 230p, which may be similar to or the same as the shield 230j (
Alternatively, the bottom side of the PDC may be non-linear and/or not straight. For instance,
In an embodiment, a bottom side 142q of the PDC 140q may be nonlinear or may include multiple linear segments. In one example, the pick 120q may include a shield 230q that may be secured to the pick body 230q. Furthermore, the shield 230q may abut at least a portion of the bottom side 142q of the PDC 140q. Accordingly, in at least one embodiment, the shield 230q may have a nonlinear top side that may abut or may be positioned near the bottom side 230q of the PDC 140q. For instance, the top side of the shield 230q may have a shape and side that may be complementary to the shape and size of the bottom side 142q of the PDC 140q, such that at least a portion of the PDC 140q may fit inside the shield 230q and/or at least a portion of the shield 230q may fit into the PDC 140q. In one or more embodiments, the bottom side 142q of the PDC 140q may have a convex shape (e.g., V-shaped convex), and the top side of the shield 230q may have a corresponding concave shape, which may receive the convex shape of the bottom side 142q.
In an embodiment, the PDC may include multiple materials.
While in one or more embodiments the pick body may have an approximately rectangular or square cross-sectional shape, this disclosure is not so limited.
For instance, the pick body 210t may include a conical portion 211t and a first cylindrical portion 212t connected to or integrated with the conical portion 211t. In an embodiment, the first cylindrical portion 212t may extend from a major diameter of the conical portion 211t. In at least one embodiment, the pick body 210t may include a second cylindrical portion 213t. For example, the second cylindrical portion 213t may extend from a minor diameter of the conical portion 211t.
In an embodiment, the PDC 140t may include a working surface 141t, which may include polycrystalline diamond. For instance, the working surface 141t may have a semispherical or dome shape that extends or protrudes from a second cylindrical portion 213t. In an embodiment, the second cylindrical portion 213t may include an approximately planar working surface 141t′, which may engage the target road material. Hence, in an embodiment, the working surface 141t of the PDC 140t may protrude above the working surface 141t.
The pick body 210t may include any number of suitable materials and combinations of materials, which may vary from one embodiment to the next. In at least one embodiment, the pick body 210t includes cemented carbide material. Thus, for example, the second cylindrical portion 213t of the pick body 210t may form a substrate. Moreover, in an example, the PDC 140t may include polycrystalline diamond table that may be bonded to the second cylindrical portion 213t of the pick body 210t.
In an embodiment, the domed working surface 141t may facilitate rotation of the pick 120t during operation thereof (i.e., the pick 120t may rotatably fail target road material). For example, the PDC 140t may be rotatably mounted to a pick body 210t in a manner that allows the PDC 140t to rotate during operation of the pick 120t (e.g., when the working surface 141t engages the target material). In an embodiment, the second cylindrical portion 213t of the pick body 210t may rotate together with the working surface 141t relative to the remaining portions of the pick body 210t, such as relative to the conical portion 211t. Rotating the working surface 141t during operation of the pick 120t may extend the useful life of the pick 120t (e.g., by distributing the wear around the entire working surface 141t).
Generally, the PCD and PCD tables of the picks described herein may vary from one embodiment to the next. In an embodiment, the PCD table includes a plurality of bonded diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst may occupy the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively may exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Additionally, in an embodiment, the PCD table may include a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst may occupy the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively may exhibit a specific magnetic saturation of about 15 G·cm3/g or less. The plurality of diamond grains and the metal-solvent catalyst may define a volume of at least about 0.050 cm3. Additional description of embodiments for the above described PCD table is provided in U.S. Pat. No. 7,866,418, which is incorporated herein, in its entirety, by this reference.
In an embodiment, the PDC may include a preformed PCD volume or PCD table, as described in more detail in U.S. Pat. No. 8,236,074, which is incorporated herein in its entirety by this reference. For example, the PCD table that may be bonded to the substrate by a method that includes providing the substrate, the preformed PCD volume, and a braze material and at least partially surrounding the substrate, the preformed PCD volume or PCD table, and a braze material within an enclosure. Also, the enclosure may be sealed in an inert environment. Furthermore, the enclosure may be exposed to a pressure of at least about 6 GPa and, optionally, the braze material may be at least partially melted.
In yet another embodiment, a PDC may include a substrate and a pre-formed PCD table that may include bonded diamond grains defining a plurality of interstitial regions, and which may be bonded to the substrate, as described in further detail in U.S. patent application Ser. No. 13/070,636 (issued as U.S. Pat. No. 8,727,044 on May 20, 2014), which is incorporated herein in its entirety by this reference. For instance, the preformed PCD table may further include an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending between the upper surface and the back surface. A region may extend inwardly from the upper surface and the at least one lateral surface. The region may include at least a residual amount of at least one interstitial constituent disposed in at least a portion of the interstitial regions thereof. The at least one interstitial constituent may include at least one metal carbonate and/or at least one metal oxide. Additionally, a bonding region may be placed adjacent to the substrate and extending inwardly from the back surface. The bonding region may include a metallic infiltrant and a residual amount of the at least one interstitial constituent disposed in at least a portion of the interstitial regions thereof.
In another embodiment, the PCD table of the PCD may include a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions as described in more detail in U.S. patent application Ser. No. 13/027,954 (issued as U.S. Pat. No. 9,017,438 on Apr. 28, 2015), which is incorporated herein in its entirety by this reference. For instance, the PCD table may include at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material may exhibit a melting temperature of about 100° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.
In an additional or alternative embodiment, the PCD table of the PCD 140q may include a plurality of bonded-together diamond grains defining a plurality of interstitial regions as described in more detail in U.S. patent application Ser. No. 13/100,388 (issued as U.S. Pat. No. 9,027,675 on May 12, 2015), which is incorporated herein in its entirety by this reference. For instance, the PCD table may include aluminum carbide disposed in at least a portion of the plurality of interstitial regions. Moreover, in an embodiment, the PCD table may include a plurality of bonded diamond grains that may exhibit an average grain size of about 40 μm or less.
In an embodiment, the preformed PCD table may include at least a portion of the interstitial regions of the first region including an infiltrant disposed therein, as described in more detail in U.S. patent application Ser. No. 12/961,787 (published as U.S. Patent Publication No. 2012/0138370 on Jun. 7, 2012), which is incorporated herein in its entirety by this reference. In some embodiments, the pre-formed PCD table may also include a second region adjacent to the first region and extending inwardly from the exterior working surface to a depth of at least about 700 μm. In some instances, the interstitial regions of the second region may be substantially free of the infiltrant. In one example, the preformed PCD table may have a nonplanar interface located between the first and second regions.
In an embodiment, the PCD table may include a plurality of bonded diamond grains defining a plurality of interstitial regions and at least a portion of the plurality of interstitial regions may include a cobalt-based alloy disposed therein as described in more detail in U.S. application Ser. No. 13/275,372 (issued as U.S. Pat. No. 9,272,392 on Mar. 1, 2016) and Ser. No. 13/648,913 (published as U.S. Patent Publication No. 2013/0092452 on Apr. 18, 2013), each of which is incorporated herein in its entirety by this reference. In some examples, a cobalt-based alloy may include at least one eutectic forming alloying element in an amount at or near a eutectic composition for an alloy system of cobalt and the at least one eutectic forming alloying element.
In some embodiments, the PCD table of the PDC may include an interfacial surface bonded to a cemented carbide substrate and an upper surface and an infiltrant, which may be disposed in at least a portion of a plurality of interstitial regions. For instance, the infiltrant may include an alloy comprising at least one of nickel or cobalt, at least one of carbon, silicon, boron, phosphorus, cerium, tantalum, titanium, niobium, molybdenum, antimony, tin, or carbides thereof, and at least one of magnesium, lithium, tin, silver, copper, nickel, zinc, germanium, gallium, antimony, bismuth, or gadolinium.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting. Additionally, the words “including,” “having,” and variants thereof (e.g., “includes” and “has”) as used herein, including the claims, shall be open ended and have the same meaning as the word “comprising” and variants thereof (e.g., “comprise” and “comprises”).
This application claims the benefit of priority to U.S. Provisional Application No. 61/824,022 filed on 16 May 2013, the entire contents of which is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2665893 | Ball | Jan 1954 | A |
3342532 | Krekeler et al. | Sep 1967 | A |
3671075 | Bland et al. | Jun 1972 | A |
3695726 | Krekeler | Oct 1972 | A |
3751114 | Davis | Aug 1973 | A |
3785021 | Norgren et al. | Jan 1974 | A |
3841708 | Kniff et al. | Oct 1974 | A |
D238243 | Polivka | Dec 1975 | S |
3958832 | Sigott et al. | May 1976 | A |
4006936 | Crabiel | Feb 1977 | A |
4083644 | Friedline et al. | Apr 1978 | A |
4140189 | Garner | Feb 1979 | A |
4193638 | Heckenhauer | Mar 1980 | A |
4200159 | Jurgens et al. | Apr 1980 | A |
4299424 | LeBegue et al. | Nov 1981 | A |
4303136 | Ball | Dec 1981 | A |
4335921 | Swisher, Jr. et al. | Jun 1982 | A |
4337980 | Krekeler et al. | Jul 1982 | A |
4340325 | Gowanlock et al. | Jul 1982 | A |
D270059 | Wilkins | Aug 1983 | S |
D271497 | Green | Nov 1983 | S |
4484644 | Cook et al. | Nov 1984 | A |
4580930 | Zinner et al. | Apr 1986 | A |
4605343 | Hibbs, Jr. et al. | Aug 1986 | A |
4655508 | Tomlinson | Apr 1987 | A |
4678237 | Collin | Jul 1987 | A |
4679858 | Tank | Jul 1987 | A |
D296107 | Andersson | Jun 1988 | S |
4784023 | Dennis et al. | Nov 1988 | A |
4787466 | Tomlinson et al. | Nov 1988 | A |
4836178 | Tomlinson | Jun 1989 | A |
4850649 | Beach et al. | Jul 1989 | A |
4880278 | Tomlinson | Nov 1989 | A |
4902073 | Tomlinson | Feb 1990 | A |
D307279 | Vincent | Apr 1990 | S |
4913125 | Bunting et al. | Apr 1990 | A |
D311747 | Mihic | Oct 1990 | S |
5007685 | Beach et al. | Apr 1991 | A |
5060739 | Griffin et al. | Oct 1991 | A |
5090491 | Tibbitts et al. | Feb 1992 | A |
5318351 | Walker | Jun 1994 | A |
5378050 | Kammerer et al. | Jan 1995 | A |
5417475 | Graham et al. | May 1995 | A |
5431239 | Tibbitts et al. | Jul 1995 | A |
5605382 | Massa et al. | Feb 1997 | A |
5649604 | Fuller et al. | Jul 1997 | A |
5690393 | Massa et al. | Nov 1997 | A |
5881830 | Cooley | Mar 1999 | A |
6089123 | Chow et al. | Jul 2000 | A |
6213931 | Twardowski et al. | Apr 2001 | B1 |
6283844 | Tank | Sep 2001 | B1 |
6485104 | Keller et al. | Nov 2002 | B1 |
6779850 | Schibeci et al. | Aug 2004 | B1 |
7108212 | Latham | Sep 2006 | B2 |
D558802 | Nicholas | Jan 2008 | S |
D616003 | Ueda et al. | May 2010 | S |
7866418 | Bertagnolli et al. | Jan 2011 | B2 |
7998573 | Qian et al. | Aug 2011 | B2 |
8034136 | Sani | Oct 2011 | B2 |
8047260 | Uno et al. | Nov 2011 | B2 |
8079785 | Nicholas | Dec 2011 | B2 |
8236074 | Bertagnolli et al. | Aug 2012 | B1 |
D666640 | Cox et al. | Sep 2012 | S |
8567533 | Myers et al. | Oct 2013 | B2 |
8672415 | Neilson et al. | Mar 2014 | B2 |
8727044 | Qian | May 2014 | B2 |
8789894 | Claesson et al. | Jul 2014 | B2 |
9017438 | Miess | Apr 2015 | B1 |
9027675 | Jones | May 2015 | B1 |
9028008 | Bookhamer et al. | May 2015 | B1 |
9238893 | Latham et al. | Jan 2016 | B2 |
9272392 | Mukhopadhyay | Mar 2016 | B2 |
9272814 | Carver | Mar 2016 | B2 |
9303511 | George et al. | Apr 2016 | B2 |
9382794 | Lathan et al. | Jul 2016 | B2 |
9434091 | Burton et al. | Sep 2016 | B2 |
9593577 | Lachmann et al. | Mar 2017 | B2 |
D809031 | Burton | Jan 2018 | S |
10018041 | Wachsmann et al. | Jul 2018 | B2 |
20010040053 | Beuershausen et al. | Nov 2001 | A1 |
20020153175 | Ojanen et al. | Oct 2002 | A1 |
20030234569 | Dawood et al. | Dec 2003 | A1 |
20050082898 | Keller et al. | Apr 2005 | A1 |
20060033379 | Frear et al. | Feb 2006 | A1 |
20060087169 | Hesse | Apr 2006 | A1 |
20070090679 | Ojanen et al. | Apr 2007 | A1 |
20080030065 | Frear et al. | Feb 2008 | A1 |
20080035383 | Hall | Feb 2008 | A1 |
20080036280 | Hall et al. | Feb 2008 | A1 |
20080202819 | Fader | Aug 2008 | A1 |
20080250724 | Hall | Oct 2008 | A1 |
20080309146 | Hall et al. | Dec 2008 | A1 |
20090256413 | Majagi | Oct 2009 | A1 |
20100052406 | Beach et al. | Mar 2010 | A1 |
20100194176 | Lucek et al. | Aug 2010 | A1 |
20100244545 | Hall | Sep 2010 | A1 |
20100326741 | Patel | Dec 2010 | A1 |
20110132667 | Smallman et al. | Jun 2011 | A1 |
20110148178 | Lehnert et al. | Jun 2011 | A1 |
20110233987 | Maushart et al. | Sep 2011 | A1 |
20110266070 | Scott et al. | Nov 2011 | A1 |
20120043138 | Myers et al. | Feb 2012 | A1 |
20120138370 | Mukhopadhyay | Jun 2012 | A1 |
20120160573 | Myers et al. | Jun 2012 | A1 |
20120175939 | O'Neill et al. | Jul 2012 | A1 |
20120279786 | Cox | Nov 2012 | A1 |
20130052481 | Konyashin | Feb 2013 | A1 |
20130092451 | Mukhopadhyay et al. | Apr 2013 | A1 |
20130092452 | Mukhopadhyay | Apr 2013 | A1 |
20130322975 | Tan et al. | Dec 2013 | A1 |
20140110991 | Sollami | Apr 2014 | A1 |
20140175853 | Warren | Jun 2014 | A1 |
20140225418 | Lachmann et al. | Aug 2014 | A1 |
20140240634 | Matsuzaki | Aug 2014 | A1 |
20140339879 | Burton et al. | Nov 2014 | A1 |
20140339883 | Burton et al. | Nov 2014 | A1 |
20150035342 | Jonker et al. | Feb 2015 | A1 |
20150114727 | Heuser | Apr 2015 | A1 |
20150176408 | Latham | Jun 2015 | A1 |
20150176409 | Latham | Jun 2015 | A1 |
20150240635 | Lachmann et al. | Aug 2015 | A1 |
20150314483 | Miess et al. | Nov 2015 | A1 |
20160102550 | Swope et al. | Apr 2016 | A1 |
20160273356 | Ojanen et al. | Sep 2016 | A1 |
20160332269 | Provins et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2013101370 | Nov 2013 | AU |
102108866 | Jun 2011 | CN |
202073564 | Dec 2011 | CN |
203081445 | Jul 2013 | CN |
1481278 | Jul 1977 | GB |
2170843 | Aug 1986 | GB |
2177144 | Jan 1987 | GB |
2193740 | Feb 1988 | GB |
WO 2010083015 | Jul 2010 | WO |
WO 2012130870 | Oct 2012 | WO |
WO 2016071001 | May 2016 | WO |
Entry |
---|
International Search Report and Written Opinion from International Application No. PCT/US2014/037708 dated Oct. 30, 2014. |
U.S. Appl. No. 61/824,007, filed May 16, 2013, Burton et al. |
U.S. Appl. No. 62/030,525, filed Jul. 29, 2014, Myers et al. |
U.S. Appl. No. 14/811,699, filed Jul. 28, 2015, Myers et al. |
U.S. Appl. No. 62/232,732, filed Sep. 25, 2015, Weaver et al. |
U.S. Appl. No. 29/540,584, filed Sep. 25, 2015, Weaver. |
U.S. Appl. No. 29/540,597, filed Sep. 25, 2015, Weaver. |
International Search Report and Written Opinion from International Application No. PCT/US2015/027830 dated Jul. 14, 2015. |
Roepke et al.; “Drag Bit Cutting Characteristics Using Sintered Diamond Inserts” Report of Investigations 8802; Bureau of Mines Report of Investigations/ 1983; (1983) 35 pages. |
International Search Report and Written Opinion from International Application No. PCT/US2014/037381 dated Oct. 30, 2014. |
U.S. Appl. No. 14/273,360, Jun. 12, 2015, Restriction Requirement. |
U.S. Appl. No. 14/273,360, Oct. 22, 2015, Office Action. |
U.S. Appl. No. 14/273,360, Mar. 7, 2016, Office Action. |
U.S. Appl. No. 14/273,360, May 18, 2016, Notice of Allowance. |
U.S. Appl. No. 14/266,437, Jun. 9, 2016, Office Action. |
Advisory Action received for U.S. Appl. No. 14/266,437 dated Mar. 24, 2017. |
Final Office Action for U.S. Appl. No. 14/266,437 dated Dec. 12, 2016. |
Issue Notification for U.S. Appl. No. 14/273,360 dated Aug. 17, 2016. |
Non-Final Office for U.S. Appl. No. 29/555,279 dated Mar. 24, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 14/273,360 dated Aug. 10, 2016. |
U.S. Appl. No. 13/795,027, filed Mar. 12, 2013. |
U.S. Appl. No. 14/266,437, filed Apr. 30, 2014. |
U.S. Appl. No. 14/273,360, filed May 8, 2014. |
U.S. Appl. No. 15/238,486, filed Aug. 16, 2016. |
U.S. Appl. No. 29/555,269, filed Feb. 19, 2016. |
U.S. Appl. No. 29/555,279, filed Feb. 19, 2016. |
U.S. Appl. No. 29/555,281, filed Feb. 19, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/266,437 dated Apr. 21, 2017. |
Notice of Allowance for U.S. Appl. No. 29/540,584 dated May 8, 2017. |
Notice of Allowance for U.S. Appl. No. 29/540,597 dated May 8, 2017. |
Notice of Allowance received for U.S. Appl. No. 29/555,269 dated Apr. 6, 2017. |
Notice of Allowance received for U.S. Appl. No. 29/555,281 dated Apr. 12, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/540,597 dated Jun. 1, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/555,269 dated Apr. 28, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/555,281 dated Jun. 12, 2017. |
Final Office Action for U.S. Appl. No. 14/266,437 dated Nov. 15, 2017. |
Issue Notification for U.S. Appl. No. 29/540,584 mailed Sep. 14, 2017. |
Issue Notification for U.S. Appl. No. 29/540,597 mailed Sep. 6, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/811,699 dated Nov. 29, 2017. |
Notice of Allowance for U.S. Appl. No. 29/555,279 dated Aug. 31, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/540,584 dated Sep. 7, 2017. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/540,597 dated Aug. 25, 2017. |
Final Office Action for U.S. Appl. No. 15/238,486 dated Feb. 26, 2018. |
Issue Notification for U.S. Appl. No. 29/555,279 mailed Jan. 10, 2018. |
Non-Final Office Action for U.S. Appl. No. 14/266,437 dated Mar. 28, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/266,355 dated Jan. 8, 2018. |
Notice of Allowance for U.S. Appl. No. 29/555,281 dated Jan. 4, 2018. |
Supplemental Notice of Allowability for U.S. Appl. No. 29/555,279 dated Jan. 2, 2018. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/555,281 dated Feb. 9, 2018. |
Final Office Action for U.S. Appl. No. 14/811,699 dated Jul. 10, 2018. |
Final Office Action for U.S. Appl. No. 15/266,355 dated Jul. 25, 2018. |
Issue Notification for U.S. Appl. No. 29/555,281 mailed Aug. 29, 2018. |
Notice of Allowance for U.S. Appl. No. 15/238,486 dated Jun. 20, 2018. |
Notice of Allowance for U.S. Appl. No. 29/555,281 dated May 16, 2018. |
Supplemental Notice of Allowance for U.S. Appl. No. 15/238,486 dated Jun. 27, 2018. |
Supplemental Notice of Allowance for U.S. Appl. No. 29/555,281 dated Jun. 4, 2018. |
Final Office Action for U.S. Appl. No. 14/266,437 dated Sep. 18, 2018. |
Advisory Action for U.S. Appl. No. 14/811,699 dated Oct. 22, 2018. |
Advisory Action for U.S. Appl. No. 15/266,355 dated Oct. 11, 2018. |
Non-Final Office Action for U.S. Appl. No. 14/266,437 dated Jan. 8, 2019. |
Non-Final Office Action for U.S. Appl. No. 14/811,699 dated Jan. 4, 2019. |
Non-Final Office Action for U.S. Appl. No. 15/266,355 dated Nov. 29, 2018. |
Notice of Allowance for U.S. Appl. No. 15/238,486 dated Oct. 10, 2018. |
Notice of Allowance for U.S. Appl. No. 14/266,437 dated May 2, 2019. |
Notice of Allowance for U.S. Appl. No. 14/811,699 dated May 1, 2019. |
Notice of Allowance for U.S. Appl. No. 29/660,512 dated Apr. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20140339883 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61824022 | May 2013 | US |