The present disclosure pertains to ultrasound systems and methods for determining tissue elasticity. Particular implementations involve tissue elasticity determinations based on shear wave amplitude attenuation and decorrelation.
Radiofrequency ablation (RFA) is the most widely used form of curative treatment for liver cancer, which is currently the second leading cause of cancer death worldwide. RFA is minimally invasive, and involves heating tumors to the point of coagulation necrosis using an ablation electrode, needle, or tine inserted at the tumor site. Clear boundary delineation for tumors targeted by RFA is critical for targeting the cancerous tissue with precision. Current RFA treatment protocols often implement an ellipsoidal ablation volume prediction method; however, such methods are overly simplistic. As a result, the actual treatment volumes may deviate significantly from the predicted volumes, leading to off-target ablation of healthy tissue and/or incomplete ablation of tumor tissue.
Ultrasound imaging is commonly used for guidance during RFA procedures. Ultrasound shear wave elastography imaging (SWI), in particular, has been used to estimate the extent of ablation by measuring tissue elasticity. Ultrasound SWI can determine the localized stiffness levels of various tissues, including liver tissue, by transmitting a “push pulse” (phenomenon known as the acoustic radiation force) from a transducer into a tissue, thereby generating a shear wave that propagates laterally therethrough. Tracking pulses emitted by the transducer can then be used to measure the velocity of the shear wave as it propagates, which is often proportional to the stiffness of the tissue. For example, shear wave velocity in soft tissue is typically slower than shear wave velocity in stiff tissue, assuming an identical push pulse is used to generate the shear wave in each tissue type. Because ablated, necrotic tissue is usually much stiffer than untreated tissue, the boundaries of ablated tissue could theoretically be determined based on shear wave velocity; however, current SWI modalities and associated tissue reconstruction techniques are incapable of reliably deciphering such boundaries due to the high stiffness of thermal lesions created by RFA and the presence of a rigid ablation electrode at the treatment site. These factors reduce the amplitude of shear waves generated by SWI systems, increases the difficulty of detecting such waves amidst extraneous signals reflecting from various tissue features, thereby resulting in low signal-to-noise-ratios (SNRs) within an ablation zone. Elasticity estimates and quantitative elasticity maps of the ablation zones interrogated via SWI are thus widely inaccurate and unreliable. Improved tissue elasticity measurement and ablation monitoring techniques are needed to increase the precision of ablation therapies and tissue mapping.
The present disclosure describes systems and methods for determining the elasticity of a target tissue via shear wave ultrasound imaging. The target tissue can include a region of increased stiffness, which may be localized and variable in size. In some examples, the region may comprise a thermal lesion created via an ablation procedure. While shear wave imaging has been utilized to determine tissue elasticity information in preexisting systems, such systems are often impeded by the low amplitude shear waves generated in regions of high stiffness, such as the stiff lesions created by thermal ablation. To accurately determine the location and boundaries of stiff tissue, systems herein are uniquely configured to determine the displacement amplitude of a propagating shear wave and based on this amplitude, derive a qualitative tissue elasticity map that indicates the location of the stiff region with accuracy and precision. To clearly demarcate the boundaries of the stiff region and improve computational efficiency, systems herein are also configured to remove noise from quantitative tissue maps of the same region. Specific examples include a processor configured to combine a qualitative tissue elasticity map with a quantitative tissue elasticity map, and based on the resulting combination, demarcate precise borders of the stiff region. In various embodiments, combining the two map types involves first generating a contour plot of tissue elasticity from the qualitative tissue elasticity map and then overlaying the contour plot onto the quantitative map. The contour line that best fits the region of increased stiffness is determined and selected.
In accordance with principles of the present disclosure, an ultrasound imaging system may include an ultrasound transducer configured to acquire echoes responsive to ultrasound pulses transmitted toward a target tissue. They system can also include a beamformer configured to transmit, from the ultrasound transducer, tracking pulses in response to a push pulse, wherein the push pulse generates a shear wave in the target tissue and the tracking pulses are spatially planned to intersect the shear wave at one or more locales. The beamformer can also receive, from the ultrasound transducer, echo signals where the tracking pulses intersected the shear wave. The system may also include a processor in communication with the beamformer and configured to store tracking echo data generated from the received echo signals; in response to the tracking echo data, determine a displacement amplitude of the shear wave propagating through the target tissue; and based on the determined displacement amplitude, generate a qualitative tissue elasticity map of the target tissue.
In some examples, the processor is configured to generate the qualitative tissue elasticity map by comparing the determined displacement amplitude to a reference displacement amplitude. In some embodiments, the determined displacement amplitude is determined at two or more laterally-spaced points within the target tissue, and the reference displacement amplitude is determined at two or more laterally-spaced points within a reference tissue or is determined numerically from a simulated model. In some embodiments, the reference tissue comprises a phantom model of the target tissue or a patient sample of a tissue type corresponding to the target tissue and lacking a region of increased stiffness.
In some examples, the processor is further configured to: determine a displacement amplitude decorrelation value by comparing the determined displacement amplitude at consecutive pairs of the laterally-spaced points within the target tissue; determine a reference displacement amplitude decorrelation value by comparing the determined displacement amplitude at consecutive pairs of the laterally-spaced points within the reference tissue; compare the displacement amplitude decorrelation value to the reference displacement amplitude decorrelation value; and based on the comparison, generate the qualitative tissue elasticity map. In some embodiments, the ultrasound transducer is coupled to an ablation device, the ablation device configured to ablate a region of increased stiffness or a larger region comprising the region of increased stiffness. In some examples, the ultrasound transducer, beamformer and processor are configured to operate concurrently with the ablation device. Example systems can further include a user interface configured to display the qualitative tissue elasticity map. In some embodiments, the reference displacement amplitude is derived from a reference map. In some examples, the system also includes a memory configured to store a plurality of reference maps. In some embodiments, the target tissue comprises a region of increased stiffness comprised of a thermal lesion.
In accordance with principles of the present disclosure, an ultrasound imaging system for shear wave imaging includes an ultrasound transducer configured to acquire echoes responsive to ultrasound pulses transmitted toward a target tissue. The system may also include a beamformer configured to: transmit, from the ultrasound transducer, tracking pulses in response to a push pulse, wherein the push pulse generates a shear wave in the target tissue and the tracking pulses are spatially planned to intersect the shear wave at one or more locales; and receive, from the ultrasound transducer, echo signals where the tracking pulses intersected the shear wave. The system can also include a processor in communication with the beamformer. The processor can be configured to: generate a qualitative tissue elasticity map of the target tissue based on the received echo signals; generate a quantitative tissue elasticity map of the target tissue based on the received echo signals; and determine a boundary of a region of increased stiffness within the target tissue by combining the qualitative tissue elasticity map with the quantitative tissue elasticity map.
In some examples, the processor is further configured to derive a contour plot demarcating regions of uniform stiffness from the qualitative tissue elasticity map. In some embodiments, combining the qualitative tissue elasticity map with the quantitative tissue elasticity map comprises overlaying the contour plot onto the quantitative tissue elasticity map. In some embodiments, the processor is configured to determine the boundary of the region of increased stiffness by further determining a contour line of best fit around the region of increased stiffness. In some implementations, the contour line of best of is selected from two or more candidate contour lines of best fit based on a set of criteria selectable by a user. In some examples, the set of criteria comprises an over-inclusiveness bias, such that the contour line of best fit comprises the contour line that defines a greatest area of tissue. In some embodiments, the processor is further configured to generate a hybrid tissue elasticity map based on the determined boundary of the region of increased stiffness. In some embodiments, the processor is configured to generate the hybrid map by masking at least one area of the hybrid map outside of the determined boundary. Example systems can further include a user interface configured to display the hybrid map. In some implementations, the quantitative tissue elasticity map comprises a tissue elasticity gradient map. In some embodiments, the processor is configured to determine the contour line of best fit by: summing gradient values along each contour line within the contour plot; dividing a sum of gradient values for each contour line by a length of each contour line; and selecting a contour line with a maximum average gradient. In some examples, the ultrasound transducer is coupled to an ablation device, the ablation device configured to ablate the region of increased stiffness or a larger region comprising the region of increased stiffness. In some embodiments, the region of increased stiffness comprises a thermal lesion.
In accordance with principles of the present disclosure, a method of shear wave imaging may involve acquiring ultrasound echoes responsive to ultrasound pulses transmitted toward a target tissue; transmitting a push pulse into the target tissue to generate a shear wave in the target tissue; transmitting tracking pulses spatially planned to intersect the shear wave at one or more locales; receiving echo signals where the tracking pulses intersected the shear wave; storing tracking echo data generated from the received echo signals; determining a displacement amplitude of the shear wave propagating through the target tissue based on the tracking echo data; and generating a qualitative tissue elasticity map of the target tissue based on the determined displacement amplitude.
In some examples, generating the qualitative tissue elasticity map of the target tissue based on the determined displacement amplitude comprises comparing the determined displacement amplitude to a reference displacement amplitude. In some embodiments, the determined displacement amplitude is determined at two or more laterally-spaced points within the target tissue, and the reference displacement amplitude is determined at two or more laterally-spaced points within a reference tissue or is determined numerically from a simulated model. In some examples, the method further involves determining a displacement amplitude decorrelation value by comparing the determined displacement amplitude at consecutive pairs of the laterally-spaced points within the target tissue; determining a reference displacement amplitude decorrelation value by comparing the determined displacement amplitude at consecutive pairs of the laterally-spaced points within the reference tissue; comparing the displacement amplitude decorrelation value to the reference displacement amplitude decorrelation value; and based on the comparison, generating the qualitative tissue elasticity map.
In some embodiments, the method further involves displaying the qualitative tissue elasticity map on a user interface. In some examples, the reference displacement amplitude is derived from a reference map. In some embodiments, the target tissue comprises a region of increased stiffness comprised of a thermal lesion.
In accordance with principles of the present disclosure, a method of shear wave imaging may involve: acquiring ultrasound echoes responsive to ultrasound pulses transmitted toward a target tissue; transmitting a push pulse into the target tissue to generate a shear wave in the target tissue; transmitting tracking pulses spatially planned to intersect the shear wave at one or more locales; receiving echo signals where the tracking pulses intersected the shear wave; storing tracking echo data generated from the received echo signals; generating a qualitative tissue elasticity map of the target tissue based on the received echo signals; generating a quantitative tissue elasticity map of the target tissue based on the received echo signals; and determining a boundary of a region of increased stiffness within the target tissue by combining the qualitative tissue elasticity map with the quantitative tissue elasticity map.
In some examples, the method further involves deriving a contour plot demarcating regions of uniform stiffness from the qualitative tissue elasticity map. In some embodiments, combining the qualitative tissue elasticity map with the quantitative tissue elasticity map comprises overlaying the contour plot onto the quantitative tissue elasticity map. In some examples, determining the boundary of the region of increased stiffness comprises determining a contour line of best fit around the region of increased stiffness. In some embodiments, generating a hybrid tissue elasticity map based on the determined boundary of the region of increased stiffness by masking at least one area outside of the determined boundary. In some examples, the region of increased stiffness comprises a thermal lesion.
Any of the methods described herein, or steps thereof, may be embodied in non-transitory computer-readable medium comprising executable instructions, which when executed may cause a processor of a medical imaging system to perform the method or steps embodied herein.
The following description of certain embodiments is merely exemplary in nature and is in no way intended to limit the invention or its applications or uses. In the following detailed description of embodiments of the present systems and methods, reference is made to the accompanying drawings which form a part hereof, and which are shown by way of illustration specific embodiments in which the described systems and methods may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice presently disclosed systems and methods, and it is to be understood that other embodiments may be utilized and that structural and logical changes may be made without departing from the spirit and scope of the present system. Moreover, for the purpose of clarity, detailed descriptions of certain features will not be discussed when they would be apparent to those with skill in the art so as not to obscure the description of the present system. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present system is defined only by the appended claims.
The present technology is also described below with reference to block diagrams and/or flowchart illustrations of methods, apparatus (systems) and/or computer program products according to the present embodiments. It is understood that blocks of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, may be implemented by computer executable instructions. These computer executable instructions may be provided to a processor, controller or controlling unit of a general purpose computer, special purpose computer, and/or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, create means for implementing the functions/acts specified in the block diagrams and/or flowchart block or blocks.
Provided herein are ultrasound-based SWI systems configured to provide accurate, real-time monitoring and display of tissue ablation in a manner that improves the precision of the ablation procedure. Preexisting ablation monitoring systems may utilize SWI to estimate tissue elasticity by measuring the propagation speed of shear waves passing through a region of tissue. Such time-of-flight approaches, also referred to as time-to-peak reconstructions, typically estimate shear wave speed by measuring wave delays detected across the region via laterally spaced tracking beams emitted from an ultrasound transducer. Multiple factors associated with RFA diminish the accuracy of such techniques. For example, time-of-flight approaches are hindered by low signal-to-noise ratios due to the low amplitude of shear waves passing through RFA-generated thermal lesions, which may be 6-8 times stiffer than surrounding tissue, healthy or cancerous, due to the tissue's desiccated state after ablation. Shear waves travel quickly through such stiff tissue, causing a reduction in the amplitude of the waves. As an ablation procedure continues, the volume of the thermal lesion grows, as does the proportion of unreliable quantitative data produced by low-amplitude shear waves, such that near then end of the procedure, when the smallest amount of tumor tissue remains, the accuracy of ablation monitoring may be the lowest. The precision of continued ablation may thus reach a low point at the most critical point in the procedure, i.e., when the least amount of cancerous tissue remains, thereby amplifying the risk of off-target ablation of healthy tissue and incomplete ablation of cancerous tissue. SW elastography assumes free field shear wave propagation and the presence of a solid ablation electrode, or tine, utilized in RFA invalidates this assumption and may further reduce the amplitude of propagating shear waves, even if the electrode is not placed directly within the shear wave imaging field-of-view. The cumulative effect of these factors is a consistently low SNR, which prevents the elucidation of tissue elasticity maps of even moderate resolution or accuracy. To resolve these issues, systems disclosed herein improve ultrasound SWI by discerning lesion boundaries with high sensitivity, even in close proximity to a rigid ablation needle, and providing comprehensive, real-time ablation monitoring and display over an entire ablation zone. Example systems can be specifically configured to generate qualitative tissue elasticity maps by detecting shear wave amplitude displacements and correlation values at different spatial locations within a treatment site. Systems are also configured to combine quantitative tissue elasticity maps with qualitative tissue reconstruction maps in a manner that enhances the accuracy of lesion boundary delineation. While most of the examples described herein are related to determining the location and boundaries of tissue lesions created via ablation, one skilled in the art should understand that the disclosed systems can be utilized to interrogate many tissue types, including regions of stiff tissue, whether or not a lesion is present, and regions of tissue producing low amplitude shear waves in response to receiving a push pulse.
The system 100 may also include one or more processors, such as a qualitative processing module 140, which can be configured to determine the displacement amplitude of the shear wave 119 propagating through the ablation zone 122. In embodiments, the displacement amplitude can be detected at two or more laterally-spaced points within the ablation zone 122, such that attenuation of the displacement amplitude across the tissue, away from the push pulse, can be determined. The qualitative processing module 140 can then compare the amplitude attenuation to a reference amplitude attenuation derived from a selected reference map 142. As shown in
In various embodiments, the system 100 also includes a display processor 148 coupled with the qualitative processing module 140, along with a user interface 150 configured to display the outputs of the display processor. The display processor 148 can be configured to generate ultrasound images 152 from the image frames 138 and a qualitative shear wave reconstruction map 154. As described below, the qualitative shear wave reconstruction map 154 may comprise a shear wave displacement amplitude reconstruction map or a shear wave decorrelation reconstruction map, which both may embody qualitative representations of tissue elasticity within and near a tissue ablation zone. The user interface 150 can be configured to display the images 152 and qualitative reconstruction map 154 in real time as an ultrasound scan and/or ablation procedure is being performed, and may receive user input 156 at any time before, during or after such procedures. In some examples, the ultrasound images and/or maps displayed on the user interface 150 can be updated at every acquisition frame received and processed by the data acquisition unit 110 during an ultrasound SWI scan and, in some embodiments, during an ablation procedure.
In some implementations, the system 100 also includes a boundary module 158 configured to receive the qualitative shear wave reconstruction map 154 and a quantitative elasticity map 160, and based on the two maps, refine the determined boundaries of a lesion, which may comprise a thermal lesion created via ablation, or a region of stiff tissue. For simplicity, lesion boundaries are referred to herein, although it should be understood to one skilled in the art that additional tissue boundaries, e.g., organ boundaries or localized areas of increased stiffness such as some cancerous lesions, are also discernable via the systems and methods disclosed. By refining the boundaries of the lesion, the boundary module 158 may reduce or eliminate signaling noise previously blurring the boundaries of the lesion, thereby increasing the accuracy and precision of the system 100. The boundary module 158 may be configured specifically to determine an absolute threshold that precisely tracks the actual, physical boundaries of a lesion. The quantitative elasticity map 160 may be generated from the ultrasound image frames 138 generated by the data acquisition unit 110 during SWI. In specific embodiments, a quantitative processing module 162 may generate the quantitative elasticity map 160 from the image frames 138. The quantitative stiffness maps can be stored in a memory component 162. As further shown, a boundary display processor 164, which may be coupled with the user interface 150, can also be included. The display processor 164 can be configured, either alone or with the boundary module 158 and/or user interface 150, to generate a hybrid map 166 that includes a lesion 168 and at least one masked area 170 outside the lesion boundaries.
The configuration of the system 100 shown in
The reference maps 142 can be derived from various sources. In some examples, the reference maps 146 can be derived from artificially created tissue phantoms, which can be designed to mimic specific tissue types and may harbor one or more areas of increased stiffness to mimic the existence of lesions within the tissue. For example, reference maps 142 may be created for liver phantoms, bladder phantoms, lung phantoms, etc., which may harbor one or more tumors and/or ablated areas. In addition or alternatively, the reference maps 142 can be derived from actual patient tissues. The tissues used to create the reference maps 146 can be healthy tissue, e.g., elastically homogenous tissue lacking any lesions, tumors or other abnormalities. The SNR ratios obtained from such tissues may be higher than heterogeneous tissue, thus making the tissues more reliable as a baseline reference. In some examples, however, tissue that does harbor at least one abnormality may be utilized as a reference. For example, in some embodiments the reference map 142 may be a map of cancerous tissue derived from a patient subjected to ultrasound SWI at an earlier time point. By comparing amplitude attenuation values for the same tissue obtained at different time points, the expansion or reduction in abnormal tissue, and thus treatment progress, can be determined. Progress can be tracked across treatments, or after individual treatments. For instance, a reference map may be created before an ablation procedure, written to the memory 144, and then read from the memory for comparative purposes one or more times during or immediately following the procedure. The reference maps 142 can be modified over time, as new data is accrued, or simply replaced each time a new ultrasound scan is performed. In addition or alternatively, the reference maps 142 can be derived from numerical models, e.g., simulated, numerically-calculated models. Quantitative SWI measurements may or may not be used to modify the model properties. In some examples, reference tissue information may not be derived from a tissue sample or numerical model, and may instead be derived from a priori knowledge of a particular medium. In some implementations, reference maps 142 can be created for a variety of tissues, such that the amplitude attenuation determined for a specific tissue type, e.g., liver tissue, can be compared to amplitude attenuation values determined from a reference map derived from the same tissue type. Reference maps 142 can be created and stored in memory 144 each time SWI is performed using the system 100, such that a library of reference maps 146 can be supplemented over time. Comprehensive libraries may contain reference maps specific to multiple patients and/or tissue types.
The qualitative processing module 140 can be configured to selectively extract a specific reference map 142 based on one or more factors. For example, the qualitative processing module may be configured to select a reference map that corresponds to the tissue type being currently examined and/or targeted for ablation. The processing module may also be configured to select a reference map that corresponds to the specific patient being currently examined. Reference maps derived from the same patient can be stored over time, and the processing module can be configured to select reference maps stored at specific time points. In some embodiments, a user can manually select a particular reference map. In addition or alternatively, the qualitative processing module can select a particular reference map automatically, without user input. According to such examples, the qualitative processing module may be configured to apply reference map selection criteria. For example, the qualitative processing module may prioritize patient identity over tissue type, such that the module first requests a reference map corresponding to a particular patient being currently examined. If no reference maps are available for that particular patient, the module may proceed to request a reference map corresponding to the particular tissue type being examined, regardless of patient identity. Additional criteria, such as patient age and/or health, may also be applied by the processing module to cull specific maps from the memory during an ultrasound scan and/or tissue ablation procedure.
In various embodiments, one or more of the zones shown in
A qualitative shear wave amplitude displacement reconstruction map can be calculated from the displacement profiles shown in
In some examples, systems herein can also be configured to generate a shear wave decorrelation map, which embodies the correlation between shear wave amplitude displacement profiles at two laterally-spaced points. By comparing the correlation values between laterally-spaced points to correlation values derived from comparable laterally-spaced points in a reference map, variations in shear wave correlation, and thus tissue elasticity, can be identified. In some embodiments, decorrelation maps may be preferred over shear wave amplitude displacement maps because decorrelation maps can also be sensitive to changes in wave shape and frequency. Line 408 in
In certain aspects, a reference map may be generated using measured correlation values for a pixel as compared to a reference correlation value, which corresponds to the medium being assessed. For example, correlation-coefficients of shear waves at neighboring spatial locations are utilized for mapping spatial stiffness distributions. Such a map can be referred to as a decorrelation map, since maximum correlation is observed in the case of no inclusion, and any inclusion detection is based on the loss of correlation, hence the name decorrelation. While a “traditional” map based on shear displacement amplitudes is sensitive to the changes in the wave amplitude only, a change in the correlation-coefficient (decorrelation) between displacement profiles in two spatial points is also sensitive to the changes of wave shape and frequency, therefore a higher sensitivity to the changes in the material properties can be achieved. This higher sensitivity is essential for lesion detection and monitoring in the case of low displacement amplitude and low SNR. Also, a reference map is obtained experimentally and measured correlation values for a pixel are then divided by the reference correlation value to get the loss of correlation due to the differences in the tissue stiffness compared to the homogeneous medium. The decorrelation value of a pixel located in (xo,yo) is given as
where ★ indicates the cross-correlation operator between two signals, D(x,y) indicates the displacement signals as a function of time at the coordinate (x,y), measured for two consecutive points, and sub-script ref indicates a reference measurement. The calculated decorrelation maps are then displayed in decibel scale for better visualization.
Also, the comparison can be performed with a modified cross-correlation function *
(f★g)(τ)∫−TTf*(t)g(t+τ)dt, (3)
which limits the integration range to suitably chosen maximum time lag T, thus excluding potentially noisy parts of the signal at very early/late times.
Alternatively the limited integration range can be asymmetric, i.e. range from Tmin to Tmax, with suitably chose values for the minimum and maximum of the integration time.
Alternatively, the comparison can be performed with weighted versions of the signals D and/or Dref, by multiplying the functions D, Dref with suitably chosen weighting functions w before applying the cross-correlation operator in equation (1). One suitable weighting function to reduce noise from low signal levels away from the peak is a Gaussian function
with arbitrary a as a scale parameter and constant b chosen such that the peak of the weighting function matches the peak of the expected signal D(x).
To clearly elucidate the outer boundaries of one or more lesions identified in the qualitative reconstruction maps, system components herein, e.g., boundary module 158, may be configured to combine the qualitative maps, e.g., such as the maps of
In the embodiment show, the method 700 begins at block 702 by “acquiring ultrasound echoes responsive to ultrasound pulses transmitted toward a target tissue.”
At block 704, the method involves “transmitting a push pulse into the target tissue to generate a shear wave in the target tissue.”
At block 706, the method involves “transmitting tracking pulses spatially planned to intersect the shear wave at one or more locales.”
At block 708, the method involves “receiving echo signals where the tracking pulses intersected the shear wave.”
At block 710, the method involves “storing tracking echo data generated from the received echo signals.”
At block 712, the method involves “determining a displacement amplitude of the shear wave propagating through the target tissue based on the tracking echo data.”
At block 714, the method involves “generating a qualitative tissue elasticity map of the target tissue based on the determined displacement amplitude.”
To enhance the accuracy of the contour lines with respect to the actual lesion boundaries, the boundary module 158 can also be configured to overlay the contour plot onto a quantitative tissue elasticity map, as shown in the overlay plot of
E(x,z) indicates the stiffness value at a particular pixel location (x,z) at a distance r from the centroid of the area defined by the contour, and C, denotes the area enclosed by the contour at decorrelation dB level ‘i.’ The boundary module 158 can be configured to operate a cost function defined as the cost=p−f. To improve the fit between each contour line and a focal lesion included in the quantitative map, thereby generating an optimum contour line encompassing the lesion in some examples, the boundary module 158 can be further configured to minimize the cost function by maximizing the focality value and minimizing the penalty value for one or more candidate contour lines.
In some examples, the boundary module 158 can apply a maximum operator to the penalty function and the focality function to define the cost function, and proceed to identify the contour line that minimizes the cost function. According to such implementations, the cost function will be minimized at the intersection point of the penalty and focality functions, as shown in
In some embodiments, the SNR may be too low to obtain a meaningful quantitative stiffness map. In such cases, the boundary module 158 may be configured to determine penalty and focality functions on a heat map or an elasticity map derived from a thermal model of an ablation process. According to such implementations, qualitative decorrelation maps can be substantiated by the quantitative thermal data.
In the embodiment show, the method 1100 begins at block 1102 by “acquiring ultrasound echoes responsive to ultrasound pulses transmitted toward a target tissue.”
At block 1104, the method involves “transmitting a push pulse into the target tissue to generate a shear wave in the target tissue.”
At block 1106, the method involves “transmitting tracking pulses spatially planned to intersect the shear wave at one or more locales.”
At block 1108, the method involves “receiving echo signals where the tracking pulses intersected the shear wave.”
At block 1110, the method involves “storing tracking echo data generated from the received echo signals.”
At block 1112, the method involves “generating a qualitative tissue elasticity map of the target tissue based on the received echo signals.”
At block 1114, the method involves “generating a quantitative tissue elasticity map of the target tissue based on the received echo signals.”
At block 1116, the method involves “determining a boundary of a region of increased stiffness within the target tissue by combining the qualitative tissue elasticity map with the quantitative tissue elasticity map.”
In various embodiments where components, systems and/or methods are implemented using a programmable device, such as a computer-based system or programmable logic, it should be appreciated that the above-described systems and methods can be implemented using any of various known or later developed programming languages, such as “C”, “C++”, “FORTRAN”, “Pascal”, “VHDL” and the like. Accordingly, various storage media, such as magnetic computer disks, optical disks, electronic memories and the like, can be prepared that can contain information that can direct a device, such as a computer, to implement the above-described systems and/or methods. Once an appropriate device has access to the information and programs contained on the storage media, the storage media can provide the information and programs to the device, thus enabling the device to perform functions of the systems and/or methods described herein. For example, if a computer disk containing appropriate materials, such as a source file, an object file, an executable file or the like, were provided to a computer, the computer could receive the information, appropriately configure itself and perform the functions of the various systems and methods outlined in the diagrams and flowcharts above to implement the various functions. That is, the computer could receive various portions of information from the disk relating to different elements of the above-described systems and/or methods, implement the individual systems and/or methods and coordinate the functions of the individual systems and/or methods described above.
In view of this disclosure it is noted that the various methods and devices described herein can be implemented in hardware, software and firmware. Further, the various methods and parameters are included by way of example only and not in any limiting sense. In view of this disclosure, those of ordinary skill in the art can implement the present teachings in determining their own techniques and needed equipment to affect these techniques, while remaining within the scope of the invention. The functionality of one or more of the processors described herein may be incorporated into a fewer number or a single processing unit (e.g., a CPU) and may be implemented using application specific integrated circuits (ASICs) or general purpose processing circuits which are programmed responsive to executable instruction to perform the functions described herein.
Although the present system may have been described with particular reference to an ultrasound imaging system, it is also envisioned that the present system can be extended to other medical imaging systems where one or more images are obtained in a systematic manner. Accordingly, the present system may be used to obtain and/or record image information related to, but not limited to renal, testicular, breast, ovarian, uterine, thyroid, hepatic, lung, musculoskeletal, splenic, cardiac, arterial and vascular systems, as well as other imaging applications related to ultrasound-guided interventions. Further, the present system may also include one or more programs which may be used with conventional imaging systems so that they may provide features and advantages of the present system. Certain additional advantages and features of this disclosure may be apparent to those skilled in the art upon studying the disclosure, or may be experienced by persons employing the novel system and method of the present disclosure. Another advantage of the present systems and method may be that conventional medical image systems can be easily upgraded to incorporate the features and advantages of the present systems, devices, and methods.
Of course, it is to be appreciated that any one of the examples, embodiments or processes described herein may be combined with one or more other examples, embodiments and/or processes or be separated and/or performed amongst separate devices or device portions in accordance with the present systems, devices and methods.
Finally, the above-discussion is intended to be merely illustrative of the present system and should not be construed as limiting the appended claims to any particular embodiment or group of embodiments. Thus, while the present system has been described in particular detail with reference to exemplary embodiments, it should also be appreciated that numerous modifications and alternative embodiments may be devised by those having ordinary skill in the art without departing from the broader and intended spirit and scope of the present system as set forth in the claims that follow. Accordingly, the specification and drawings are to be regarded in an illustrative manner and are not intended to limit the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/061156 | 5/1/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62666348 | May 2018 | US | |
62741905 | Oct 2018 | US |