Shear thickening fluid controlled tool

Information

  • Patent Grant
  • 9810037
  • Patent Number
    9,810,037
  • Date Filed
    Monday, October 26, 2015
    9 years ago
  • Date Issued
    Tuesday, November 7, 2017
    7 years ago
Abstract
A tool for use in a wellbore comprising a seal assembly and a cone member configured to force the seal assembly radially outward into engagement with the wellbore. A shear thickening fluid is disposed within an area formed between the seal assembly and the cone member. The shear thickening fluid is configured to prevent relative movement between the cone member and the seal assembly when the shear thickening fluid is changed from a substantially fluid state to a substantially solid state due to a sudden force applied to the shear thickening fluid, by release of a sheared mechanism for example.
Description
BACKGROUND

Field of the Disclosure


Embodiments of this disclosure generally relate to controlling the operation of a tool using a shear thickening fluid.


Description of the Related Art


Controlling the operation of a tool that is located in a wellbore is problematic when different functions of the tool are actuated by different forces and/or pressure levels. For example, large volumes of fluid are pumped from the surface to pressurize the tool to obtain a predetermined pressure level, thereby actuating the tool to perform a specific function. When the tool is actuated, however, an impact force generated by the sudden release of the pressurized fluid can inadvertently cause the actuation of another function of the tool, unknowingly to an operator of the tool. The inadvertent actuation, e.g. the malfunction, of the tool causes confusion and potentially failure of the tool to perform subsequent functions.


One attempt to address inadvertent actuation of the tool includes spacing the forces and/or pressure levels that actuate the tool at large differences from each other. Another attempt includes using a choke or a dampening means to absorb the energy release of the pressurized fluid. Additional attempts include running smaller volume inner strings to minimize accumulation effects, or alternating hydraulic functions with mechanical/pneumatic/electrical initiated functions. These prior attempts each have many drawbacks.


Therefore, there is a continuous need for new and improved apparatus and methods for controlling the operation of wellbore tools.


SUMMARY

In one embodiment, a tool for use in a wellbore comprises a seal assembly; a cone member configured to force the seal assembly radially outward into engagement with the wellbore; and a shear thickening fluid disposed within an area formed between the seal assembly and the cone member.


In one embodiment, a method of controlling a tool in a wellbore comprises transmitting a force from a cone member to a seal assembly, wherein a shear thickening fluid is disposed within an area formed between the cone member and the seal assembly; changing the shear thickening fluid from a substantially fluid state to a substantially solid state; and preventing relative movement between the cone member and the seal assembly by changing the shear thickening fluid from the substantially fluid state to the substantially solid state.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features can be understood in detail, a more particular description of the embodiments briefly summarized above may be had by reference to the embodiments described below, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope, for the embodiments may admit to other equally effective embodiments.



FIG. 1 illustrates a portion of a tool for use in a wellbore, according to one embodiment disclosed herein.



FIG. 2 illustrates a portion of the tool when actuated into a correct operational position, according to one embodiment disclosed herein.



FIG. 3 illustrates a portion of the tool when inadvertently actuated into an incorrect operational position, according to one embodiment disclosed herein.



FIG. 4 illustrates an enlarged view of a modified portion of the tool, according to one embodiment disclosed herein.



FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D illustrate the tool in run-in and set positions, according to one embodiment disclosed herein.





DETAILED DESCRIPTION


FIG. 1 illustrates a portion of a tool 100 for use in a wellbore, such as to provide a seal within a casing 5, according to one embodiment disclosed herein. The tool 100 is actuated into different operational positions by applying one or more mechanical, hydraulic, pneumatic, and/or electrical forces to the tool 100. The tool 100 may be an anchor, a liner hanger, or any other type of tool used in wellbore operations.


The tool 100 includes an upper mandrel 10 releasably coupled to an inner mandrel 20 by a first releasable member 30. A seal 25 is disposed between the upper mandrel 10 and the inner mandrel 20. The upper mandrel 10 is also coupled to an actuation assembly comprising a cone member 40 having a tapered surface 41. A seal 45 is disposed between the cone member 40 and the inner mandrel 20.


A seal assembly 50 is positioned at the base of the tapered surface 41 of the cone member 40. The seal assembly 50 includes two outer seals 52 and an inner seal 53 supported by a seal carrier 51. The outer and inner seals 52, 53 may be the primary seals that seal against the casing 5 and the cone member 40, respectively, during operation of the tool 100. The seal assembly 50 is coupled to an outer mandrel 60 by a collet member 65. The outer mandrel 60 is releasably coupled to the inner mandrel 20 by a second releasable member 70. The outer mandrel 60 is also coupled to a lower mandrel 80, which is disposed on the inner mandrel 20.



FIG. 2 illustrates the tool 100 when correctly actuated into a first operational position, according to one embodiment disclosed herein. A force (identified by reference arrow “F”) is applied to the upper mandrel 10 to shear the first releasable member 30. The origin of the force may be a mechanical, hydraulic, pneumatic, and/or electrical force applied to the tool 100. When the first releasable member 30 is sheared, the force is transmitted through the cone member 40, the seal assembly 50, the collet member 65, and the outer mandrel 60, to shear the second releasable member 70. The amount of force required to shear the second releasable member 70 is less than the amount of force required to overcome friction between the seal assembly 50 and the tapered surface 41 of the cone member 40. When properly applied, the force (identified by reference arrow “F”) is transmitted from the cone member 40 to the seal assembly 50, without wedging the cone member 40 underneath the seal assembly 50 and inadvertently expanding the seal assembly 50 into contact with the casing 5 at this stage in the operation of the tool 10.


When the second releasable member 70 is sheared, the upper mandrel 10, the cone member 40, the seal assembly 50, the collet member 65, the outer mandrel 60, and the lower mandrel 80 are movable relative to the inner mandrel 20. The force (identified by reference arrow “F”) moves the upper mandrel 10, the cone member 40, the seal assembly 50, the collet member 65, the outer mandrel 60, and the lower mandrel 80 to position the tool 100 into the first operational position. The tool 100 is actuated into the first operational position to perform a desired function (e.g. to actuate a slip assembly into engagement with the surrounding wellbore) and/or to place the tool 100 in a desired condition for actuation into a second operational position. Subsequently, at the appropriate time, another force can be applied to the cone member 40 to radially expand the seal assembly 50 by forcing the tapered surface 41 of the cone member 40 under the seal assembly 50.



FIG. 3 illustrates the tool 100 when inadvertently actuated into an incorrect position, according to one embodiment disclosed herein. The force (identified by reference arrow “F”) is applied to the upper mandrel 10 to shear the first releasable member 30. When the first releasable member 30 is sheared, the sudden release of the force applied to the first releasable member 30 impacts the cone member 40 with an amount of force that wedges the cone member 40 underneath the seal assembly 50 prior to transmitting the force to collet member 65 and the outer mandrel 60 to shear the second releasable member 70. The radial expansion of the seal assembly 50 by the cone member 40 prior to shearing of the second releasable member 70 results in a malfunction of the tool 100.


As illustrated in FIG. 3, the seal assembly 50 is forced radially outward into engagement with the casing 5 by the tapered surface 41 of the cone member 40, and the second releasable member 70 is not yet sheared. Any subsequent amount of force applied to the upper mandrel 10 to attempt to shear the second releasable member 70 may be transmitted from the seal assembly 50 to the surrounding wellbore via the casing 5 and/or may damage the seal assembly 50. With the tool 100 in the position illustrated in FIG. 3, subsequent actuation of the tool 100 is prevented without conducting a remedial operation or potentially damaging the tool 100.



FIG. 4 illustrates an enlarged view of a modified portion of the tool 100, according to one embodiment disclosed herein. A shear thickening fluid 90 (also known as a dilatant fluid) is disposed within the area formed between the inner surface of the seal carrier 51 and the outer surface of the cone member 40. The shear thickening fluid 90 may comprise a non-Newtonian fluid. In the shear thickening fluid 90, the relationship between the shear stress and the rate of shear strain is non-linear. One or more forces, when applied to the shear thickening fluid 90 under certain conditions, can cause the shear thickening fluid 90 to change from a substantially fluid state to a substantially solid state. For example, one or more compression forces, tension forces, torsion-type forces, and/or shear forces when suddenly applied to the shear thickening fluid 90 can cause the shear thickening fluid 90 to change from a substantially fluid state to a substantially solid state.


The shear thickening fluid 90 is configured to prevent relative movement between the cone member 40 and the seal assembly 50 when changed from a substantially fluid state to a substantially solid state due to a sudden force applied to the shear thickening fluid 90. Relative movement between the cone member 40 and the seal assembly 50 may exist if the force acting on the shear thickening fluid 90 is gradually applied, allowing the assembly and disassembly of the components of the tool 100. The operation of the shear thickening fluid 90 as disclosed herein can be used on other wellbore tools, including but not limited to an anchor and/or a liner hanger.


A first seal 56 and a second seal 57 are positioned at opposite ends of the seal carrier 51. The first and second seals 56, 57 may seal against the tapered surface 41 of the cone member 40 to contain the shear thickening fluid 90. The first and second seals 56, 57 may be flexible seal members that allow for expansion and/or contraction of the shear thickening fluid 90 due to thermal and/or hydrostatic effects. The shear thickening fluid 90 is supplied through one or more ports 54, 55 (formed through the seal carrier 51 and disposed on opposite sides of the inner seal 53) to fill the area between the seal assembly 50 and the cone member 40. In one embodiment, the shear thickening fluid 90 comprises silicon suspended in glycol.


The shear thickening fluid 90 is configured to allow relative movement between the tapered surface 41 of the cone member 40 and the seal assembly 50 when a non-impacting force (e.g. a force gradually applied to the cone member 40) is applied to the cone member 40, but prevent the cone member 40 from moving relative to the seal assembly 50 when an impacting force (e.g. a force suddenly applied to the cone member 40) is applied to the cone member 40. A sudden impact applied to the cone member 40 (such as shearing of the first releasable member 30 illustrated in FIG. 3) may move the cone member 40 relative to the seal assembly 50 such that the volume of the area within which the shear thickening fluid 90 is disposed is rapidly reduced, thereby causing the shear thickening fluid 90 to become suddenly compressed with a force that causes the shear thickening fluid 90 to instantaneously thicken and become substantially solid. The compression force suddenly applied to the shear thickening fluid 90 changes the shear thickening fluid 90 from a substantially fluid state to a substantially solid state.


Specifically, the volume of the area between the seal member 50 and the cone member 40 decreases as the seal member 50 is forced up along the tapered surface 41 of the cone member 40. The instantaneous thickening of the shear thickening fluid 90 from a substantially fluid state to a substantially solid state causes the cone member 40 and the seal assembly 50 to grip each other and act as one solid component, so that the cone member 40 does not inadvertently move relative to the seal assembly 50. However, a non-impacting force that is gradually applied to the cone member 40 does not generate the sudden compressive force that would instantaneously thicken the shear thickening fluid 90, thereby maintaining the shear thickening fluid 90 in a substantially fluid state and allowing the cone member 40 to move relative to the seal assembly 50 to set the seal assembly 50 when desired.



FIG. 5A and FIG. 5B illustrate a tool 400 in a run-in position and used to seal against a casing 405 at a desired location in a wellbore. The tool 400 includes a seal assembly 450 and a slip assembly 407. The seal assembly 450 comprises the seal assembly 50 illustrated in FIG. 4, including shear thickening fluid 490 disposed within the area between the seal assembly 450 and an upper tapered surface 441 of a cone member 440. The cone member 440 is coupled to an upper mandrel 410, which is coupled to the inner mandrel 420 by a first releasable member 430.


A collet member 465 is coupled to the seal assembly 450 at one end, and to an outer mandrel 460 at an opposite end. The outer mandrel 460 is coupled to the inner mandrel 420 by a second releasable member 470. A lock ring 495 is disposed between the outer mandrel 460 and the inner mandrel 420, which allows movement of the outer mandrel 460 in the direction toward the slip assembly 407 and prevents movement of the outer mandrel 460 in the opposite direction.


The outer mandrel 460 is coupled to or engages a lower mandrel 480, which engages a wedge member 412. The wedge member 412 is movable relative to the inner mandrel 420 to move one or more slips 411 of the slip assembly 407 outward into engagement with the casing 405. Specifically, a surface 482 of the lower mandrel 480 contacts an end surface 413 of the wedge member 412 to move the wedge member 412 underneath the slips 411 and force the slips 411 radially outward into contact with the casing 405.



FIG. 5C illustrates the tool 400 in a first set position. To move the tool 400 to the first set position, a force (identified by reference arrow “F”) is applied to the upper mandrel 410 to shear the first releasable member 430. The force applied to the tool 400 may be a mechanical, hydraulic, pneumatic, and/or electrical force. When the first releasable member 430 is sheared, the force is transmitted from the upper mandrel 410 to the cone member 440, the seal assembly 450, the collet member 465, and the outer mandrel 460 to shear the second releasable member 470. When properly applied, the force is transmitted from the cone member 440 to the seal assembly 450, without forcing the cone member 440 underneath the seal assembly 450.


The amount of force required to shear the second releasable member 470 is less than the amount of force required to overcome friction between the seal assembly 450 and the tapered surface 441 of the cone member 440. However, in the event that the shearing of the first releasable member 430 suddenly imparts a greater force to the cone member 440, the shear thickening fluid 490 disposed between the seal assembly 450 and the tapered surface 441 of the cone member 440 will prevent inadvertent movement of the cone member 440 relative to the seal assembly 450. As similarly described above with respect to FIG. 4, a compressive force applied to the shear thickening fluid 490 (due to the reduced volume of the area where the shear thickening fluid 490 is disposed as the cone member 440 is suddenly forced underneath the seal assembly 450) immediately causes the shear thickening fluid 490 to thicken and become substantially solid. When in a substantially solid state, the shear thickening fluid 490 stops the cone member 440 from moving any further relative to the seal assembly 450.


When the second releasable member 470 is sheared, the upper mandrel 410, the cone member 440, the seal assembly 450, the collet member 465, the outer mandrel 460, and the lower mandrel 480 are movable together relative to the inner mandrel 420. The force moves the upper mandrel 410, the cone member 440, the seal assembly 450, the collet member 465, the outer mandrel 460, and the lower mandrel 480 until the surface 482 of the lower mandrel 480 contacts the end surface 413 of the wedge member 412. The wedge member 412 is forced underneath the slips 411 to force the slips 411 radially outward into engagement with the casing 405. Wellbore fluids can be circulated back up to the surface around the set slips 411 and the seal assembly 450 (which has not yet been set) to allow for the displacement of a slurry, such as cement.



FIG. 5D illustrates the tool 400 in a subsequent, second set position. The same or a different force can be applied or continued to be applied to the upper mandrel 410 to force the cone member 440 underneath the seal assembly 450 (which is prevented from moving downward due to the engagement of the slips 411 with the casing 405), to expand the seal assembly 450 radially outward into engagement with the casing 405. The same or different force applied to the cone member 440 can be controlled (e.g. gradually applied) to maintain the shear thickening fluid 490 in a substantially fluid state to allow the cone member 440 to move relative to the seal assembly 450 when desired.


One advantage of using the shear thickening fluid is that the different forces and/or pressure levels required to actuate the tools 100, 400 do not have to be separated by large differences, which can allow more functions to be implemented in the tools 100, 400. Another advantage is that additional dampening mechanisms, such as a choke, do not need to be used within the tools 100, 400, which are susceptible to flow restriction and plugging. Another advantage is that smaller volume inner strings may not be needed, and/or alternating mechanical/pneumatic/electrical initiated functions may not be needed, which saves time and costs and reduces complexity of tool operation.


While the foregoing is directed to certain embodiments, other and further embodiments may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A tool for use in a wellbore, comprising: a seal assembly;a frustoconical member configured to force the seal assembly radially outward into engagement with the wellbore; anda shear thickening fluid disposed within a volume bounded by the seal assembly and the frustoconical member such that the shear thickening fluid directly contacts the seal assembly and the frustoconical member.
  • 2. The tool of claim 1, wherein the seal assembly comprises a seal carrier, a first seal, and a second seal, and wherein the shear thickening fluid is contained within the volume by the first and second seals.
  • 3. The tool of claim 2, wherein the first and second seals are flexible seal members configured to contain the shear thickening fluid within the volume while allowing for contraction and expansion of the shear thickening fluid.
  • 4. The tool of claim 3, wherein the seal carrier comprises one or more ports for supplying the shear thickening fluid into the volume.
  • 5. The tool of claim 1, wherein the shear thickening fluid comprises silicon suspended in glycol.
  • 6. The tool of claim 1, wherein the frustoconical member is movable relative to the seal assembly when the shear thickening fluid is in a substantially fluid state.
  • 7. The tool of claim 1, wherein the frustoconical member is prevented from moving relative to the seal assembly when the shear thickening fluid is in a substantially solid state.
  • 8. The tool of claim 1, wherein the volume is reduced as the frustoconical member is moved underneath the seal assembly, thereby compressing the shear thickening fluid.
  • 9. The tool of claim 1, wherein the shear thickening fluid is compressed when the frustoconical member is moved relative to the seal assembly.
  • 10. A method of controlling a tool in a wellbore, comprising: transmitting a force from a frustoconical member to a seal assembly, wherein a shear thickening fluid is disposed within a volume bounded by the frustoconical member and the seal assembly such that the shear thickening fluid directly contacts the frustoconical member and the seal assembly;changing the shear thickening fluid from a substantially fluid state to a substantially solid state; andpreventing relative movement between the frustoconical member and the seal assembly by changing the shear thickening fluid from the substantially fluid state to the substantially solid state.
  • 11. The method of claim 10, wherein the shear thickening fluid is changed from the substantially fluid state to the substantially solid state by applying a compression force to the shear thickening fluid.
  • 12. The method of claim 10, further comprising containing the shear thickening fluid in the volume by a first seal and a second seal of the seal assembly.
  • 13. The method of claim 10, further comprising supplying the shear thickening fluid into the volume through one or more ports of a seal carrier of the seal assembly.
  • 14. The method of claim 10, wherein the shear thickening fluid comprises silicon suspended in glycol.
  • 15. The method of claim 10, further comprising moving the frustoconical member relative to the seal assembly when the shear thickening fluid is in the substantially fluid state.
  • 16. The method of claim 10, wherein the volume is reduced as the frustoconical member is moved underneath the seal assembly, thereby compressing the shear thickening fluid.
  • 17. The method of claim 10, further comprising transmitting the force from the seal assembly to shear a releasable member and force a slip assembly radially outward into engagement with the wellbore.
  • 18. The method of claim 17, further comprising subsequently forcing the frustoconical member underneath the seal assembly to force the seal assembly radially outward into engagement with the wellbore.
  • 19. The method of claim 10, wherein the force comprises a mechanical, hydraulic, pneumatic, or electrical force.
CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit of U.S. Provisional Application Ser. No. 62/072,224, filed Oct. 29, 2014, the contents of which are herein incorporated by reference in their entirety.

US Referenced Citations (89)
Number Name Date Kind
2125665 Bettis Aug 1938 A
2652894 Brown et al. Sep 1953 A
3147016 Traufler Sep 1964 A
3215208 Tamplen Nov 1965 A
3227462 Tamplen Jan 1966 A
3278192 Tamplen Oct 1966 A
3374838 Current Mar 1968 A
3631926 Young Jan 1972 A
3784214 Tamplen Jan 1974 A
4482086 Wagner et al. Nov 1984 A
4588029 Blizzard May 1986 A
4753444 Jackson et al. Jun 1988 A
4757860 Reimert Jul 1988 A
4809989 Kernal Mar 1989 A
4842061 Nobileau Jun 1989 A
5052483 Hudson Oct 1991 A
5076356 Reimert Dec 1991 A
5311938 Hendrickson et al. May 1994 A
5333692 Baugh et al. Aug 1994 A
5355961 Gariepy et al. Oct 1994 A
5433269 Hendrickson Jul 1995 A
5462121 Schmuck et al. Oct 1995 A
5467822 Zwart Nov 1995 A
5511620 Baugh et al. Apr 1996 A
5603511 Keyser, Jr. et al. Feb 1997 A
5685369 Ellis et al. Nov 1997 A
5857520 Mullen et al. Jan 1999 A
6123148 Oneal Sep 2000 A
6142227 Hiorth et al. Nov 2000 A
6226717 Reuter May 2001 B1
6409175 Evans et al. Jun 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6446717 White Sep 2002 B1
6666276 Yokley et al. Dec 2003 B1
6691789 Jackson et al. Feb 2004 B2
6705615 Milberger et al. Mar 2004 B2
6763893 Braddick Jul 2004 B2
6769491 Zimmerman et al. Aug 2004 B2
6772844 Lloyd et al. Aug 2004 B2
6789622 Ducasse et al. Sep 2004 B1
6814143 Braddick Nov 2004 B2
6902008 Hirth et al. Jun 2005 B2
6962206 Hirth et al. Nov 2005 B2
7036581 Trahan May 2006 B2
7165622 Hirth et al. Jan 2007 B2
7172029 Hirth et al. Feb 2007 B2
7213814 Hurlbert et al. May 2007 B2
7225880 Braddick Jun 2007 B2
7234533 Gambier Jun 2007 B2
7252142 Brezinski et al. Aug 2007 B2
7322422 Patel Jan 2008 B2
7360592 McMahan Apr 2008 B2
7367404 Simpson et al. May 2008 B2
7370708 Simpson et al. May 2008 B2
7380592 Atkins et al. Jun 2008 B2
7387170 Doane et al. Jun 2008 B2
7407165 Chisnell Aug 2008 B1
7441606 Maguire Oct 2008 B2
7469750 Carr Dec 2008 B2
7493945 Doane et al. Feb 2009 B2
7665532 Cook et al. Feb 2010 B2
7703542 O'Connor et al. Apr 2010 B2
7740248 Keene et al. Jun 2010 B2
7748467 Doane Jul 2010 B2
7766088 Saucier et al. Aug 2010 B2
7775290 Brisco et al. Aug 2010 B2
7779927 Turley et al. Aug 2010 B2
7784797 Baugh et al. Aug 2010 B2
7921921 Bishop et al. Apr 2011 B2
8066065 Buckner Nov 2011 B2
8109340 Doane et al. Feb 2012 B2
8459347 Stout Jun 2013 B2
20020088616 Swor et al. Jul 2002 A1
20020121380 Doane et al. Sep 2002 A1
20020148612 Cook et al. Oct 2002 A1
20040060706 Stephenson Apr 2004 A1
20040123983 Cook et al. Jul 2004 A1
20050172472 Verger et al. Aug 2005 A1
20050173110 Trahan Aug 2005 A1
20060186602 Martin et al. Aug 2006 A1
20060272827 Adam et al. Dec 2006 A1
20070151725 Cook et al. Jul 2007 A1
20090205843 Gandikota et al. Aug 2009 A1
20090286910 Bloomfield Nov 2009 A1
20100089591 Thomson et al. Apr 2010 A1
20110037230 O'Connor et al. Feb 2011 A1
20130269956 Yee Oct 2013 A1
20130292138 Givens et al. Nov 2013 A1
20150167424 Richards Jun 2015 A1
Foreign Referenced Citations (1)
Number Date Country
1 367 586 Nov 1996 RU
Related Publications (1)
Number Date Country
20160123105 A1 May 2016 US
Provisional Applications (1)
Number Date Country
62072224 Oct 2014 US