The present invention relates to a ceramic sheathed element glow plug for diesel engines having an ionic current sensor. German Published Patent Application No. 34 28 371 describes ceramic sheathed element glow plugs having a ceramic heating element. The ceramic heating element has an electrode made of a metallic material which is used to determine the electric conductivity of the ionized gas present in the combustion chamber of the internal combustion engine. The wall of the combustion chamber functions as the second electrode.
In addition, there are also conventional sheathed element glow plugs having a housing in which is situated a rod-shaped heating element in a concentric bore. The heating element here is composed of at least one insulation layer and a first feeder layer and a second feeder layer, the first and second feeder layers being connected by a web at the tip of the heating element on the combustion chamber end. The insulation layer is made of an electrically insulating ceramic material, and the first and second feeder layers as well as the web are made of an electrically conducting ceramic material.
A ceramic sheathed element glow plug according to the present invention having the ionic current sensor may include a very simple design and may be inexpensive to manufacture. Furthermore, the expansion coefficients of the individual layers may be matched to one another.
Advantageous refinements of and improvements on the sheathed element glow plug having the ionic current sensor may be possible. According to one example embodiment of the sheathed element glow plug, the feeder layers may function as an electrode for detecting an ionic current. Electric terminals of the feeder layers may be provided on the end of the heating element remote from the combustion chamber so that operation of the sheathed element glow plug as an ionic current sensor may become possible. Additionally an ionic current detection electrode may be provided which runs inside the insulation layer or is applied to the insulation layer because in this manner glow operation and ionic current measurement may occur simultaneously. The ionic current detection electrode may be arranged laterally on the surface on the combustion chamber-side end of the heating element to thus ensure a sufficient distance between the feeder layer and the ionic current detection electrode. The ionic current detection electrode may continue to the end of the heating element on the combustion chamber side, because in this manner it may be possible to detect an ionic current in an area of the combustion chamber which may be important for the combustion processes occurring in the combustion chamber. Furthermore, a ceramic composite structure (described below) may be used for the various layers of the heating element whose conductivity and expansion coefficient may be adaptable. This may likewise be true of the precursor composite materials described below.
The sheathed element glow plug having the ionic current sensor may be operated according to different methods. Ionic current detection may occur, for example, in a different time window than the glow phase, because this may permit accurate ionic current detection. The ionic current detection may occur during the glow phase of the heating element, because it may be desirable to also detect the combustion process in the startup phase of the internal combustion engine.
In this example embodiment the sheathed element glow plug may be operated so that the sheathed element glow plug is first operated in the heating mode in starting up the internal combustion engine. This means that during the glow phase, a positive voltage is applied to first terminal 15 and a negative voltage is applied to second terminal 17 or vice versa, so that a current flows across first feeder layer 17, web 8 and second feeder layer 9. The electric resistance along this path raises the temperature of the heating element and the combustion chamber into which the end of the sheathed element glow plug on the combustion chamber side protrudes, and thus the plug is heated. Heating element 5 is glazed on its end remote from the combustion chamber beyond the combustion chamber edge of housing 3, so that there is no electric contact between first or second feeder layers and housing 3.
After the end of the glow phase, the same high voltage potential is applied to first terminal 15 and second terminal 17 so that no more current flows in the feeder layers, but first feeder layer 7 and second feeder layer 9 function as the ionic current measurement electrode. If the combustion chamber is ionized by the presence of ions, an ionic current may flow from the ionic current detection electrode, i.e., from first feeder layer 7 and second feeder layer 9, to the wall of the combustion chamber which is at ground. Thus in this example embodiment, first feeder layer 7 and second feeder layer 9 function as an ionic current detection electrode.
In this example embodiment, an ionic current detection electrode 33, running from the end of heating element 5 remote from the combustion chamber to tip 6 of heating element 5 near the combustion chamber, is provided in insulation layer 11. Ionic current detection electrode 33 runs laterally on the surface of heating element 5 at tip 6 on the combustion chamber side. Ionic current detection electrode 33 is made of an electrically conducting ceramic material or a metallic material. The end of the ionic current detection electrode which is remote from the combustion chamber is connected to a second terminal 17 which runs through terminal stud 19 to the end of the sheathed element glow plug remote from the combustion chamber.
In this example embodiment, the sheathed element glow plug may be operated in glow operation and as an ionic current detection device simultaneously. To do so, the voltage required for glow operation is applied to first feeder layer 7 via terminal stud 19 and first terminal 15, and the voltage required for ionic current detection is applied to ionic current detection electrode 33 via second terminal 17.
An ionic current detection electrode 33 again passes through the insulation Layer, but this electrode extends to the outermost combustion chamber-side tip 13 of heating element S. In contrast with the example embodiment illustrated in
In another example embodiment, the terminals remote from the combustion chamber on first feeder layer 7 and on ionic current detection electrode 33 may also be configured without spring element 35 by analogy with FIG. 2.
On the basis of
The example embodiment illustrated on the basis of
In another variant of the example embodiments illustrated on the basis of
As mentioned above, the materials of first feeder layer 7, web 8, second feeder layer 9, insulation layer 11 and ionic current detection electrode 33 may be made of a ceramic material. This may ensure that the thermal expansion coefficients of the materials may hardly differ at all, thus virtually guaranteeing the long-term stability of heating element 5. The material of first feeder layer 7, web 8 and second feeder layer 9 is selected so that the resistance of these layers is less than the resistance of insulation layer 11. Likewise, the resistance of first ionic current detection electrode 33 is less than the resistance of insulation layer 11.
In an example embodiment, first feeder layer 7, web 8 and second feeder layer 9, insulation layer 11 and first electrode 33 are made of ceramic composite structures containing at least two of the compounds Al2O3, MoSi2, Si3N4 and Y2O3. These composite structures are obtainable by a sintering operation in one or two steps. The specific resistance of the layers may be determined, for example, on the basis of the MoSi2 content and/or the core size of MoSi2, the MoSi2 content of first feeder layer 7, web 8 and second feeder layer 9 as well as first ionic current detection electrode 33 may be higher than the MoSi2 content of insulation layer 11.
In example another embodiment, first feeder layer 7, web 8 and second feeder layer 9, insulation layer 11, and first ionic current detection electrode 33 are made of a precursor ceramic having different filler contents. The matrix of this material includes polysiloxanes, polysilsesquioxanes, polysilanes or polysilazahes which may be doped with boron, nitrogen or aluminum and are produced by pyrolysis. At least one of the compounds Al2O3, MoSi2, SiO2, and SiC forms the filler for the individual layers. By analogy with the composite structure described above, the MoSi2 content and/or the grain size of MoSi2 may determine the resistance of the layers. The MoSi2 content of first feeder layer 7, web 8 and second feeder layer 9 as well as first ionic current detection electrode 33 may be higher than the MoSi2 content of insulation layer 11. In the example embodiments described above, the compositions of first feeder layer 7, web 8, second feeder layer 9, insulation layer 11 and first ionic current detection electrode 33 are selected so that their thermal expansion coefficients and the shrinkage that may occur during the sintering and pyrolysis process are the same, so that no cracks develop in heating element 5.
Number | Date | Country | Kind |
---|---|---|---|
100 31 893 | Jun 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE01/01470 | 4/14/2001 | WO | 00 | 7/17/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/02933 | 1/10/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6483079 | Sato et al. | Nov 2002 | B2 |
Number | Date | Country |
---|---|---|
34 28 377 | Feb 1986 | DE |
0 353 196 | Jan 1990 | EP |
0 834 652 | Apr 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20030029855 A1 | Feb 2003 | US |