BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Further advantages and configurations of a shearer-loader drive subassembly according to the invention and of a guide shoe according to the invention follow from the description below of a preferred exemplary embodiment shown in the drawing, in which:
FIG. 1 schematically shows a shearer loader guided on rack bars in a view toward its drive sprockets;
FIG. 2 shows in a vertical section, partly truncated, one of the two shearer-loader drive subassemblies in engagement with a rack arrangement fastened to a face conveyor;
FIG. 3 shows the drive subassembly from FIG. 2 in an enlarged illustration;
FIG. 4 shows the drive subassembly in a sectional view according to FIG. 2 with guide shoe removed;
FIG. 5 shows the drive subassembly in a sectional view according to FIG. 2 with drive sprocket additionally removed;
FIG. 6 shows a guide shoe according to a preferred exemplary embodiment in a perspective view; and
FIG. 7 shows a view of the front side of the guide shoe from FIG. 6.
DETAILED DESCRIPTION OF THE INVENTION
Shown schematically in FIG. 1 is a shearer loader 1 whose body 2, to which tool drums fitted with working tools are fastened on swivel arms (not shown), overlaps an underground face conveyor (likewise not shown in FIG. 1) in a portal-like manner. The shearer loader 1 shown comprises, for both possible directions of movement, a drive sprocket 3, which is driven by a respective associated drive motor, of which in each case only the output-side gear 4 is shown. The teeth 5 of the drive sprockets 3 engage from above in the gaps of rack bars 7, which are fastened in a removable manner to blocks 8, which in turn are fastened on the working-face side to side cheeks of a face conveyor laid along the underground face, as shown by way of example on the conveyor pan 9 only shown in FIG. 2. Since the construction of an underground face conveyor composed of conveyor pans, as partly shown in FIG. 2, is known to the person skilled in the art, the associated conveyor pans are not described further here.
FIGS. 2 and 3 show a completely fitted shearer-loader drive subassembly 10 of a shearer loader for coal winning in operation use, in which the teeth 5 of the drive sprocket 3 of the drive subassembly 10 engage in gaps in the rack bars 7 of the rack arrangement. The entire drive subassembly 10 is supported on the body (2; FIG. 1) of the shearer loader via a housing base plate 11 which is connected to said body via a crosspiece 12. The gear 4 is mounted by means of a plurality of antifriction bearings 15 between a central aperture 13 in the crosspiece 12 and a housing shell 14 connected to the base plate 11 via struts 12A, said gear 4 being coupled in a rotationally fixed manner to an output shaft (not shown) of the motor (not shown) and meshing by means of its spur tooth system with the spur tooth system of a transmission gear 16 which is mounted together with the drive sprocket 3 and coaxially to the latter in drive subassembly 10. The drive sprocket 3 and the transmission gear 16 are mounted so as to be rotatable about a common rotation axis D and are connected to one another in such a way as to rotate together. The mounting of both the drive sprocket 3 and the transmission gear 16 on a bearing tube 17 fastened in a rotationally fixed manner to the base plate 11 will now be explained first of all with reference to FIG. 3.
With its one tube end 18, the bearing tube 17 is fastened inside a fastening receptacle 19 in the base plate 11 in such a way that the bearing tube 17 of relatively sturdy proportions is suspended essentially only on one side and forms the bearing axis for the transmission gear 16 and the drive sprocket 3. Starting from its free tube end 20, the bearing tube 17 is provided with a first shoulder 21, on which a first antifriction bearing 22, which is designed as a twin-row angular-contact roller bearing, is supported with its inner bearing ring. Between a center section 23 and the tube end 18 fastened to the base plate 11, the bearing tube has a second shoulder 24, on which a second twin-row antifriction bearing 25 sits. A bearing sleeve 26 is rotatably supported with the first antifriction bearing 22. The bearing sleeve is supported on one side in the region of a bearing section 28 which is stepped in diameter on the inner circumference of the bearing sleeve 26, and the bearing sleeve comprises a sleeve section 29 which extends from the step 30 between the two sections 28, 29 up to the second antifriction bearing 25. The first antifriction bearing 22 is secured to the shoulder 21 of the bearing tube by means of a first retaining ring 31, and the second antifriction bearing 25 is secured to the inner circumference of the hub of the transmission gear 16 by means of a retaining ring 32. By the two antifriction bearings 22, 25 being fixed axially, the rotatable bearing sleeve 26 is at the same time secured against axial displacement from its fitted position. A closure ring 33 accommodating a shaft seal 49 is fastened to the free sleeve end of the bearing sleeve 26 in order to protect the bearings 22, 25 from the ingress of dirt and moisture. It can readily be seen from FIG. 3 that the outer circumference of the bearing sleeve 26 is in alignment with the outer circumference of the second antifriction bearing 25 and that the drive sprocket 3 is pushed with its hub onto the outer circumference of the bearing sleeve 26. A plurality of axial screws 34 are provided all round for the axial connection between the drive sprocket 3 and the transmission gear 16 arranged coaxially to said drive sprocket 3, said axial screws 34 passing axially through the entire drive sprocket 3 and being screwed into tapped holes 35 in the transmission gear 16. In addition, rotary locking is effected between the drive sprocket 3 and the transmission gear 16 via feather keys 36 and/or by means of a collar 37 on a side wall 38 of the drive sprocket 3, said collar 37 engaging in a positive-locking manner in a recess 39, formed concentrically to the hub, in that end face of the transmission gear 16 which faces the drive sprocket 3. In this case, there is preferably a suitable splined shaft connection (not shown) between the collar 37 and the recess 39. The transmission gear 16 is directly supported on the bearing tube 17 by means of the second antifriction bearing 25 arranged in its hub. Furthermore, a locating ring 47 accommodating sliding rings 40 is arranged on the transmission gear 16 on the end face facing the drive sprocket 3 in order to also obtain a seal relative to the housing shell 14. On the outer housing wall 41, the drive sprocket 3 has a projecting annular collar 42 having a spherically arched surface 43. During operational use, the annular collar 42 can roll on the top side of the rack bar 7.
The bearing tube 17 serves not only to support the bearings 22, 25 for mounting the drive sprocket 3 and the transmission gear 16 but also at the same time to fasten a guide shoe 50 which engages underneath the rack bar 7 by means of a guide extension 52 formed on a base wall 51 and engages behind a side flank of the rack bar 7 by means of a guide extension 54 formed on an opposing wall 53 opposite said base wall 51. By the interplay of guide extension 52 and guide extension 54, the entire shearer-loader drive arrangement 10 is guided relatively closely to the rack bar 7, such as to prevent the teeth of the drive sprocket 3 from being disengaged from the tooth gaps in the rack bar 7. The guide shoe 50 is fastened by means of a push-in pin 60 which is inserted into the inner bore 48 of the bearing tube 17 and projects on both sides beyond the bearing tube ends 18, 20. As can readily be seen from FIG. 3, the projecting sections of the pin 60 engage in through-openings in the base wall 51 and the opposing wall 53 of the guide shoe 50.
The above-described mounting of the drive sprocket 3 on a bearing sleeve 26 rotatably supported on the bearing tube 17 permits especially simple fitting and removal and thus especially simple exchange, which can be carried out quickly, of the drive sprocket 3. Reference is made in this respect to FIGS. 4 and 5. In the illustration in FIG. 4, the guide shoe shown in FIG. 3 has already been removed by removing the pin (60, FIG. 3) of sturdy design which holds said guide shoe and passes through the inner bore of the bearing tube 17, in which case the guide shoe can only be removed if the drive subassembly 10 of the shearer loader is located above a gap within the rack arrangement, as shown in FIG. 1 in the right-hand half. The guide shoe can be removed downward only after the rack is removed, after the retaining pin has also been pulled out of the inner bore of the bearing tube 17, and this state is shown in FIG. 4. In a next removal step for removing the drive sprocket 3, an intermediate disk 45 which is arranged as a spacer between the opposing wall of the guide shoe and the bearing sleeve 26 is then removed. After removal of the intermediate disk 45, the axial screws 34 can be released, as a result of which the axial connection between the drive sprocket 3 and the transmission gear 16 is released. Between the annular collar 42 and the side wall 41, the drive sprocket 3 is provided with a groove 44, in which, after the axial screws 34 have been released, a suitable releasing tool, such as a pull-off tool, can engage in order to pull the drive sprocket 3 off the bearing sleeve 26 over the free end 20 of the bearing tube 17. FIG. 5 shows the final state after removal of the drive sprocket from the bearing sleeve 26 and the bearing tube 17. The drive sprocket has been removed, although all the other elements serving for the mounting and for sealing the mounting, such as, in particular, the cap 33 having the shaft seal and the locating ring 47 having the sealing rings and also the bearings 22 and 25, remain in the fitted position. For the fitting of a possibly renewed drive sprocket, said drive sprocket then only needs to be pushed again with its hub over the free end 20 of the bearing sleeve 26 onto the outer circumference of the latter in order to then restore the operating position while coupling the splined shaft connection or the spline tooth system and fastening the axial screws.
As already explained further above, the guide shoe 50 can be pivotably fixed to the drive subassembly 10 and released from the latter by fitting and respectively removing a pin (60, FIG. 3) passing through the inner bore 48 of the bearing tube 17. A guide shoe 50 advantageously designed in this respect is shown in detail in FIGS. 6 and 7. The base wall 51 having the sturdy guide extension 52 engaging underneath the rack arrangement defines on one side a space open at the top and bottom and is connected, via transverse struts 56 integrally cast in one piece, to the opposing wall 53, on the underside of which the second guide extension 54 for engaging behind the rack arrangement is formed. Both the base wall 51 and the opposing wall 53 are each provided with through-openings 58 and 59, respectively, which are in alignment with one another and in which the fastening pin engages in the fitted state. In interplay with the through-openings 58, 59, the fastening pin forms a pivot bearing for the guide shoe 50, which can therefore move slightly during operational use and can adapt itself to angular configurations between adjacent rack bars.
The invention is not restricted to the exemplary embodiment described and the person skilled in the art can deduce numerous modifications which are to come within the range of protection of the attached claims. The configuration of the drive sprocket and of the transmission gear can be varied in many different ways. The geometry and the number of teeth of the drive sprocket may also vary if the rack arrangement comprises rack bars of different form or a rack-type chain.