This application is directed to a catheter pump for mechanical circulatory support of a heart, and related components, systems and methods. In particular, this application is directed to reliable coupling of components that are subject to dynamic loads applied between a plurality of catheter bodies.
Heart disease is a major health problem that has high mortality rate. Physicians increasingly use mechanical circulatory support systems for treating heart failure. The treatment of acute heart failure requires a device that can provide support to the patient quickly. Physicians desire treatment options that can be deployed quickly and minimally-invasively.
Intra-aortic balloon pumps (IABP) are currently the most common type of circulatory support devices for treating acute heart failure. IABPs are commonly used to treat heart failure, such as to stabilize a patient after cardiogenic shock, during treatment of acute myocardial infarction (MI) or decompensated heart failure, or to support a patient during high risk percutaneous coronary intervention (PCI). Circulatory support systems may be used alone or with pharmacological treatment.
In a conventional approach, an IABP is positioned in the aorta and actuated in a counterpulsation fashion to provide partial support to the circulatory system. More recently minimally-invasive rotary blood pump have been developed in an attempt to increase the level of potential support (i.e. higher flow). Rotary pumps have become more common recently for treating heart failure. A rotary blood pump is typically inserted into the body and connected to the cardiovascular system, for example, to the left ventricle and the ascending aorta to assist the pumping function of the heart. Other known applications include pumping venous blood from the right ventricle to the pulmonary artery for support of the right side of the heart. An aim of acute circulatory support devices is to reduce the load on the heart muscle for a period of time, to stabilize the patient prior to heart transplant or for continuing support. Rotary blood pumps generally utilize an electric motor which drives an impeller pump at relatively high speeds. In the case where the pump is remote from the motor, for example where the impeller is in the body and the motor is outside the body, there is a need for a robust and reliable connection between the motor and the impeller. There may also be the need for forming a flexible connection between the motor shaft and the impeller to allow free movement of various pump components during use and when pushing through the vasculature to the treatment location. There is also the continuing need to provide these system components in a compact, efficient form factor to allow for percutaneous approaches.
There is a need for improved mechanical circulatory support devices for treating acute heart failure. Fixed cross-section ventricular assist devices designed to provide partial or near full heart flow rate are either too large to be advanced percutaneously (e.g., through the femoral artery without a cutdown) or provide insufficient flow.
In one embodiment, a catheter pump includes a catheter body having at least one lumen therethrough, and comprising a distal end and a proximal end. An expandable impeller assembly includes an expandable impeller and an expandable cannula coupled to the distal end of the catheter body and housing the expandable impeller, the expandable cannula comprising a substantially straight segment having a distal inlet and a proximal outlet, the substantially straight segment configured to straddle an aortic valve. The catheter body comprises a proximal vessel contact zone and a distal vessel contact zone that are each proximal to the substantially straight segment, the proximal vessel contact zone and distal vessel contact zone configured to provide a force against an aortic arch to stabilize the expandable impeller assembly across the aortic valve.
In another embodiment, a catheter pump assembly is disclosed. The catheter pump assembly can include a pump including an impeller assembly and a catheter body disposed proximal to and supporting the pump. The catheter body can include relatively hard sections adjacent to a relatively softer middle section such that the middle section is configured to contact a wall of an aorta of a patient. The catheter body can include relatively hard sections adjacent to a relatively softer middle section such that the middle section facilitates bending relative to the relatively hard sections. The catheter body can include relatively hard sections adjacent to a relatively softer middle section such that when the pump assembly is positioned at a target location (e.g. across a valve), the middle section is configured to bend and the relatively hard sections are configured to remain substantially straight.
In another embodiment, a catheter pump assembly is disclosed. The catheter pump assembly can include a pump including an impeller assembly. A catheter body can be disposed proximally of and configured to couple with the impeller assembly, the catheter body having a vessel wall contact surface, the catheter body configured to cause the vessel wall contact surface to bear against an outer radius of an aortic arch. A bending section can be disposed between the vessel wall contact surface and the impeller assembly, the bending section being more flexible than the catheter body at the location of the vessel wall contact surface such that loads applied distal the vessel wall contact surface result in flexing at the bending section.
In another embodiment, a method is disclosed. The method can include advancing a distal portion of a catheter assembly including an impeller assembly and a catheter body to a treatment location of a patient. The method can include contacting an outer surface of the catheter body with a contact zone of an inner wall of an aorta of the patient to secure at least the distal portion of the catheter assembly against the aorta of the patient, the inner wall being located adjacent to the junction of the ascending aorta and the aortic arch. The method can include activating the impeller assembly to pump blood across the aortic valve. The method can include maintaining the contact between the outer surface of the catheter body and the contact zone while the impeller assembly is activated.
An aspect of at least one of the embodiments disclosed herein is the realization that the connection of a flexible proximal body to a more rigid distal segment of a catheter assembly can be better secured with an robust mechanical interface between one or more features of these components. For example, a distal end of the flexible proximal body can be fitted with a device or structure providing an interface that mechanically engages the flexible proximal body and that can be directly joined, e.g. welded, to a structure to which a load is applied.
In one embodiment, a catheter pump assembly is provided that includes an elongate polymeric catheter body, a cannula, and a tubular interface. The elongate polymeric catheter body has a proximal end and a distal end. The cannula has an expandable portion disposed distally of the elongate polymeric catheter body. The cannula can also have another tubular portion that is proximal to the distal portion. The tubular interface has an outer surface configured to be joined to the tubular portion of the cannula and an inner surface. The inner surface is disposed over the distal end of the elongate polymeric catheter body. The tubular interface has a plurality of transverse channels extending outward from the inner surface of the tubular interface. An outer surface of the elongate polymeric catheter body projects into the transverse channels to mechanically integrate the elongate polymeric catheter body with the tubular interface.
In another embodiment, a catheter pump assembly is provided that includes an elongate polymeric catheter body, a tubular member, and a mechanical interface. The elongate polymeric catheter body has a proximal end and a distal end. At least a portion of the tubular member is disposed distally of the elongate polymeric catheter body. The mechanical interface is disposed between a portion of the elongate polymeric catheter body and the tubular member. The mechanical interface is configured to mechanically integrate with a surface of the elongate polymeric catheter body.
In another embodiment, a catheter pump assembly is provided that includes an elongate catheter body, a metallic tubular member, and first and second mechanical interfaces. The elongate catheter body has a proximal portion and a distal portion. The metallic tubular member is disposed at least partially distally of the elongate catheter body. The first mechanical interface has a first portion joined to the distal portion of the elongate catheter body and a second portion welded to the metallic tubular member. The second mechanical interface is disposed on an outside surface of the catheter pump assembly. The second mechanical interface has a deflectable member configured to be disposed adjacent to the outside surface of the catheter pump assembly in a first configuration. The deflectable member is configured to be disposed inward of the outside surface of the catheter pump assembly in a second configuration. When in the second configuration, the deflectable member mechanically and securely engages the outside surface of the catheter pump assembly with a structure disposed inward of the second mechanical interface.
In another embodiment, a method is provided for coupling components of a catheter pump assembly together. An elongate polymeric tubular body is provided that has a proximal end and a distal end. A metallic tubular body is provided that has a proximal portion and a distal portion. A mechanical interface having a first interface zone and a second interface zone is positioned such that the first interface zone is disposed over a portion of the elongate polymeric tubular body adjacent to the distal end thereof. The polymer is then caused to flow into the first interface zone, whereby the elongate polymeric tubular body becomes joined with the first interface zone of the mechanical interface. The metallic tubular body is coupled with the second interface zone of the mechanical interface.
In one approach, the polymer is caused to flow by heating the elongate polymeric tubular body to cause at least a portion of elongate polymeric tubular body adjacent to the distal end thereof to transition to a state with low resistance to deformation.
In another embodiment, a catheter pump assembly is provided that includes a proximal portion, a distal portion, and a catheter body having a lumen extending therebetween along a longitudinal axis. The catheter pump assembly also includes a torque assembly that has a first portion disposed in the lumen of the catheter body and a second portion disposed distal of the first portion. The second portion coupled with an impeller. The torque assembly causes the impeller to rotate upon rotation of the first portion of the torque assembly. The catheter pump assembly also includes a thrust bearing and a thrust bearing brace. The thrust bearing is disposed within the catheter pump assembly adjacent to the distal end of the catheter body. The thrust bearing resists movement of the torque assembly along the longitudinal axis. The thrust bearing brace is disposed on the outside surface of the torque assembly. The thrust bearing brace has a distal face that is directly adjacent to a proximal face of the thrust bearing.
In another embodiment, a catheter assembly is provided that includes an elongate flexible body, a torque assembly, a bearing assembly, and a sleeve. The elongate flexible body is disposed along a proximal portion of the catheter assembly and has a proximal infusate channel formed therein. The torque assembly extends through the elongate flexible body. The bearing assembly comprises a housing having an outer surface and a bearing surface disposed within the housing. The bearing surface provides for rotation of the torque assembly within the bearing housing. The sleeve comprises and an inner surface configured to be disposed over the outer surface of the housing of the bearing assembly and a fluid communication structure that extends through the walls of the sleeve. The catheter assembly also includes a distal infusate channel in fluid communication with the proximal infusate channel, the distal infusate channel disposed over the outer surface of the bearing housing and through side walls of the slot.
In another embodiment, a catheter pump assembly is provided that includes a proximal portion, a distal portion, and a catheter body having a lumen extending along a longitudinal axis between the proximal and distal portions. The catheter pump assembly also includes an impeller disposed at the distal portion and a stator disposed distal of the impeller to straighten flow downstream from the impeller. The stator is collapsible from a deployed configuration to a collapsed configuration.
In another embodiment, a catheter system is provided that includes an elongate polymeric catheter body, a cannula, and at least one expandable component disposed within the cannula. The elongate polymeric catheter body has a proximal end and a distal end. The cannula has an expandable portion disposed distally of the elongate polymeric catheter body. The catheter system also includes an elongate sheath body that has a retracted position in which the elongate sheath body is proximal of the expandable portion of the cannula and the at least one expandable component and a forward position in which the elongate sheath body is disposed over the expandable portion of the cannula and the at least one expandable component. A first segment of the elongate sheath body disposed over the expandable portion of the cannula and the at least one expandable component is configured to resist kinking to a greater extent than a second segment of the elongate sheath body disposed adjacent to the first segment.
A more complete appreciation of the subject matter of this application and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the accompanying drawings in which:
More detailed descriptions of various embodiments of components for heart pumps useful to treat patients experiencing cardiac stress, including acute heart failure, are set forth below.
A high performance catheter pump is desired to provide sufficient output to approach and in some cases exceed natural heart output. Performance of this nature can be achieved with inventive components disclosed herein.
In some embodiments, the impeller assembly 92 includes a self-expanding material that facilitates expansion. The catheter body 84 on the other hand preferably is a polymeric body that has high flexibility. When the impeller assembly 92 is collapsed, as discussed above, high forces are applied to the impeller assembly 92. These forces are concentrated at a connection zone, where the impeller assembly 92 and the catheter body 84 are coupled together. These high forces, if not carefully managed can result in damage to the catheter assembly 80 and in some cases render the impeller within the impeller assembly 92 inoperable. A reliable mechanical interface is provided to assure high performance. While this interface is extremely beneficial for an assembly with an expandable impeller disposed in an expandable cannula, it also applies to assemblies including a fixed diameter impeller, which may be disposed in an expandable cannula or even in a non-expandable portion in fluid communication with an expandable cannula. In one variation, the impeller is disposed proximal of an expandable cannula in a rigid segment (e.g., a pump ring) and an expandable cannula is provided. The mechanical interfaces and inner and outer sheath assemblies facilitate the collapse of the cannula in such embodiments. A further design permits the impeller to be withdrawn into a rigid structure, e.g., a pump ring, to collapse the impeller before the cannula is collapsed.
The mechanical components rotatably supporting the impeller within the impeller assembly 92 permit high rotational speeds while controlling heat and particle generation that can come with high speeds. The impeller may be rotated as speeds above 6000 RPM, above 9000 RPM, above 10,000 RPM, above 15,000 RPM, above 20,000 RPM, above 25,000 RPM, or above 30,000 RPM. The infusion system 26 delivers a cooling and lubricating solution to the distal portion of the catheter system 100 for these purposes. However, the space for delivery of this fluid is extremely limited. Some of the space is also used for return of the infusate. Providing secure connection and reliable routing of infusate into and out of the catheter assembly 80 is critical and challenging in view of the small profile of the catheter body 84.
Various aspects of the pump and associated components are similar to those disclosed in U.S. Pat. Nos. 7,393,181; 8,376,707; 7,841,976; 7,022,100; and 7,998,054, and in U.S. Pub. Nos. 2011/0004046; 2012/0178986; 2012/0172655; 2012/0178985; and 2012/0004495, the entire contents of each of which are incorporated herein for all purposes by reference. In addition, this application incorporates by reference in its entirety and for all purposes the subject matter disclosed in each of the following concurrently filed applications: application Ser. No. 13/802,556, entitled “DISTAL BEARING SUPPORT,” filed on Mar. 13, 2013; application Ser. No. 61/780,656, entitled “FLUID HANDLING SYSTEM,” filed on Mar. 13, 2013; application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on Mar. 13, 2013; application Ser. No. 13/801,528, entitled “CATHETER PUMP,” filed on Mar. 13, 2013; and application Ser. No. 13/802,468, entitled “MOTOR ASSEMBLY FOR CATHETER PUMP,” filed on Mar. 13, 2013.
In some embodiments both the cannula 108 and the impeller 112 are actuatable from a first configuration for delivery through a patient to a working site to a second configuration for generating high flow at the working site. The first configuration may be a low profile configuration and the second configuration may be an expanded configuration. The low profile configuration preferably enables access via a femoral artery or other peripheral blood vessel without excessive obstruction of blood flow in the vessel, as discussed further below.
The catheter body 104 preferably has a plurality of lumens, including a first lumen 140 adapted for housing a drive shaft 144, a second lumen 140B for conveying a medical fluid distally within the catheter body 104, and a third lumen 140C for anchoring a bearing housing 146 to the catheter body 104. The drive shaft 144 extends proximally within the catheter body 104 from the impeller 112. The drive shaft 144 couples with the motor at the proximal end and with the impeller 112 at the distal end thereof. The drive shaft 144 can be formed with any suitable structure, but should be sufficient flexible to traverse at least from a peripheral (e.g., femoral) artery to a heart chamber, such as the left ventricle, as well as sufficiently durable to rotate at a high speed for several hours, for several days, and in some cases, months. The drive shaft 144 can be coupled with an impeller assembly 112 including an expandable impeller 112A) disposed on a tubular body 112B
Any suitable material or combination of materials can be used for the catheter body 104 or catheter bodies 104A and 304 discussed below and provided in some embodiments. In one embodiment, the catheter body 104 has an inner layer 148 surrounding the lumen 140 that comprises high density polyethylene (HDPE). For example, Marlex 4903 HDPE can be disposed about the lumen 140. If a composite structure is used to form the catheter body 104, the inner layer 148 has a thickness that is sufficient to withstand wear caused by interaction with the drive shaft 144, which can be rotated at a very high speed in some applications, for example from 20,000-40,000 revolutions per minute. The inner layer can have a thickness of 0.003 inches.
The second lumen 140B extends from a proximal end in fluid communication with a source of infusate, which can be a medical fluid (e.g., saline), to a distal end adjacent to the impeller assembly 112. For example, the second lumen 140B can have an outlet disposed adjacent to a flow channel formed in or about the bearing housing 146. Examples of bearing housing flow channels are shown in
The third lumen 140C can be used to enhance the security of the connection between the catheter body 104, 104A and the bearing housing 146. For example, the third lumen 140C can be sized to receive a plurality of, e.g., two, pull wires 160. The pull wires 160 can take any suitable form, but preferably are sized to be easily received within the lumen 140C. In one embodiment, the lumen 140C is spaced apart from but about the same size as the second lumen 140B and the pull wires are generally rectangular in shape, e.g., having a thickness of about 0.005 inches and a width of about 0.010 inches. The pull wires 160 can be formed of any material that is sufficiently rigid in tension, e.g., of stainless steel with pull strength of at least about 300 ksi. In one arrangement, the pull wires 160 extend at least about three inches into the elongate body 104 in the third lumen 140C and extend out of the third lumen 140C to overlay the bearing housing 146 as shown in
Providing a plurality of pull wires provides redundancy in the connection between the catheter body 104, 104A and the bearing housing 146. In some cases, this redundancy is not needed and a single wire can be used. The redundancy is beneficial, however, because substantial tension force is applied at this connection point when the expandable cannula 108 is collapsed. In one technique relative motion is provided between the catheter body 104, 104A and an outer sheath disposed over the catheter body until the outer sheath slides over a proximal portion of the cannula 108. Further relative motion causes the cannula 108 to be compressed, but not without a substantial force being applied thereto. This force is born at several points, including at the junction between the catheter body 104, 104A and the bearing housing 146. Disconnection of the bearing housing 146 would be problematic, requiring complex procedures to extract the disconnected distal working end of the catheter assembly 100.
The pull wires 160 preferably are located close together on the same side of the catheter body 104, 104A. This arrangement enhances bending flexibility, which is beneficial if tortuous vasculature must be traversed to deliver the catheter assembly 100 to a treatment site, e.g., a heart chamber.
In some embodiments, placing a radiopaque marker on a distal portion of the catheter assembly 100 is advantageous to confirm the location of the working end, e.g., of the cannula 108 and/or impeller 112 prior to and/or after deployment.
Gross mechanical properties of the catheter body 104 can be varied along the length thereof to provide appropriate flexibility and maneuverability within the vasculature to facilitate delivery and operation of the catheter pump into which the catheter assembly 100 is incorporated. For example, in one embodiment, the catheter body 104 is stiffest near the distal end where the catheter body 104 is joined to the working end. In one embodiment, a distal section of the catheter body 104 comprises a relatively soft or flexible material, such as Pebax®. Pebax® is a thermoplastic elastomer, such as a polyether block amide, marketed by Arkema of France. In various embodiments, the material has a hardness of about 100 D or less, 75 D or less, 72 D or less, 60 D or less, or 50 D or less. In various embodiments, the material has a flexural modulus of less than about 400 MPa, less than about 300 MPa, less than about 200 MPa, less than about 100 MPa, less than about 50 MPa, or less than about 30 MPa. A proximal section of the catheter body 104 may comprise a material, such as Vestamid®. In various embodiments the material has a hardness greater than about 40 D, greater than about 50 D, greater than about 60 D, or greater than about 72 D. In various embodiments, the material has a tensile strength of about 45 MPa. In various embodiments, the material has a flexural modulus of greater than about 20 MPa, greater than about 40 MPa, greater than about 75 MPa, greater than about 85 MPa, greater than about 120 MPa, greater than about 220 MPa, greater than about 350 MPa, or greater than about 1000 MPa. Vestamid is a thermoplastic elastomer marketed by Evonik Industries® of Germany known to have high elasticity and good recovery. Between these relatively hard sections ends, a middle section of the catheter body comprises a material having a lower hardness. In an exemplary embodiment, the middle section is formed of MX1205 Pebax®. In an exemplary embodiment, the relatively hard sections are formed of Vestamid. The low hardness section provides a softer structure in the vicinity of the aortic arch, where the catheter may be resting on the vessel wall in use. One or more intermediate hardness sections can be provided between the distal, proximal and middle sections. These arrangements are also relevant to the other inner catheter bodies discussed herein, including bodies 104A, 304. In various respects, the hardness of the material refers to the bending or torsional stiffness of the respective material. For example, in various embodiments, the relatively hard sections generally require a meaningfully higher moment before they bend relatively to the relatively softer materials. In various embodiments, the relatively hard section resist deformation in use compared to the relatively soft sections which are configured to deform (e.g. bend).
Alternately, or in addition to these features, the catheter body 104 can have different diameters along its length to provide several important performance benefits. The diameter of a proximal portion of the catheter body 104 can be relatively large to enhance pushability and trackability of the catheter assembly 100. The diameter of a distal portion of the catheter body 104 can be relatively small to enhance flexibility of the distal tip and also to match the profile of the bearing housing 146 such that the lumens 140B align with flow channels at least partly defined by the bearing housing (e.g., the slots 220 discussed below). The enlarged diameter and enhanced hardness at the proximal end both contribute to the maneuverability of the catheter assembly 100. These arrangements are also relevant to the other inner catheter bodies discussed herein, including bodies 104A, 304 and the catheter assemblies 100A, 300, and 400 (discussed below).
In addition to the foregoing structures for varying the stiffness along the length of the catheter body 104, a separate stiffening component, such as a braid 188, can be disposed in the catheter body 104, 104A. In one embodiment, a 0.001 inch by 0.003 inch flat wire of 304V stainless steel is embedded in the catheter body 104, 104A and the braid includes a 70 ppi configuration. The braid 188 can be positioned in any suitable location, e.g., between an inner layer 148 and an outer layer, as shown in
As discussed above, the catheter assembly 100 preferably also includes an outer sheath or sheath assembly 88 provided over the elongate body 104, 104A to aid in delivering, deploying and/or removing the impeller 112. The outer sheath 88 can include an elongate body 96 (see
The elongate body 96 preferably is connected at the proximal end with a proximal hub and/or a suitable connector, such as a Tuohy Borst connector. The proximal hub can include a luer fitting.
The outer sheath 88 also may have varied hardness or other gross mechanical properties along its length to provide appropriate flexibility and maneuverability within the vasculature to facilitate delivery and operation of the catheter pump into which the outer sheath is incorporated, and also to facilitate collapse of the cannula 108 after deployment thereof.
The elongate body of the sheath assembly 88A has a proximal portion “A” with a highest hardness. The proximal portion A can comprise vestamid or other similar material. A portion “B” distal of the proximal portion A and residing over a zone of the cannula in which the impeller I and the distal bearing support S (if present) are housed can have a hardness that is lower than that of the portion A. Portion B can comprise 55 D pebax. In some embodiments, as discussed further below a segment of portion B can act as a radiopaque marker for the sheath during delivery and/or removal of the catheter pump from the patient. A portion “C” disposed distal of the portion B can comprise a material with the lowest hardness of the elongate body of the sheath assembly 88A, e.g., can comprise MX1205. A portion “D” at the distal end of the elongate body of the sheath assembly 88A can have a relatively high hardness, e.g., 72 D pebax. The sheath assembly 88A upon distal movement over the expanded cannula initially contacts the cannula with the relatively hard material of portion D. The relatively soft portion C may contact the vasculature as the catheter assembly 100 is advanced, and its relatively soft structure is biocompatible. Portion B has a hardness that is high enough to protect the zones I and S of the cannula, impeller, and support. Portion A is the hardest of the materials used in the sheath assembly 88A, to aid in maneuverability.
The elongate body of the sheath assembly 88B has a proximal portion and distal bearing zone portion “A” with a highest hardness. The proximal portion A can comprise vestamid or other similar material. A portion “B” between the proximal portion A and the distal bearing zone portion A. The portion B resides adjacent to the transition from the catheter body 104 to the cannula proximal portion 116 and can have a hardness that is lower than that of the portion A. Portion B can comprise 55 D pebax. Portions C and D in the sheath assembly 88B are the same as in the sheath assembly 88A. A portion E is disposed between the portions A and C, e.g., distal of the portion A disposed over the distal bearing support. Portion E can include a series of progressively softer lengths, e.g., a first length of 72 D pebax, a second length of 63 D pebax, and a third length of 55 D pebax. Other materials and hardnesses can be used that provide good resistance to kinking in the delivery of the catheter assembly 100 and/or in the process of re-sheathing the expanded cannula and impeller.
The sheath assembly 88′ can include a sheath body 153 that defines an interior lumen in which the impeller assembly 92 is stored during insertion and/or removal of the catheter assembly 100′ from the anatomy. As shown in
As explained above with respect to
The sheath assembly can include a distal tip 154 at the distalmost end of the sheath assembly 88′, such that the distal tip 154 contacts the proximal portion of the cannula 108 (e.g., contacts the cannula mesh at or near the outlet 152) when the sheath assembly 88′ is urged distally D to collapse the impeller assembly 92. Beneficially, the distal tip 154 can comprise a material that is suitably flexible so as to expand outwardly to accommodate forces imparted on the tip 154 by the wall of the cannula 108. For example, when the distal tip 154 is urged distally D over the cannula 108, the cannula 108 may impart radially outward forces to the distal tip 154. The tip 154 can be sufficiently flexible as to accommodate the radially outward forces without excessively yielding or breaking, but may be sufficiently stiff so as to ensure collapse of the cannula 108. For example, the distal tip 154 can expand radially outward to receive the cannula 108, and portions of the jacket 158 directly proximal the tip 154 may provide a stiffer collapsing portion so as to cause the cannula 108 and impeller 112 to collapse into the sheath assembly 88′. In various embodiments, the distal tip 154 can be made of an elastic polymer, such as PTFE. In other embodiments, the distal tip can include a combination of materials including PEBAX. In one arrangement, a PEBAX cylindrical member is joined to a proximal portion of a distal-most portion 153E by a folded over zone of the liner 158. In other words, the liner 158 can be disposed on the inside of the sheath assembly 88′ and a length of the liner can be folded over and around the PEBAX cylindrical member such that the end of the liner 158 can be disposed proximal of the distal end of and around radially outward of the inside lumen of the sheath assembly 88′. In some embodiments, the outer diameter of the distal tip 154 can be slightly smaller than the outer diameter of the sheath body 153. The outer diameter of the distal tip 154 can be in a range of 0.14 inches to 0.25 inches, or in a range of 0.16 inches to 0.21 inches, for example about 0.1895 inches.
In addition, the sheath assembly 88′ can comprise one or more position markers 155a, 155b, 155c that are configured to indicate to the clinician the position and/or orientation of the impeller assembly 92. A second portion 153B of the sheath body 153 disposed distal the proximal zone 153A can extend from proximal of the markers 155b, 155c to distal thereof. The second portion 153B can be configured with less stiffness than the proximal portion 153A. The second portion 153B can have a portion of the braided structure 157 that is less stiff, e.g., lower braid density, than the portion of the braided structure 157 in the proximal portion 153A. The second portion 153B can comprise a material that is less stiff than the material in the proximal portion 153A. The second portion 153B can be formed of 55 D PEBAX.
The position markers 155a-155c can comprise radiopaque markers that are visible to the clinician using, for example, an x-ray fluoroscope. The position markers 155a-155c can comprise a Pebax 55 D material with a radiopaque component, such as 60% tungsten. The distal-most marker 155a can be used during delivery of the catheter assembly 100 to provide the clinician with an estimated real-time position of the distal portion of the catheter assembly 100 as the catheter assembly 100 is inserted into, or removed from, the anatomy of the patient. For example, the clinician can view the distal-most marker 155a in real-time on a display device to guide the catheter assembly 100 to the treatment location. The middle marker 155b and the proximal marker 155c can be used to position the catheter assembly 100 relative to the treatment region to provide accurate of the catheter assembly 100 prior to unsheathing the cannula 108. For example, in some embodiments, the clinician can view the middle and proximal markers 155b, 155c to ensure that the markers 155b, 155c are near (e.g., are straddling) the aortic valve before initiation of a left ventricular assist procedure.
Further stability of the catheter assembly 100′ can be provided by a technique in which a proximal vessel contact zone PVZ is provided. The proximal vessel contact zone PVZ can be located at or distal the junction of the aortic arch and the descending aorta. The catheter assembly 100′ is configured by the stiffness and/or the resilience of the components thereof to generate a restoring force. The restoring force can arise due to stiffness of, the elasticity of, or the stiffness and the elasticity of the catheter assembly 100′ when the curved shaped is formed when the normally straight catheter assembly 100′ is deployed around the outer radius of the aortic arch. The restoring force can act on the walls of the aorta to provide an additional stabilizing force to help retain the catheter assembly 100′ in place around the outer radius of the aortic arch. This force combined with focusing the flex point between the distal contact zone DVZ and the outlet 152 provide greater stability of the working elements and outflow of the catheter pump.
As shown in
Beneficially, the outer sheath assembly 88′ disclosed herein can have a variable stiffness along its length, as explained herein, which can enable the sheath assembly 88′ to bear gently but consistently against one or both of the proximal contact zone PVZ and the distal contact zone DVZ during operation of the catheter pump. In contrast, conventional catheter based heart pump devices are much more flexible and move cyclically from the outer radius of the aortic arch to the inner radius thereof, and then back to the outer radius. Advantageously, the sheath assembly 88′ can contact one or both of the distal and proximal contact zones DVZ, PVZ to maintain the position of the impeller assembly 92 during operation. This improvement over conventional catheter based heart pump helps to maintain stable relative position of these components, e.g., providing a more consistent tip-gap between an outer tip of the blades of the impeller 112 and the inner wall of the cannula 108. This improvement over conventional catheter based heart pump devices also provides more consistent and predictable interaction between the atraumatic tip 150 and the inner walls of the ventricle to reduce any adverse side effects of disposing the distal portion of the catheter assembly 100′ within the left ventricle.
Catheter pumps incorporating the catheter assembly and variation thereof can be configured to deliver average flow rates of over 4 liters/minute for a treatment period. For example, a treatment period can be up to 10 days for acute needs, such as patient in cardiogenic shock. Catheter pumps incorporating the catheter assembly 100 or such modifications thereof can be used for shorter periods as well, e.g., for support during high risk catheter or surgical procedures.
Also, catheter pumps incorporating the catheter assembly 100 or modifications thereof can be used for left or right side heart support. Example modifications that could be used for right side support include providing delivery features and/or shaping a distal portion that is to be placed through at least one heart valve from the venous side, such as is discussed in U.S. Pat. Nos. 6,544,216; 7,070,555; and US 2012-0203056A1, all of which are hereby incorporated by reference herein in their entirety for all purposes. For example, the catheter assembly 100 or modifications thereof can be configured to be collapsed to be deliverable through a 13 French introducer sheath and can be expanded to up to 24 French when deployed. In one embodiment, the outer profile of the catheter assembly 100 or modifications thereof is approximately 12 French, but can be any size that is insertable into a femoral artery without requiring surgical cutdown. The catheter assembly 100 can be as large as 12.5 F to be inserted through a 13 French introducer sheath. One method involves deployment of the cannula 108, having an expandable nitinol structure, across the aortic valve. In this position, the impeller 112 can be disposed on the aorta side of the valve and a distal length of the cannula 108 within the ventricle.
In other embodiments, the outer profile of the catheter assembly 100 or modifications thereof is less than 12 French, e.g., about 10 French. The 10 French configuration can be useful for patients with lower flow needs, e.g., about 3 liters per minute or less at physiologic conditions. In another example, an 8 French configuration can be useful for patients with lower flow needs, e.g., about 2 liters per minute or less at physiologic conditions.
The cannula 308 includes a self-expanding structure enclosed in a polymeric film. The self-expanding structure can be a distal portion of a member having a non-expanding tubular portion 316 proximal of the self-expanding structure. The tubular portion 316 plays a role in anchoring the cannula 308 to the catheter body 304.
The apertures 344 can be arranged in multiple zones. In one embodiment a first zone is disposed distally of the second zone. The first zone can be disposed adjacent to the distal end of the ferrule 336 and the second zone is disposed proximal of the first zone. The first zone can include four apertures 344A spaced evenly about the periphery of the body of the ferrule. The second zone can include a plurality of (e.g., four) apertures 344B spaced evenly about the periphery of the body of the ferrule 336. A specific advantageous embodiment provides four apertures 344B in the second zone. The apertures 344B of the second zone can be spaced evenly about the body of the ferrule 336. Preferably the apertures 344 of the first and second zones are offset to provide a great deal of redundancy in the security of the connection of the catheter body 304 to the ferrule 336. For example, the apertures 344 in the first and second zones can be offset by one-half the circumferential distance between adjacent apertures 344.
The ferrule 336 also includes a proximal zone 348 disposed proximally of the aperture 344. The proximal zone 348 preferably is configured to provide an excellent fluid seal between the ferrule and the non-expandable tubular portion 316 of the cannula 308. In one embodiment, the proximal zone 348 includes a plurality of recesses 352 in the outer surface of the proximal portion 348. The recesses 352 can take any form consistent with good sealing, and in one embodiment the recesses are turns of a continuous helical groove in the outer surface of the ferrule 336. The helical groove is configured to receive a sealant that can bridge from the base of the grooves to the inner surface of the proximal portion 316 of the cannula 308. In one embodiment, the sealant includes an adhesive that can flow into the helical groove and be adhered to the inner surface of the proximal portion 316 of the cannula 308.
Although the weld and adhesive that can be formed or disposed between the ferrule 336 and the proximal portion 316 of the cannula 308 can provide excellent security between these components of the catheter assembly 300, a supplemental securement device 360 can be provided in some embodiments.
In one embodiment, a recess 364 is provided within the catheter assembly 300 to receive the securement device 360. The recesses 364 can be formed in an internal structure disposed within the proximal portion 316. In a first variation, a sleeve 368 is provided immediately within the non-expandable proximal portion 316 of the cannula 308. The sleeve 368 is provided and fills the volume between a bearing housing 372 and the proximal portion 316. The bearing housing 372 facilitates rotation of the impeller shaft and the flow of infusate. The sleeve 368 has slots and/or other fluid communication structures formed therein that direct flow from channels in the catheter body 308 to flow channels in the bearing housing 372. In one embodiment, the sleeve 368 has a plurality of small apertures that are disposed between flow slots. The apertures and slots can be similar is shape and form to the apertures 224 and slots 220 discussed above.
In other embodiment, apertures can be formed in the bearing housing 372. For example, the bearing housing 372 can have a plurality of channels aligned with flow passages in the catheter body 304. In such embodiment, apertures for receiving the securement device 360 can be provided directly in the bearing housing 372. In another variation, apertures are provided that extend through the sleeve 368 and into the bearing housing 372.
Modifications of catheter pumps incorporating the catheter assembly 300 can be used for right side support. For example, the elongate body 304 can be formed to have a deployed shape corresponding to the shape of the vasculature traversed between a peripheral vascular access point and the right ventricle.
Any suitable manufacturing method can be used to cause a portion of the catheter body 304 to be disposed in the apertures 344. For example, in one the catheter body 304 and the cannula 308 are to be joined. The cannula 308 has the tubular portion 316 which is to be disposed over the catheter body 304. The ferrule 336 is a metallic body that is an important part of one form of a mechanical interface. The ferrule 336 has an inner surface and apertures 344 that act as a first interface zone and an outer surface that acts as a second interface zone. The ferrule 336 is positioned such that the inner surface is disposed over the outer surface of short length of the catheter body 304 adjacent to the distal end thereof.
In one technique, the outer surface of the catheter body 304 is mechanically coupled to the ferrule 336 by a process that involves heating. The distal portion of the catheter body 304 and the ferrule 336 are heated sufficiently to cause at least a portion of the catheter body to transition to a state with low resistance to deformation. The low resistance state can be a fluid state or just a state in which the material of the catheter body 304 if more malleable. In the state having low resistance to deformation, the catheter body 304 flows through or protrudes into the apertures 344. Because the material is formed continuously from a location inside the inner surface of the ferrule to outside the inner surface, a strong mechanical coupling is provided between these components.
The tubular portion 316 of the cannula 308 can be coupled with the ferrule 336 by any suitable technique. In one embodiment, the tubular portion 316 and the ferrule 336 are indirectly coupled through sleeve 368 discussed more below. In particular, the distal end of the ferrule 336 can be welded to the proximal end of the sleeve 368 and a second connection can be provided between the portion 316 and the sleeve as discussed elsewhere herein. In another embodiment, the ferrule 336 can be directly connected by a suitable technique, such as welding if suitable materials are provided. These structures are also illustrated in
The foregoing technique of heating the catheter body 304 to cause the material thereof to be coupled with the proximal portion 160A of the pull wire(s) 160. Another technique for joining the pull wires 160 to the catheter body 304 is by an epoxy or other adhesive at the proximal end of the wires and/or catheter body 304. A distal section of the pull wires 160 within the catheter body 304 can be left un-adhered to the catheter body, such that this section of the pull wires 160 can move relative to the catheter body or “float” to enhance flexibility of the distal portion of the catheter body in some embodiments. The proximal portion 160A provides a first interface zone of a mechanical interface between the catheter body 104 and the bearing housing 146. The distal portion 160C provides a second interface zone that can be coupled with the bearing housing 146 by a suitable technique, such as welding. In another embodiment, the sleeve 216, 216A is formed of a material to which the pull wires can be welded or otherwise mechanically secured.
The stator blades 408 are configured to act on the fluid flow generated by the impeller 312 to provide a more optimal fluid flow regime downstream of the stator assembly 402. This fluid flow regime can correspond to a more optimal fluid flow regime out of the outlet of the catheter pump. The stator blades 408 preferably convert at least the radial component of flow generated by the impeller 312 to a flow that is substantially entirely axial. In some cases, the stator blades 408 are configured to reduce other inefficiencies of the flow generated by the impeller 312, e.g., minimize turbulent flow, flow eddies, etc. Removing the radial components of the flow can be achieved with blades that are oriented in an opposite direction to the orientation of the blades of the impeller 312, for example, clockwise versus counterclockwise oriented blade surface.
While the stator blades 408 act on the flow generated by the impeller 312, the fluids also act on the stator assembly 402. For example, the stator blade body 404 experiences a torque generated by the interaction of the blades 408 with the blood as it flows past the stator assembly 402. A robust mechanical interface 420 is provided between the central body 412 and a distal portion of the catheter assembly 400. A bearing housing 424 is provided that is similar to the bearing housing 372, except as described differently below. The bearing housing 424 includes an elongate portion 428 that projects into a lumen of the central body 412. The elongate portion 428 preferably has an outer periphery that is smaller than an outer periphery of a portion of the bearing housing 424 immediately proximal of the elongate portion 428.
This structure provides an interface 432 disposed between the elongate portion and the portion just distal thereto. The interface 432 can be a shoulder having a radial extent that is approximately equal to that of the central body 412. In some embodiments, a flush surface is provided between the outer surface of the central body 412 and a distal outer surface of the sleeve 368 such that the radial extent of the shoulder of the interface 432 is less than that of the central body 412 by an amount approximately equal to the thickness of the sleeve 368. The interface 432 can also or alternately includes an engagement feature between the inner surface of the lumen of the central body 412 and the outer surface of the elongate portion 428. In one embodiment, the outer surface of the elongate portion 428 has a helical projection or groove and the central body 412 has corresponding and mating helical grooves or projections. These features can be or can be analogous to screw threads. Preferably the helix portion is arranged such that the torque felt by the stator assembly 402 generates a tightening of the engagement between the elongate portion 428 and the central body 412. The projections or grooves in the central body 412 can be formed by molding the central body 412 over the elongate projection 428.
A small gap is provided between the stator assembly 402 and the impeller 312 such that no or minimal contact is provided between these components, but the flow between the blades of these structures smoothly transitions between the blades thereof. Such an arrangement is useful in that the impeller 312 rotates at more than 10,000 RPM while the stator assembly 412 is stationary.
While the robust mechanical interfaces between the catheter body 104 and the cannula 108 is important to the catheter assembly 300 the interface is even more important in certain embodiments of the catheter body 400 that are actuated to a collapsed state prior to being removed from the patient. In such embodiments, the deployed working end preferably is collapsed, including the cannula 308, the stator blade body 404, and the impeller 312. This can be done by providing distal relative motion of the sheath assembly 88. The forces applied by the sheath assembly 88 to the catheter body 400, stator blade body 404, and the impeller 312 and focused at the mechanical joints are enhanced due to the presence of the stator blade body 404.
One will appreciate from the description herein that the catheter assembly may be modified based on the respective anatomy to suit the desired vascular approach. For example, the catheter assembly in the insertion state may be shaped for introduction through the subclavian artery to the heart. The catheter pump may be configured for insertion through a smaller opening and with a lower average flow rate for right side support. In various embodiments, the catheter assembly is scaled up for a higher flow rate for sicker patients and/or larger patients.
Although the inventions herein have been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present inventions. It is therefore to be understood that numerous modifications can be made to the illustrative embodiments and that other arrangements can be devised without departing from the spirit and scope of the present inventions as defined by the appended claims. Thus, it is intended that the present application cover the modifications and variations of these embodiments and their equivalents.
This application claims priority to U.S. patent application Ser. No. 15/812,471, filed Nov. 14, 2017, which claims priority to provisional Application No. 62/421,930, filed Nov. 14, 2016, and which is a continuation-in-part of U.S. patent application Ser. No. 13/801,833, filed Mar. 13, 2013, each of which is incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976270 | Parl et al. | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4994017 | Yozu | Feb 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5000177 | Hoffmann et al. | Mar 1991 | A |
5021048 | Buckholtz | Jun 1991 | A |
5045072 | Castillo et al. | Sep 1991 | A |
5049134 | Golding et al. | Sep 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5089016 | Millner et al. | Feb 1992 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5098256 | Smith | Mar 1992 | A |
5106368 | Uldall et al. | Apr 1992 | A |
5112200 | Isaacson et al. | May 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5112349 | Summers et al. | May 1992 | A |
5129883 | Black | Jul 1992 | A |
5142155 | Mauze et al. | Aug 1992 | A |
5147186 | Buckholtz | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5171212 | Buck et al. | Dec 1992 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5201679 | Velte, Jr. et al. | Apr 1993 | A |
5211546 | Isaacson et al. | May 1993 | A |
5221270 | Parker | Jun 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5290227 | Pasque | Mar 1994 | A |
5300112 | Barr | Apr 1994 | A |
5306262 | Weldon | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5344443 | Palma et al. | Sep 1994 | A |
5346458 | Affeld | Sep 1994 | A |
5360317 | Clausen et al. | Nov 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5393197 | Lemont et al. | Feb 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5405341 | Martin | Apr 1995 | A |
5405383 | Barr | Apr 1995 | A |
5415633 | Lazarus | May 1995 | A |
5415637 | Khosravi | May 1995 | A |
5437541 | Vainrub | Aug 1995 | A |
5449342 | Hirose et al. | Sep 1995 | A |
5458459 | Hubbard et al. | Oct 1995 | A |
5490763 | Abrams et al. | Feb 1996 | A |
5505701 | Anaya Fernandez de Lomana | Apr 1996 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5533957 | Aldea | Jul 1996 | A |
5534287 | Lukic | Jul 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5609574 | Kaplan et al. | Mar 1997 | A |
5613935 | Jarvik | Mar 1997 | A |
5643226 | Cosgrove et al. | Jul 1997 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5692882 | Bozeman, Jr. et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5707218 | Maher et al. | Jan 1998 | A |
5722930 | Larson, Jr. et al. | Mar 1998 | A |
5725513 | Ju et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749855 | Reitan | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5766151 | Valley | Jun 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5779721 | Nash | Jul 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5814011 | Corace | Sep 1998 | A |
5824070 | Jarvik | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868703 | Bertolero et al. | Feb 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5897557 | Kronzer | Apr 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5921913 | Siess | Jul 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5971974 | Keisz | Oct 1999 | A |
6007478 | Siess | Dec 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6015272 | Antaki et al. | Jan 2000 | A |
6015434 | Yamane | Jan 2000 | A |
6018208 | Maher et al. | Jan 2000 | A |
6027863 | Donadio, III | Feb 2000 | A |
6053705 | Schoeb et al. | Apr 2000 | A |
6056719 | Mickley | May 2000 | A |
6058593 | Siess | May 2000 | A |
6068610 | Ellis et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6083260 | Aboul-Hosn | Jul 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6086570 | Aboul-Hosn et al. | Jul 2000 | A |
6106494 | Saravia et al. | Aug 2000 | A |
6113536 | Aboul-Hosn et al. | Sep 2000 | A |
6123659 | le Blanc et al. | Sep 2000 | A |
6123725 | Aboul-Hosn | Sep 2000 | A |
6132363 | Freed et al. | Oct 2000 | A |
6132417 | Kiesz | Oct 2000 | A |
6135943 | Yu et al. | Oct 2000 | A |
6139487 | Siess | Oct 2000 | A |
6152704 | Aboul-Hosn et al. | Nov 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6176848 | Rau et al. | Jan 2001 | B1 |
6186665 | Maher et al. | Feb 2001 | B1 |
6190304 | Downey et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6200260 | Bolling | Mar 2001 | B1 |
6210133 | Aboul-Hosn et al. | Apr 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6210397 | Aboul-Hosn et al. | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6228063 | Aboul-Hosn | May 2001 | B1 |
6234960 | Aboul-Hosn et al. | May 2001 | B1 |
6234995 | Peacock, III | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6248091 | Voelker | Jun 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6287319 | Aboul-Hosn et al. | Sep 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6295877 | Aboul-Hosn et al. | Oct 2001 | B1 |
6305962 | Maher et al. | Oct 2001 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6395026 | Aboul-Hosn et al. | May 2002 | B1 |
6413222 | Pantages et al. | Jul 2002 | B1 |
6422990 | Prem | Jul 2002 | B1 |
6425007 | Messinger | Jul 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6447441 | Yu et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6475195 | Voda | Nov 2002 | B1 |
6503224 | Forman et al. | Jan 2003 | B1 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6508787 | Reimund et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6527699 | Goldowsky | Mar 2003 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6547519 | Deblanc et al. | Apr 2003 | B2 |
6565598 | Lootz | May 2003 | B1 |
6609883 | Woodard et al. | Aug 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6613008 | Aboul-Hosn et al. | Sep 2003 | B2 |
6616323 | McGill | Sep 2003 | B2 |
6623420 | Reich et al. | Sep 2003 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6641093 | Coudrais | Nov 2003 | B2 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6645241 | Strecker | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6692318 | McBride | Feb 2004 | B2 |
6709418 | Aboul-Hosn et al. | Mar 2004 | B1 |
6716189 | Jarvik et al. | Apr 2004 | B1 |
6749598 | Keren et al. | Jun 2004 | B1 |
6776578 | Belady | Aug 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6790171 | Frederik et al. | Sep 2004 | B1 |
6794784 | Takahashi et al. | Sep 2004 | B2 |
6794789 | Siess et al. | Sep 2004 | B2 |
6814713 | Aboul-Hosn et al. | Nov 2004 | B2 |
6817836 | Nose et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6860713 | Hoover | Mar 2005 | B2 |
6866625 | Ayre et al. | Mar 2005 | B1 |
6866805 | Hong et al. | Mar 2005 | B2 |
6887215 | McWeeney | May 2005 | B2 |
6889082 | Bolling et al. | May 2005 | B2 |
6926662 | Aboul-Hosn et al. | Aug 2005 | B1 |
6935344 | Aboul-Hosn et al. | Aug 2005 | B1 |
6942611 | Siess | Sep 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6966748 | Woodard et al. | Nov 2005 | B2 |
6972956 | Franz et al. | Dec 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6984392 | Bechert et al. | Jan 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7014417 | Salomon | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7037069 | Arnold et al. | May 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7125376 | Viole et al. | Oct 2006 | B2 |
7144365 | Bolling et al. | Dec 2006 | B2 |
7150711 | Peter et al. | Dec 2006 | B2 |
7160243 | Medvedev | Jan 2007 | B2 |
7172551 | Leasure | Feb 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7241257 | Ainsworth et al. | Jul 2007 | B1 |
7262531 | Li et al. | Aug 2007 | B2 |
7264606 | Jarvik et al. | Sep 2007 | B2 |
7267667 | Houde et al. | Sep 2007 | B2 |
7284956 | Nose et al. | Oct 2007 | B2 |
7288111 | Holloway et al. | Oct 2007 | B1 |
7290929 | Smith et al. | Nov 2007 | B2 |
7329236 | Keren et al. | Feb 2008 | B2 |
7331921 | Viole et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7381179 | Aboul-Hosn et al. | Jun 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7469716 | Parrino et al. | Dec 2008 | B2 |
7491163 | Viole et al. | Feb 2009 | B2 |
7534258 | Gomez et al. | May 2009 | B2 |
7605298 | Bechert et al. | Oct 2009 | B2 |
7619560 | Penna et al. | Nov 2009 | B2 |
7633193 | Masoudipour et al. | Dec 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7682673 | Houston et al. | Mar 2010 | B2 |
7722568 | Lenker et al. | May 2010 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7736296 | Siess et al. | Jun 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7785246 | Aboul-Hosn et al. | Aug 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7819833 | Ainsworth et al. | Oct 2010 | B2 |
7828710 | Shifflette | Nov 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7878967 | Khanal | Feb 2011 | B1 |
7918828 | Lundgaard et al. | Apr 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7942804 | Khaw | May 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7955365 | Doty | Jun 2011 | B2 |
7993259 | Kang et al. | Aug 2011 | B2 |
7998054 | Bolling | Aug 2011 | B2 |
7998190 | Gharib et al. | Aug 2011 | B2 |
8012079 | Delgado, III et al. | Sep 2011 | B2 |
8025647 | Siess et al. | Sep 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8110267 | Houston et al. | Feb 2012 | B2 |
8114008 | Hidaka et al. | Feb 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8216122 | Kung et al. | Jul 2012 | B2 |
8236040 | Mayberry et al. | Aug 2012 | B2 |
8255050 | Mohl | Aug 2012 | B2 |
8257312 | Duffy | Sep 2012 | B2 |
8262619 | Chebator et al. | Sep 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8317715 | Belleville et al. | Nov 2012 | B2 |
8333687 | Farnan et al. | Dec 2012 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8376707 | McBride et al. | Feb 2013 | B2 |
8388565 | Shifflette | Mar 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8439859 | Pfeffer et al. | May 2013 | B2 |
8485961 | Campbell et al. | Jul 2013 | B2 |
8535211 | Campbell et al. | Sep 2013 | B2 |
8597170 | Walters et al. | Dec 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8790236 | Larose et al. | Jul 2014 | B2 |
8795576 | Tao et al. | Aug 2014 | B2 |
8801590 | Mohl | Aug 2014 | B2 |
8814776 | Hastie et al. | Aug 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8944748 | Liebing | Feb 2015 | B2 |
8992406 | Corbett | Mar 2015 | B2 |
8998792 | Scheckel | Apr 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9089670 | Scheckel | Jul 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9308302 | Zeng | Apr 2016 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9328741 | Liebing | May 2016 | B2 |
9358330 | Schumacher | Jun 2016 | B2 |
20010004681 | Landau | Jun 2001 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020111663 | Dahl et al. | Aug 2002 | A1 |
20030018380 | Craig et al. | Jan 2003 | A1 |
20030100819 | Siess | May 2003 | A1 |
20030205233 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040073141 | Hartley | Apr 2004 | A1 |
20050015007 | Itou | Jan 2005 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050085683 | Bolling et al. | Apr 2005 | A1 |
20050090883 | Westlund et al. | Apr 2005 | A1 |
20050113631 | Bolling et al. | May 2005 | A1 |
20050135942 | Arnold et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050165269 | Aboul-Hosn et al. | Jul 2005 | A9 |
20050250975 | Carrier et al. | Nov 2005 | A1 |
20060018943 | Bechert et al. | Jan 2006 | A1 |
20060058869 | Olson et al. | Mar 2006 | A1 |
20060063965 | Aboul-Hosn et al. | Mar 2006 | A1 |
20060089521 | Chang | Apr 2006 | A1 |
20060155158 | Aboul-Hosn | Jul 2006 | A1 |
20060264695 | Viole et al. | Nov 2006 | A1 |
20060270894 | Viole et al. | Nov 2006 | A1 |
20070100314 | Keren et al. | May 2007 | A1 |
20070233270 | Weber et al. | Oct 2007 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004690 | Robaina | Jan 2008 | A1 |
20080031953 | Takakusagi et al. | Feb 2008 | A1 |
20080103442 | Kesten et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080167679 | Papp | Jul 2008 | A1 |
20080275290 | Viole et al. | Nov 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090023975 | Marseille et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093765 | Glenn | Apr 2009 | A1 |
20090093796 | Pfeffer | Apr 2009 | A1 |
20090099638 | Grewe | Apr 2009 | A1 |
20090112312 | Larose et al. | Apr 2009 | A1 |
20090118567 | Siess | May 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090171137 | Farnan et al. | Jul 2009 | A1 |
20090182188 | Marseille et al. | Jul 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100047099 | Miyazaki et al. | Feb 2010 | A1 |
20100057050 | Webler, Jr. | Mar 2010 | A1 |
20100087773 | Ferrari | Apr 2010 | A1 |
20100127871 | Pontin | May 2010 | A1 |
20100197994 | Mehmanesh | Aug 2010 | A1 |
20100210895 | Aboul-Hosn et al. | Aug 2010 | A1 |
20100241008 | Belleville | Sep 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20100274330 | Burwell et al. | Oct 2010 | A1 |
20100286210 | Murata et al. | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100324567 | Root | Dec 2010 | A1 |
20110004046 | Campbell et al. | Jan 2011 | A1 |
20110004049 | Yi et al. | Jan 2011 | A1 |
20110004291 | Davis et al. | Jan 2011 | A1 |
20110021865 | Aboul-Hosn et al. | Jan 2011 | A1 |
20110034874 | Reitan et al. | Feb 2011 | A1 |
20110040140 | Shifflette | Feb 2011 | A1 |
20110071338 | McBride et al. | Mar 2011 | A1 |
20110076439 | Zeilon | Mar 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20110257462 | Rodefeld et al. | Oct 2011 | A1 |
20110270182 | Breznock et al. | Nov 2011 | A1 |
20110275884 | Scheckel | Nov 2011 | A1 |
20120004495 | Bolling et al. | Jan 2012 | A1 |
20120029265 | Larose et al. | Feb 2012 | A1 |
20120059213 | Spence et al. | Mar 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120093628 | Liebing | Apr 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172655 | Campbell et al. | Jul 2012 | A1 |
20120172656 | Walters et al. | Jul 2012 | A1 |
20120178985 | Walters et al. | Jul 2012 | A1 |
20120178986 | Campbell et al. | Jul 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120203056 | Corbett | Aug 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120226097 | Smith et al. | Sep 2012 | A1 |
20120234411 | Scheckel | Sep 2012 | A1 |
20120245404 | Smith et al. | Sep 2012 | A1 |
20120265002 | Roehn | Oct 2012 | A1 |
20130041202 | Toellner et al. | Feb 2013 | A1 |
20130053622 | Corbett | Feb 2013 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130060077 | Liebing | Mar 2013 | A1 |
20130066140 | McBride et al. | Mar 2013 | A1 |
20130085318 | Toellner | Apr 2013 | A1 |
20130096364 | Reichenbach et al. | Apr 2013 | A1 |
20130103063 | Escudero et al. | Apr 2013 | A1 |
20130106212 | Nakazumi et al. | May 2013 | A1 |
20130129503 | McBride et al. | May 2013 | A1 |
20130138205 | Kushwaha et al. | May 2013 | A1 |
20130204362 | Toellner et al. | Aug 2013 | A1 |
20130209292 | Baykut et al. | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20130237962 | Kawai | Sep 2013 | A1 |
20130245360 | Schumacher | Sep 2013 | A1 |
20130303830 | Zeng et al. | Nov 2013 | A1 |
20130303969 | Keenan et al. | Nov 2013 | A1 |
20130303970 | Keenan et al. | Nov 2013 | A1 |
20130331639 | Campbell et al. | Dec 2013 | A1 |
20130345492 | Pfeffer et al. | Dec 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140010686 | Tanner et al. | Jan 2014 | A1 |
20140012065 | Fitzgerald et al. | Jan 2014 | A1 |
20140025041 | Fukuoka | Jan 2014 | A1 |
20140039465 | Heike et al. | Feb 2014 | A1 |
20140051908 | Khanal et al. | Feb 2014 | A1 |
20140067057 | Callaway et al. | Mar 2014 | A1 |
20140088455 | Christensen et al. | Mar 2014 | A1 |
20140148638 | Larose et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140255176 | Bredenbreuker et al. | Sep 2014 | A1 |
20140275725 | Schenck et al. | Sep 2014 | A1 |
20140275726 | Zeng | Sep 2014 | A1 |
20140301822 | Scheckel | Oct 2014 | A1 |
20140303596 | Schumacher et al. | Oct 2014 | A1 |
20150025558 | Wulfman et al. | Jan 2015 | A1 |
20150031936 | Larose et al. | Jan 2015 | A1 |
20150051435 | Siess et al. | Feb 2015 | A1 |
20150051436 | Spanier et al. | Feb 2015 | A1 |
20150080743 | Siess et al. | Mar 2015 | A1 |
20150087890 | Spanier et al. | Mar 2015 | A1 |
20150141738 | Toellner et al. | May 2015 | A1 |
20150141739 | Hsu et al. | May 2015 | A1 |
20150151032 | Voskoboynikov et al. | Jun 2015 | A1 |
20150209498 | Franano et al. | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150343179 | Schumacher et al. | Dec 2015 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160250400 | Schumacher | Sep 2016 | A1 |
20160256620 | Scheckel et al. | Sep 2016 | A1 |
20160303299 | Muller et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2256427 | Oct 1998 | CA |
2322012 | Sep 1999 | CA |
2367469 | Oct 2000 | CA |
2407938 | Nov 2001 | CA |
2480467 | Aug 2003 | CA |
2701810 | Apr 2009 | CA |
19613565 | Jul 1997 | DE |
0364293 | Apr 1990 | EP |
0453234 | Oct 1991 | EP |
0533432 | Mar 1993 | EP |
1207934 | May 2002 | EP |
1393762 | Mar 2004 | EP |
1591079 | Nov 2005 | EP |
2151257 | Feb 2010 | EP |
2263732 | Dec 2010 | EP |
2298374 | Mar 2011 | EP |
2267800 | Nov 1975 | FR |
2239675 | Jul 1991 | GB |
S48-23295 | Mar 1973 | JP |
S58190448 | Nov 1983 | JP |
H06114101 | Apr 1994 | JP |
H08500512 | Jan 1996 | JP |
H08501466 | Feb 1996 | JP |
H10099447 | Apr 1998 | JP |
2002505168 | Feb 2002 | JP |
2004514506 | May 2004 | JP |
2011-000620 | Sep 2005 | JP |
2011-157961 | Aug 2011 | JP |
500877 | Sep 2002 | TW |
8904644 | Jun 1989 | WO |
8905164 | Jun 1989 | WO |
9405347 | Mar 1994 | WO |
9406486 | Mar 1994 | WO |
9526695 | Oct 1995 | WO |
9715228 | May 1997 | WO |
9737697 | Oct 1997 | WO |
9900368 | Jan 1999 | WO |
9902204 | Jan 1999 | WO |
9916387 | Apr 1999 | WO |
9937352 | Jul 1999 | WO |
9944651 | Sep 1999 | WO |
9944670 | Sep 1999 | WO |
9959652 | Nov 1999 | WO |
9965546 | Dec 1999 | WO |
00012148 | Mar 2000 | WO |
00019097 | Apr 2000 | WO |
00108448 | Apr 2000 | WO |
00037139 | Jun 2000 | WO |
00038591 | Jul 2000 | WO |
00041612 | Jul 2000 | WO |
00043053 | Jul 2000 | WO |
00043062 | Jul 2000 | WO |
00045874 | Aug 2000 | WO |
00061207 | Oct 2000 | WO |
00069489 | Nov 2000 | WO |
01117581 | Mar 2001 | WO |
01024867 | Apr 2001 | WO |
01083016 | Nov 2001 | WO |
02043791 | Jun 2002 | WO |
02070039 | Sep 2002 | WO |
03048582 | Jun 2003 | WO |
03068303 | Aug 2003 | WO |
03070299 | Aug 2003 | WO |
03103745 | Dec 2003 | WO |
2005089674 | Sep 2005 | WO |
2005123158 | Dec 2005 | WO |
2006046779 | May 2006 | WO |
2006051023 | May 2006 | WO |
2007112033 | Oct 2007 | WO |
2008034068 | Mar 2008 | WO |
2009073037 | Jun 2009 | WO |
2009076460 | Jun 2009 | WO |
2010063494 | Jun 2010 | WO |
2010127871 | Nov 2010 | WO |
2010133567 | Nov 2010 | WO |
2010149393 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011035927 | Mar 2011 | WO |
2011035929 | Mar 2011 | WO |
2011039091 | Apr 2011 | WO |
2011076439 | Jun 2011 | WO |
2011089022 | Jul 2011 | WO |
01078807 | Oct 2011 | WO |
2012007140 | Jan 2012 | WO |
2012007141 | Jan 2012 | WO |
2012064525 | Jul 2012 | WO |
2012094534 | Jul 2012 | WO |
2013148697 | Oct 2013 | WO |
2013160407 | Oct 2013 | WO |
2013073245 | Nov 2013 | WO |
2014019274 | Feb 2014 | WO |
2015063277 | Jul 2015 | WO |
Entry |
---|
Convert Megapascal to Psi. https://www.unitconverters.net/pressure/megapascal-to-psi.htm. Accessed Thu Apr. 13, 2023. (Year: 2023). |
Abiomed, “Impella 5.0 with the Impella Console, Circulatory Support System, Instructions for Use & Clinical Reference Manual,” Jun. 2010, in 122 pages. |
Abiomed—Recovering Hearts. Saving Lives., Impella 2.5 System, Instructions for Use, Jul. 2007, in 86 sheets. |
Barras et al., “Nitinol—Its Use in Vascular Surgery and Other Applications,” Eur. J. Vase. Endovasc. Surg., 2000, pp. 564-569; vol. 19. |
Biscarini et al., “Enhanced Nitinol Properties for Biomedical Applications,” Recent Patents on Biomedical Engineering, 2008, pp. 180-196, vol. 1 (3). |
Cardiovascular Diseases (CVDs) Fact Sheet No. 317; World Health Organization [Online], Sep. 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html, accessed on Aug. 29, 2012. |
Duerig et al., “An Overview of Nitinol Medical Applications,” Materials Science Engineering, 1999, pp. 149-160; vol. A273. |
Extended European Search Report received in European Patent Application No. 07753903.9, dated Oct. 8, 2012, in 7 pages (THOR.034VEP). |
European Search Report received in European Patent Application No. 05799883.3, dated May 10, 2011, in 4 pages. |
Grech, “Percutaneous Coronary Intervention. I: History and Development,” BMJ., May 17, 2003, pp. 1080-1082, vol. 326. |
Hsu et al., “Review of Recent Patents on Foldable Ventricular Assist Devices,” Recent Patents on Biomedical Engineering, 2012, pp. 208-222, vol. 5. |
Ide et al., “Evaluation of the Pulsatility of a New Pulsatile Left Ventricular Assist Device—the Integrated Cardioassist Catheter—in Dogs,” J. of Thorac and Cardiovasc Sur, Feb. 1994, pp. 569-0575, vol. 107(2). |
Ide et al., “Hemodynamic Evaluation of a New Left Ventricular Assist Device: An Integrated Cardioassist Catheter as a Pulsatile Left Ventricle-Femoral Artery Bypass,” Blackwell Scientific Publications, Inc., 1992, pp. 286-290, vol. 16(3). |
International Search Report received in International Patent Application No. PCT/US2003/004853, dated Jul. 3, 2003, in 3 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020369, dated Jul. 30, 2012, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020382, dated Jul. 31, 2012, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020553, dated Aug. 17, 2012, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020383, dated Aug. 17, 2012, in 9 pages. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04853, dated Jul. 26, 2004, in 5 pages. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04401, dated May 18, 2004, in 4 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004401, dated Nov. 10, 2003, in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2005/033416, dated Dec. 11, 2006, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040798, dated Aug. 21, 2013, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040799, dated Aug. 21, 2013, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040809, dated Sep. 2, 2013, in 25 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048343, dated Oct. 11, 2013, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048332, dated Oct. 16, 2013, in 17 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2005/033416, dated Mar. 20, 2007, in 7 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2007/007313, dated Sep. 23, 2008, in 6 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2007/007313, dated Mar. 4, 2008, in 6 pages. |
International Search Report Written Opinion received in International Patent Application No. PCT/US2010/040847, dated Dec. 14, 2010, in 17 pages. |
Krishnamani et al., “Emerging Ventricular Assist Devices for Long-Term Cardiac Support,” National Review, Cardiology, Feb. 2010, pp. 71-76, vol. 7. |
Mihaylov et al., “Development of a New Introduction Technique for the Pulsatile Catheter Pump,” Artificial Organs, 1997, pp. 425-427; vol. 21 (5). |
Mihaylovet al., “Evaluation of the Optimal Driving Mode During Left Ventricular Assist with Pulsatile Catheter Pump in Calves,” Artificial Organs, 1999, pp. 1117-1122; vol. 23(12). |
Morgan, “Medical Shape Memory Alloy Applications—The Market and its Products,” Materials Science and Engineering, 2004, pp. 16-23, vol. A 378. |
Morsink et al., “Numerical Modelling of Blood Flow Behaviour in the Valved Catheter of the PUCA-Pump, a LVAD,” The International Journal of Artificial Organs, 1997, pp. 277-284; vol. 20(5). |
Nishimura et al, “The Enabler Cannula Pump: A Novel Circulatory Support System,” The International Journal of Artificial Organs, 1999, pp. 317-323; vol. 22(5). |
Petrini et al., “Biomedical Applications of Shape Memory Alloys,” Journal of Metallurgy, 2011, pp. 1-15. |
Raess et al., “Impella 2.5,” J. Cardiovasc. Transl. Res., 2009, pp. 168-172, vol. 2(2). |
Rakhorst et al., “In Vitro Evaluation of the Influence of Pulsatile Intraventricular Pumping on Ventricular Pressure Patterns,” Artificial Organs, 1994, pp. 494-499, vol. 18(7). |
Reitan et al., “Hydrodynamic Properties of a New Percutaneous Intra-Aortic Axial Flow Pump,” ASAIO Journal2000, pp. 323-328. |
Reitan et al., “Hemodynamic Effects of a New Percutaneous Circulatory Support Device in a Left Ventricular Failure Model,” ASAIO Journal, 2003, pp. 731-736, vol. 49. |
Schmitz-Rode et al., “An Expandable Percutaneous Catheter Pump for Left Ventricular Support,” Journal of the American College of Cardiology, 2005, pp. 1856-1861, vol. 45(11). |
Shabari et al., “Improved Hemodynamics with a Novel Miniaturized Intra-Aortic Axial Flow Pump in a Porcine Model of Acute Left Ventricular Dysfunction,” ASAIO Journal, 2013, pp. 240-245; vol. 59. |
Sharony et al, “Cardiopulmonary Support and Physiology—The Intra-Aortic Cannula Pump: A Novel Assist Device for the Acutely Failing Heart,” The Journal of Thoracic and Cardiovascular Surgery, Nov. 1992, pp. 924-929, vol. 118(5). |
Sharony et al., “Right Heart Support During Off-Pump Coronary Artery Surgery—A Multi-Center Study,” The Heart Surgery Forum, 2002, pp. 13-16, vol. 5(1). |
Smith et al., “First-In-Man Study of the Reitan Catheter Pump for Circulatory Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention,” Catheterization and Cardiovascular Interventions, 2009, pp. 859-865, vol. 73(7). |
Sokolowski et al., “Medical Applications of Shape Memory Polymers,” Biomed. Mater. 2007, pp. S23-S27, vol. 2. |
“Statistical Analysis and Clinical Experience with the Recover® Pump Systems”, Impella CardioSystems GmbH, Sep. 2005, 2 sheets. |
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” European Radiology, 2003, in 13 sheets. |
Supplemental European Search Report received from the European Patent Office in EP Application No. EP 05799883 dated Mar. 19, 2010, 3 pages. |
Takagaki et al., “A Novel Miniature Ventricular Assist Device for Hemodynamic Support,” ASAIO Journal, 2001, pp. 412-416; vol. 47. |
Throckmorton et al., “Flexible Impeller Blades in an Axial Flow Pump for Intravascular Cavopulmonary Assistance of the Fontan Physiology,” Cardiovascular Engineering and Technology, Dec. 2010, pp. 244-255, vol. 1 (4). |
Verkerke et al., “Numerical Simulation of the PUCA Pump, A Left Ventricular Assist Device,” Abstracts of the XIXth ESAO Congress, The International Journal of Artificial Organs, 1992, p. 543, vol. 15(9). |
Verkerke et al., “Numerical Simulation of the Pulsating Catheter Pump: A Left Ventricular Assist Device,” Artificial Organs, 1999, pp. 924-931, vol. 23(10). |
Verkerke et al., “The PUCA Pump: A Left Ventricular Assist Device,” Artificial Organs, 1993, pp. 365-368, vol. 17(5). |
Wampler et al., “The Sternotomy Hemopump, A Second Generation Intraarterial Ventricular Assist Device,” ASAIO Journal, 1993, pp. M218-M223, vol. 39. |
Written Opinion received in International Patent Application No. PCT/US2003/04853, dated Feb. 25, 2004, 5 pages. |
Food and Drug Administration 510(k) Summary for Predicate Device Impella 2.5 (K112892), prepared Sep. 5, 2012. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated May 7, 2014, in 13 pages. |
Stolinski et al., “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, 2002, pp. 1082-1088, vol. 25, Issue 11. |
Weber et al., “Principles of Impella Cardiac Support,” Supplemental to Cardiac Interventions Today, Aug./Sep. 2009. |
Kunst et al., “Integrated unit for programmable control of the 21 F Hemopump and registration of physiological signals,” Medical & Biological Engineering Computing, Nov. 1994, pp. 694-696. |
Throckmorton et al., “Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps,” The Journal of Thoracic and Cardiovascular Surgery, Sep. 2012, pp. 704-709, vol. 133, No. 3. |
Aboul-Hosn et al., “The Hemopump: Clinical Results and Future Applications”, Assisted Circulation 4, 1995, in 14 pages. |
Compendium of Technical and Scientific Information for the Hemopump Temporary Cardiac Assist System, Johnson & Johnson Interventional Systems, 1988, in 15 pages. |
Dekker et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump, An Animal Study”, Chest, Jun. 2003, vol. 123, No. 6, pp. 2089-2095. |
Impella CP®—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Jul. 2014, 148 pages, www.abiomed.com. |
Impella LD® with the Impella® Controller—Circulatory Support System—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Sep. 2010, 132 pages, www.abiomed.com. |
International Preliminary Report on Patentability and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated Sep. 15, 2015, in 8 pages. |
International Search Reort and Written Opinion received in International Patent Application No. PCT/US2015/026013, dated Jul. 8, 2015, in 12 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026014, dated Jul. 15, 2015, in 13 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026025, dated Jul. 20, 2015, in 12 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025959, dated Aug. 28, 2015, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025960, dated Sep. 3, 2015, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/045370, dated Nov. 18, 2015, in 12 pages. |
Jomed Reitan Catheter Pump RCP, Percutaneous Circulatory Support, in 10 pages, believed to be published prior to Oct. 15, 2003. |
Jomed Reitan Catheter Pump RCP, Feb. 18, 2003, in 4 pages. |
Minimally Invasive Cardiac Assist Jomed Catheter PumpTM, in 6 pages, believed to be published prior to Jun. 16, 1999. |
Reitan, Evaluation of a New Percutaneous Cardiac Assist Device, Department of Cardiology, Faculty of Medicine, Lund University, Sweden, 2002, in 172 pages. |
Siess et al., “Hydraulic refinement of an intraarterial microaxial blood pump”, The International Journal of Artificial Organs, 1995, vol. 18, No. 5, pp. 273-285. |
Siess, “Systemanalyse und Entwicklung intravasaler Rotationspumpen zur Herzunterstlitzung”, Helmholtz-Institut fur Blomedixinische Technik an der RWfH Aachen, Jun. 24, 1998, in 105 pages. |
Siess et al., “Basic design criteria for rotary blood pumps,” H. Masuda, Rotary Blood Pumps, Springer, Japan,2000, pp. 69-83. |
Siess et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump,” Artificial Organs, 1995, pp. 644-652, vol. 19, No. 7, Blackwell Science, Inc., Boston, International Society for Artificial Organs. |
Siess et al., “From a lab type to a product: A retrospective view on Impella's assist technology,” Artificial Organs, 2001, pp. 414-421, vol. 25, No. 5, Blackwell Science, Inc., International Society for Artificial Organs. |
Siess et al., “System analysis and development of intravascular rotation pumps for cardiac assist,” Dissertation, Shaker Verlag, Aachen, 1999, 39 pages. |
Extended European Search Report received in European Patent Application No. 13790890.1, dated Jan. 7, 2016, in 6 pages (THOR.089EP). |
Extended European Search Report received in European Patent Application No. 13791118.6, dated Jan. 7, 2016, in 6 pages (THOR.072EP). |
Extended European Search Report received in European Patent Application No. 13813687.4, dated Feb. 24, 2016, in 6 pages (THOR.093EP). |
Extended European Search Report received in European Patent Application No. 13813687.2, dated Feb. 26, 2016, in 6 pages (THOR.092EP). |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014371, dated May 2, 2016, in 18 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014379, dated Jul. 25, 2016, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014391, dated May 2, 2016, in 17 pages. |
Nullity Action against the owner of the German part DE 50 2007 005 015.6 of European patent EP 2 04 7 872 81, dated Jul. 13, 2015, in 61 pages. |
Extended European Search Report received in European Patent Application No. 14 779928.2, dated Oct. 7, 2016, in 6 pages (THOR.084EP). |
Extended European Search Report received in European Patent Application No. 14 764392.8, dated Oct. 27, 2016, in 7 pages (THOR.097EP). |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/051553, dated Feb. 8, 2017, in 15 pages. |
Schmitz-Rode et al., “Axial flow catheter pump for circulatory support,” Biomedizinische Technik, 2002, Band 47, Erganzungsband 1, Teil 1, pp. 142-143. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/061446, dated Apr. 17, 2018, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20210187272 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62421930 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15812471 | Nov 2017 | US |
Child | 17178923 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13801833 | Mar 2013 | US |
Child | 15812471 | US |