The present invention pertains to embolic protection filtering devices. More particularly, the present invention pertains to sheaths for delivering and retrieving embolic protection filtering devices.
Heart and vascular disease are major problems in the United States and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in lack of oxygenation of the heart, which has significant consequences since the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic, or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the restriction of the vessel is opened. During an atherectomy procedure, the stenotic lesion may be mechanically cut away from the blood vessel wall using an atherectomy catheter.
During angioplasty and atherectomy procedures, embolic debris can be separated from the wall of the blood vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural and pulmonary vasculature. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices, termed embolic protection devices, have been developed to filter out this debris.
The present invention pertains to sheaths that may be used for delivering and/or retrieving embolic protection filtering devices. In at least some embodiments, the sheath may include a proximal portion and a distal portion. The distal portion may be expandable and may include a bulbous member. Additionally, the sheath may include structural support in a number of different forms. These and other structural features and characteristics are described in more detail below.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
Frequently, intravascular procedures may involve the placement of a stent 18 in blood vessel 14 to open or expand a stenosis 20. It may be desirable for the clinician to include the use of filter 12 when performing the intravascular stent placement procedure. Accordingly, it may be necessary for the clinician to retrieve filter 12 after stent 18 has be placed. Because it may be desirable for a retrieval device to have the greatest possible outside diameter in order to allow the filter to be disposed therein, and because this large outside diameter may cause the retrieval device to contact stent 18, it is possible that the retrieval device may disrupt the position of stent 18. Disrupting the position of stent 18 may undermine its function and efficacy. Therefore, it may be desirable to use retrieval devices that are configured so as to be less likely to disrupt stent 18.
Retrieval may often include disposing a portion of the filter in the retrieval device. However, because the filter may be enlarged due to the amount of debris it is holding, the filter itself may catch on stent 18. Therefore, it may be desirable for a retrieval device to be adapted and configured to fully encapsulate the filter, thereby eliminating the possibility that the filter may disrupt stent 18.
Sheath 10 is an example of one such device. In at least some embodiments, sheath 10 may include a proximal region 22, a distal region 24, and one or more lumens (not shown in
Distal region 24 may be adapted for having filter 12 disposed therein, for example in a lumen extending through distal region 24. In at least some embodiments, distal region 24 is appropriately sized and configure for having filter 12 fully encapsulated therein during retrieval of filter 12. Additionally, because a substantial amount of debris may accumulate and become contained within filter 12, distal region 24 of sheath 10 may be subjected to a relatively large force (e.g., due to the size or weight of filter 12) when attempting to encapsulate or otherwise dispose filter 12 within sheath 10. This force, if not properly absorbed, could lead to the distal end of a retrieval device being expanded, collapsed, or even prolapsed, which may increase the likelihood that the retrieval device may contact and disrupt stent 18. Therefore, it may be desirable for distal region 24 of sheath 10 to be structurally reinforced, so as to more easily absorb these forces produced when encapsulating or otherwise disposing filter 12 within sheath 10. In at least some embodiments, bulbous region 26 may have an increased thickness, which may add additional structural support to distal region 24 of sheath 10.
In at least some embodiments, sheath 10 may include an expandable or enlargeable distal mouth 31 disposed adjacent distal region 24. The expandability of mouth 31 may be at least partially due to the material composition of sheath 10. For example, the materials used to construct sheath 10 (e.g., adjacent mouth 31) may be substantially elastic and/or include elastomeric polymers. Some examples of suitable elastic materials may include elastomeric polyamides, polyether-ester elastomers, and the like as well as other materials including those listed herein. Mouth 31 may be configured to reversibly enlarge in order for sheath 10 to engulf or otherwise accommodate filter 12 therein. For example,
Fibers 138/140/142/144 can be made of any suitable materials including metals, metal alloys, polymers, or the like, or combinations or mixtures thereof. Some examples of suitable metals and metal alloys include stainless steel, such as 304v stainless steel; nickel-titanium alloy, such as nitinol, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or the like; or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example a polyether-ester elastomer such as ARNITEL® available from DSM Engineering Plastics), polyester (for example a polyester elastomer such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), silicones, polyethylene, Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysulfone, nylon, perfluoro(propyl vinyl ether) (PFA), other suitable materials, or mixtures, combinations, or copolymers thereof. In some embodiments, fibers 138/140/142/144 can include a liquid crystal polymer (LCP) blended with other polymers to enhance torqueability.
Fibers 138/140/142/144, or portions thereof, may also be doped with or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of sheath 10 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, plastic material loaded with a radiopaque filler, and the like.
In some embodiments, braided layer 134 may include combinations of fibers that include differing materials. For example, first fiber 138 may be a platinum wire and the remaining fibers 140/142/144 may have a polymeric composition. This configuration of fibers may be desirable for a number of reasons. For example, including a platinum first fiber 138 allows sheath 110 to be visualized using conventional fluoroscopy techniques. Additionally, the choice of polymer used for remaining fibers 140/142/144 can be selected according to the characteristics desired for sheath 110. For example, relatively flexible polymers may be used in embodiments where flexibility is desired.
The shape, thickness, and other characteristics of fibers 138/140/142/144 may also vary. For example, any single or combination of fibers 138/140/142/144 may include a generally round wire, a generally flat ribbon, other shapes, and the like. Similarly, the diameter or thickness of fibers 138/140/142/144 may vary. Some embodiments include sets of fibers having the same diameter while other embodiments include sets of fibers having differing diameters. Additionally, some generally thick fibers (e.g., which may include metal and radiopaque fibers such as fiber 138) can be replaced by a set of micro-cables 138′ as illustrated in
Manufacturing of sheath 110 may include convention braiding techniques and equipment. In some embodiments, multiple fibers (e.g., fibers 138/140/142/144) may be added to a braiding bobbin, which may create a “multi-ended” braid. For example, fibers 138/140/142/144 can be added to the braiding bobbin and braided onto an appropriate substrate. The appropriate substrate may vary and could include a mandrel, mold, tube similar to inner member 132, and the like. It should be noted that some embodiments, like one of the examples described above where first fiber 138 is a platinum wire, it may still be appropriate to add all of the fibers 138/140/142/144 to a single bobbin, for example, by simply adding a platinum wire (e.g., fiber 138) to a bobbin having multiple polymeric fibers (e.g., fibers 140/142/144) to create a multi-ended braid that includes fibers of differing materials.
Another example sheath 210 is illustrated in
Another example sheath 310 is illustrated in
In some embodiments, proximal region 322 may comprise a typical retrieval sheath. According to this embodiment, lumen 345 may be in fluid communication with the lumen of the typical retrieval device. Distal region 324 may be a structure that is attachable to these typical retrieval devices in order to provide sheath 310 with desirable characteristics such as those described herein. This feature allows distal region 324 to be similar to an “adaptor” or other refining device that can be used to provide existing devices with at least some of the desirable features attributable to distal region 324.
The material composition of distal region 324 (as well as any of the componets of sheath 310) may including any of the materials listed herein including metals, metal-alloys, and polymers. For example, distal region 324 may be comprised of silicone of essentially any appropriate durometer. According to this embodiment, distal region 324 may be adhesively bonded to proximal region 322 using appropriate adhesives or tie layers. Alternatively, distal region 324 may be comprised of injection-moldable materials such as DURAFLEX™, linear block copolymer such as KRATON™, SUPERFLEX™, and the like.
Distal region 324 may also include any of the other structural elements described herein, for example, to provide structural support to distal region 324. For example, distal region 324 may include one or more braided layers, a coil, a frame, a stent-like structure, and the like. Distal region 324 may also include bulbous region 326. In some embodiments, bulbous region 326 may provide distal region 324 with additional structural support by increasing the wall thickness of distal region 324. Additionally, bulbous region 326 or regions adjacent it may have a conical or funnel shaped inside diameter surface 346, which may make it easier for filter 12 to pass into distal region 324. Additionally, distal region 324 and/or bulbous region 326 may include a rounded or generally atraumatic distal end 348.
Additional structural strength may also include varying the wall thickness of distal region 324. For example, it can be seen in
In some embodiments, the inside diameter of distal region 324 may gradually taper in the proximal direction. This may correspond with increased wall thickness for distal region 324 in the proximal direction. This feature may help provide increase compressive strength adjacent some of the proximal positions of distal region 324, including positions where filter 12 may eventually become disposed. Additionally, because the taper may be gradual, weak points that might otherwise have been created by pronounced steps in inside diameter can be reduced.
Bulbous member 326 may be defined or otherwise formed in a number of ways. For example, bulbous member 326 may be defined during the molding of distal region 324. Alternatively, bulbous member 326 may be defined by molding or otherwise coupling it to distal region. For example, bulbous member 326 may be defined by adhesively bonding or insert molding it to distal region 324.
Regardless of how bulbous member 326 is defined, it may vary in its shape and configuration.
In some embodiments, other portions of the sheath may include ridges and voids. For example,
Another example sheath 1310 is shown in
Sheath 1310 may also include a proximal member 1358. In some embodiments, proximal member 1358 may be configured to attach to a retrieval device, similar to what is shown in
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.