The present invention relates generally to surgical methods and medical devices. More particularly, it concerns methods and apparatuses useful in navigating the subarachnoid space, including the spinal and the intracranial subarachnoid spaces. It also concerns medical devices, such as sheaths, that are suited for attachment to the skin.
During the 20th century, brain neurosurgery has advanced via the introduction of microsurgical techniques, the development of new tools such as aneurysm clips, and the description of new operative approaches. Surgeons have developed elegant mechanisms to remove parts of the bones making up the skull (craniotomy) and operate on structures deep within the brain while attempting to minimize complications relating to the approach. [See, for example, Fries et. al., 1996.] Furthermore, the surgical approach to the intracranial and spinal subarachnoid space has historically consisted of the skin incision, dissection to either the cranium or spinal bony covering, removal of some bone, and dissection through the meninges to gain access to the neurological structures. While imaging modalities became integrated into diagnostic evaluations, only at the end of the last century were significant attempts made to integrate computed tomography, angiography, and most recently magnetic resonance (MR) scanning into the actual surgical procedures.
Unfortunately, craniotomy has limited the applicability of such imaging modalities because the surgeon cannot simultaneously stand at the patient's head and conveniently operate on the brain via craniotomy, maintain sterility, and scan the brain using a large scanning apparatus that requires the patient to be held within it. There are theoretical limits to the ability to conveniently perform such surgery using currently-available imaging devices due to a conflict between the means of acquiring images and the means of operating on the brain. Furthermore, in conventional neurosurgery, while the brain surface is readily available underlying a craniotomy, the approach to deeper structures is progressively more invasive in terms of retraction injury (i.e., the brain is often retracted after the craniotomy to facilitate access to different areas in and around the brain) or even the need to remove brain tissue to gain access.
During the last 20 years, the development of endovascular neurosurgery has resulted in the creation of specialized devices for application within arteries. These devices include not only catheters and guidewires, but also embolic materials that can be introduced via catheters, thereby enabling the enhancement of some procedures that are performed via craniotomy following embolization, and thereby eliminating the need for craniotomy altogether in other cases. However, these techniques have heretofore been limited to the intravascular space (i.e., the space within blood vessels) because that was seen as the only available route of access for catheterization of the intracranial contents.
Extravascular access to locations within the head for the purpose of facilitating the kinds of procedures heretofore performed following a craniotomy has not been reported to the inventor's knowledge. The subarachnoid space, which is a compartment that contains the body of the spinal cord and cerebrospinal fluid (CSF)—a fluid that fills and surrounds the ventricles (cavities) of the brain and the spinal cord, and acts as a lubricant and a mechanical barrier against shock—is one such extravascular route.
Some authors have described experimental data using endoscopy in the subarachnoid space. An endoscope is a tube with a light and a lens on the end that can be used to view various regions within a body. One group from Sweden utilized a relatively large (4 millimeter) bronchoscope (a type of endoscope) to travel the length of the subarachnoid space to eventually visualize the contents of the posterior fossa, as well as gain access to the ventricular system. [Stefanov et. al., 1996.] These studies were performed in cadavers and involved dissection to the lumbar space and introduction of the bronchoscope from that location, using only endoscopic guidance. Applications in the clinical setting were not advocated.
A group from Japan utilized a smaller endoscope in cadavers to access only the subarachnoid space around the spinal cord and posterior fossa. [Eguchi et. al., 1999.] No attempt was made to access either the ventricles or the supratentorial cisterns. The endoscopes used also had no directional capability. Uchiyama et. al. (1998) used a “myeloscope” (a type of endoscope) that was sufficiently small (0.5-2 mm) to safely access the spinal subarachnoid space without injuring the spinal cord in a group of patients. Neither of these articles discusses catheterizing the subarachnoid space, whether for the purpose of facilitating intracranial access or otherwise. Furthermore, neither group attempted navigation of the subarachnoid space using catheters and guidewires or other means to more precisely control device placement or other instrument insertion.
Amar et. al. (2001) recently described a technique of catheterizing the spinal epidural space for the introduction of medication. However, that technique did not involve catheterization of the subarachnoid space, nor was it performed for the purpose of facilitating intracranial access. Other techniques of delivering anesthetics and other therapeutic agents to the subarachnoid space using catheters are described in U.S. Pat. Nos. 5,085,631 and 5,470,318.
The techniques disclosed in these patents do not involve advancing the catheter toward the head of the patient after the catheter is introduced into the subarachnoid space. Nor do they involve steps that facilitate intracranial access. Neither patent discloses using catheters for introducing other medical devices through the passageways in those catheters for the purpose of facilitating intracranial access.
The inventor is aware of other techniques for delivering medicaments to the subarachnoid space using a catheter. However, of these, none involved the use of catheters for the purpose of facilitating intracranial access. [See, for example, Delhaas, 1996.]
In addition, medical devices (e.g., sheaths) that are used with the foregoing techniques to facilitate the introduction of endoscopes and catheters into the subarachnoid space are not well-suited for use with imaging modalities such as MR scanning. Generally, once a sheath is in place within a patient, other devices such as endoscopes and catheters can be introduced into the patient through the passageway within the sheath. In other words, once the sheath is in place, one end of the sheath is located beneath the patient's skin while the other end sticks out of the patient's skin, thereby allowing the surgeon to introduce, for example, an endoscope or catheter into the patient through the sheath's passageway. The manipulations that cause these introductions to occur are carried out at the end of the sheath that is positioned outside of the patient. However, a traditional sheath is sized and configured such that it does not extend very far outside of a patient once it has been inserted into a desired location. As a result, the manipulations of other medical devices introduced through the sheath cannot feasibly take place while the patient is positioned within an MR scanner (which mainly consists of large magnets) because there simply is not enough of the sheath sticking out of the patient to work with. Furthermore, this same shortcoming would impede a surgeon's ability to use one or more robotic devices to assist in or completely perform these manipulations.
Based on the foregoing, new methods of facilitating intracranial access that do not involve the shortcomings of craniotomy, and that can be monitored or guided via various imaging modalities are needed. New methods of facilitating intracranial access via devices introduced through non-endoscopic devices are also needed. Furthermore, new medical devices useful for establishing access to areas such as the subarachnoid space, and that can be used with robotic instruments or while the patient is positioned within an MR scanner are needed.
The present invention addresses the shortcomings of the prior art by providing methods of navigating the subarachnoid space that does not involve the removal of bone. In addition, the present invention provides a medical device that is suited for attachment to the skin, and which enhances the flexibility afforded to the operator carrying out the present methods.
In one respect, the invention is a method of navigating a spinal subarachnoid space in a living being. The method includes percutaneously introducing a device into the spinal subarachnoid space at an entry location. The device has a first passageway sized to slidably receive, and work with, at least a guidewire. The method also includes advancing the device within the spinal subarachnoid space at least more than 10 centimeters from the entry location.
In one embodiment, method also includes removing a portion of the brain of the living being. The living being contains cerebrospinal fluid, and in another embodiment, the method also includes flushing at least some cerebrospinal fluid in order to remove blood from that cerebrospinal fluid. In another embodiment, the method also includes inducing hypothermia in at least some brain tissue. In another embodiment, the method also includes accessing at least one ventricle located within the head with a second device introduced through the first passageway of the device. In another embodiment, the method also includes draining at least one ventricle located within the head after accessing the ventricle.
In another embodiment, the device includes a second passageway sized to slidably receive, and work with, at least a guidewire. In another embodiment, the method also includes introducing an endoscope through the first passageway of the device. In another embodiment, the device includes a first sub-elongated member that has the first passageway, and a second sub-elongated member coupled to the first sub-elongated member, and the second sub-elongated member has the second passageway. In another embodiment, the device also includes a braiding material wrapped around the first and second sub-elongated members.
In another embodiment, a cross section taken along the device has a shape that is non-circular. In another embodiment, the method also includes altering the temperature of at least some brain tissue using a pumping apparatus. In another embodiment, the method also includes delivering medication to an intracranial subarachnoid space. In another embodiment, the device includes a wall to which an electroencephalography electrode is attached. In another embodiment, the device includes a wall to which a sensor useful for monitoring a biochemical property is attached, and the method also includes monitoring pH, glucose concentration, oxygen tension, carbon dioxide concentration, or sodium concentration using the sensor. In another embodiment, the device includes a wall to which a thermal sensor useful for monitoring temperature is attached, and the method also includes monitoring temperature using the thermal sensor.
In another embodiment, the method also includes introducing an apparatus through the first passageway of the device; and applying electric current, heat, or cryothermal stimulation to a tissue within the living being using the apparatus. In another embodiment, the method also includes introducing a radioactive pellet through the first passageway of the device; and placing the radioactive pellet within the living being in order to irradiate a tumor. In another embodiment, the method also includes introducing a detector through the first passageway of the device; and placing the detector within the living being. In another embodiment, the method also includes monitoring a physiologic or biochemical property using the detector.
In another embodiment, the method also includes introducing a penetration apparatus through the first passageway of the device, the penetration apparatus including an outer sleeve element and an inner puncture element, the outer sleeve element and the inner puncture element being slidably coupled together; and puncturing the pia mater using the penetration apparatus. In another embodiment, the method also includes creating a lesion in the brain of the living being. In another embodiment, the advancing step of the method is achieved via a robotic device. In another embodiment, the method also includes monitoring the position of the device for a period of time using magnetic resonance imaging, fluoroscopy, endoscopy, computed tomography, thermal imaging, sonography, or any combination of these. In another embodiment, the method also includes introducing an electrode through the first passageway of the device; and placing the electrode within the living being. In another embodiment, the electrode is an electroencephalography electrode and the placing includes placing the electroencephalography electrode proximate brain tissue. In another embodiment, the method also includes introducing material through the first passageway of the device; and placing the material proximate a cranial nerve to assist in treating a neurologic condition. In another embodiment, the method also includes introducing genetic material through the first passageway of the device; and placing the genetic material within the living being to assist in treating a neurologic condition.
In another respect, the invention is a method of navigating a spinal subarachnoid space in a living being. The method includes percutaneously introducing a device into the spinal subarachnoid space. The device has a first passageway sized to slidably receive, and work with, at least a guidewire. The method also includes advancing the device within the spinal subarachnoid space to facilitate intracranial access with a second device introduced through the first passageway.
In one embodiment, the method also includes removing a portion of the brain of the living being. The living being contains cerebrospinal fluid, and in another embodiment, the method also includes flushing at least some cerebrospinal fluid in order to remove blood from that cerebrospinal fluid. In another embodiment, the method also includes inducing hypothermia in at least some brain tissue. In another embodiment, the method also includes accessing at least one ventricle located within the head with a second device introduced through the first passageway of the device. In another embodiment, the device includes a second passageway sized to slidably receive, and work with, at least a guidewire. In another embodiment, the device includes a first sub-elongated member that has the first passageway, and a second sub-elongated member coupled to the first sub-elongated member, and the second sub-elongated member has the second passageway. In another embodiment, the device includes a wall to which a sensor useful for monitoring a biochemical property is attached, and the method also includes monitoring pH, glucose concentration, oxygen tension, carbon dioxide concentration, or sodium concentration using the sensor.
In another embodiment, the method also includes introducing an apparatus through the first passageway of the device; and applying electric current, heat, or cryothermal stimulation to a tissue within the living being using the apparatus. In another embodiment, the method also includes introducing a radioactive pellet through the first passageway of the device; and placing the radioactive pellet within the living being in order to irradiate a tumor. In another embodiment, the method also includes introducing a detector through the first passageway of the device; and placing the detector within the living being. In another embodiment, the method also includes monitoring a physiologic or biochemical property using the detector. In another embodiment, the advancing step of the method is achieved via a robotic device. In another embodiment, the method also includes monitoring the position of the device for a period of time using magnetic resonance imaging, fluoroscopy, endoscopy, computed tomography, thermal imaging, sonography, or any combination of these.
In yet another embodiment, the method also includes introducing an electrode through the first passageway of the device; and placing the electrode within the living being. In another embodiment, the electrode is an electroencephalography electrode and the placing includes placing the electroencephalography electrode proximate brain tissue.
In another respect, the invention is a method of navigating a spinal subarachnoid space within a living being. The method includes introducing a non-endoscopic device into the spinal subarachnoid space. The non-endoscopic device has a passageway. The method also includes advancing the non-endoscopic device within the spinal subarachnoid space and toward the head of the living being to facilitate intracranial access with a second device introduced through the passageway; and monitoring the position of the non-endoscopic device for a period of time using an imaging modality other than an endoscope. In this document (including the claims), a “non-endoscopic device” is one that is not an endoscope. In this document (including the claims), an “endoscope” is a device to which a lens has been directly attached (usually at a tip of the device). A device such as one of the catheters or sheaths discussed below that has a passageway through which an endoscope is passed and with which an endoscope is used does not become an endoscope as a result.
In another respect, the invention is a medical device suited for attachment to a patient's skin. The medical device includes a member that has two ends and a first passageway sized to slidably receive, and work with, at least a guidewire; and a skin-attachment apparatus that is configured to be coupled to the member at a coupling location that is between the two ends. The skin-attachment apparatus has a flexible skin-attachment flap configured for attachment to the skin. The medical device also includes a valve apparatus that is configured to be coupled to one end of the member. The valve apparatus and the skin-attachment apparatus define a flexible member portion between them when both are coupled to the member.
In one embodiment, the coupling location is variable during a procedure. In one embodiment, the medical device also includes a second skin-attachment apparatus that is configured to be coupled to the member at a second coupling location that is spaced apart from the coupling location. In one embodiment, the flexible member portion has a length of at least 2 centimeters. In one embodiment, a cross section taken along the member has a shape that is non-circular. In one embodiment, the member has a second passageway. In one embodiment, the member includes a first sub-elongated member that has the first passageway, and the medical device also includes a second sub-elongated member coupled to the first sub-elongated member, and the second sub-elongated member has the second passageway.
In another embodiment, the member is bendable, and is configured to retain a shape after being bent. In another embodiment, the valve apparatus is configured for use with a robotic device. In another embodiment, the member has a length, and a stiffness that varies along the length. In another embodiment, the two ends of the member are first and second ends; the valve apparatus is configured to be coupled to the first end; the member has a distal portion near the second end; and the distal portion includes a wall that has an electroencephalography electrode therein. In another embodiment, the two ends of the member are first and second ends; the valve apparatus is configured to be coupled to the first end; the member has a distal portion near the second end; and the distal portion includes a wall that has a sensor useful for monitoring a biochemical property. In another embodiment, the biochemical property is pH, glucose concentration, oxygen tension, carbon dioxide concentration, or sodium concentration. In another embodiment, the two ends of the member are first and second ends; the valve apparatus is configured to be coupled to the first end; the member has a distal portion near the second end; and the distal portion includes a wall that has a thermal sensor useful for monitoring temperature.
In yet another embodiment, the medical device also includes a flush line coupled to the valve apparatus. In another embodiment, the flexible skin-attachment flap includes padding material. In another embodiment, the valve apparatus includes a hub configured for attachment to other medical devices.
In another respect, the invention is a sheath suited for attachment to a patient's skin. The sheath includes a member that has a first end, a second end, and a first passageway sized to slidably receive, and work with, at least a guidewire. The sheath also has a skin-attachment apparatus that is configured to be coupled to the non-rigid member at a coupling location that is between the first and second ends, but at least 2 centimeters from the first end. The skin-attachment apparatus has a flexible, padded skin-attachment flap configured for attachment to the skin. The medical device also includes a valve apparatus that is configured to be coupled to the first end of the member. The valve apparatus and the skin-attachment apparatus define a flexible member portion between them when both are coupled to the member. The coupling location may be varied either prior to or after attachment of the sheath to the skin.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present methods and apparatuses. The present methods and apparatuses may be better understood by reference to one or more of these drawings in combination with the description of illustrative embodiments presented herein. These drawings illustrate by way of example and not limitation, and they use like references to indicate similar elements.
As a preliminary matter, it should be noted that in this document (including the claims), the terms “comprise” (and any form thereof, such as “comprises” and “comprising”), “have” (and any form thereof, such as “has” and “having”), and “include” (and any form thereof, such as “includes” and “including”) are open-ended transitional terms. Thus, a thing that “comprises,” “has,” or “includes” one or more elements possesses those one or more elements, but is not limited to only possessing those one or more elements. For example, a device “having a first passageway sized to slidably receive, and work with, at least a guidewire” is a device that has, but is not limited to only having, the described first passageway. In other words, the device possesses the first passageway, but is not excluded from possessing additional passageways or other elements that are not listed.
The present methods involve navigating the subarachnoid space, including the spinal subarachnoid space. In some embodiments, the intracranial subarachnoid space is also navigated. The present methods facilitate intracranial access via the subarachnoid space. For example, using the present methods, a first device may be introduced into the subarachnoid space to facilitate intracranial access with another device introduced through one or more passageways located within the first device. In this document (including the claims), “intracranial access” means access to the space within the head that is above the foramen magnum. In addition, intracranial subarachnoid space is the subarachnoid space located above the foramen magnum, and the spinal subarachnoid space is the subarachnoid space located below the foramen magnum, though the spaces are contiguous without a physical barrier between them. In this document (including the claims), a step that involves moving one device “to facilitate intracranial access” with another device introduced through the first device is a step that is taken with the intention of making intracranial access with the second device possible.
The present minimally-invasive methods offer new routes of access for both brain and spine surgery that involve no craniotomy or bone removal. Advantageously, the present methods can be performed with the operator standing remote from the patient's head. The route of access is a standard puncture of the spinal subarachnoid space, such as in the lumbar spine. Then, techniques conventionally used in intravascular procedures are applied in order to navigate the subarachnoid space, including the intracranial subarachnoid space in some cases. The present methods should have fewer problems with exposure of the brain to infectious agents and offer an opportunity for navigation of many structures without brain refraction or removal to achieve access.
Turning to the figures,
As shown in
Prior to percutaneously introducing sheath 24 into subarachnoid space 14 at entry location 50, an operator may direct a guidewire through skin 22 and dural membrane 10 and into subarachnoid space 14, and more specifically the spinal subarachnoid space, in order to facilitate the introduction of sheath 24. This guidewire introduction may be achieved, for example, by directing a needle through the skin and the dural membrane between any of the lumbar vertebrae. The spaces between adjacent vertebrae are known as interspaces, such as the L1-2 interspace labeled as element 46.
While
After introducing a guidewire, such as guidewire 44, into the subarachnoid space, the operator may dilate the tract created by the guidewire using one or more medical devices suited for that purpose, such as dilators. This may be done after removing the needle. Alternatively, a suitably structured sheath may be introduced over the guidewire for the same dilation purpose and also to facilitate intracranial access with a second device introduced through the passageway of the sheath. If an operator uses a dilator, a medical device such as sheath 24 may be passed over the dilator, and the dilator can then be removed through the passageway of the sheath.
Following sheath placement, techniques applied during procedures such as angiography may be used to navigate the subarachnoid space, including the spinal and intracranial subarachnoid spaces. In this regard, another guidewire may be introduced through the sheath and into the subarachnoid space with a tip that is directed either anteriorly or posteriorly in relation to the spinal cord. A medical device such as a catheter may then be introduced over the guidewire to facilitate intracranial access using a device introduced through the passageway of the catheter.
The navigation described above, including one or more of the steps for introducing the various medical devices into the subarachnoid space and advancing those devices within the subarachnoid space and, sometimes, toward the head of the patient, may be achieved in whole or in part using a robotic device. Furthermore, the representative applications of the present methods discussed below may be carried out in whole or in part using a robotic device. Potential advantages of using a robotic device in this fashion pertain, for example, to navigating through neural tissue. The pial membrane surrounding the brain forms a barrier to penetration, and once the membrane is punctured, there is essentially no resistance to navigation offered by cerebral tissue. Using a robotic device to assist with navigation of the cerebral tissue may be beneficial given the great extent to which the movements of a catheter or guidewire can be controlled using a robotic device and viewed using an imaging modality.
Turning next to
Flexible member portion 40 affords the operator many advantages because it gives him/her the ability to introduce devices through the one or more passageways of sheath 24 at a location that is remote (i.e., spaced apart) from both the location at which the sheath is attached to the skin and the location at which the sheath enters the skin. For example, some patient motion during the operation can be absorbed by flexible member portion 40. Also, because the length of flexible member portion may be adjusted, the operator can position him or herself remotely from the patient when performing the various steps of the present methods and while permitting the position of various instruments to be monitored via imaging modalities such as magnetic resonance imaging (MRI). Thus, having a suitable length, flexible member portion 40 will allow extension of elongated member 26 from the area of the patient that will be inaccessible during placement of the patient in a MR scanner.
The length of the present flexible member portions, and the distance between one of the present skin-attachment apparatuses and the first end of one of the present elongated members (which distance will differ from the length of the present flexible member portion based on the length of the valve apparatus in question) can be any distance suited to the particular operation, including 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 38.5, 39, 39.5, 40, or more centimeters. Additional suitable distances include 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, and 70 centimeters, or even more if the particular application warrants further removal of the operating physician from the insertion point in the skin. Furthermore, the length of flexible member portion 40 can be adjusted to suit the use of sheath 24 with a robotic device.
Moving to
In this document (including the claims), advancing a device a distance from an entry location means that the device is advanced a distance consistent with any of D1, D2, and D3. Thus, advancing a device at least greater than 10 centimeters from an entry location means that the device is advanced at least more than 10 centimeters (e.g., any distance that is greater than 10 centimeters, including 10.1 centimeters, etc.) according to the distance along the path taken by the device (i.e., D1), that the device is advanced at least more than 10 centimeters according to the straight-line distance from the entry location (i.e., D2), or that the device is advanced at least more than 10 centimeters according to the absolute distance in the direction of advancement from the entry location (i.e., D3). Suitable distances that the devices disclosed herein that have passageways sized to slidably receive, and operate with, at least a guidewire (such as sheath 24 and catheter 42) may be advanced within the spinal subarachnoid space from the entry location of the device consistent with the present methods include 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 38.5, 39, 39.5, 40, or more centimeters. Furthermore, distances that the devices disclosed herein that have passageways sized to slidably receive, and operate with, at least a guidewire (such as sheath 24 and catheter 42) may be advanced within the spinal subarachnoid space consistent with the present methods and that are greater than at least 10 centimeters from the entry location of the device include 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 38.5, 39, 39.5, 40, or more centimeters. Further still and consistent with the present methods, the devices disclosed herein that have passageways sized to slidably receive, and operate with, at least a guidewire (such as sheath 24 and catheter 42) may be advanced within the spinal subarachnoid space distances from the entry locations of the devices greater than at least 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 38.5, 39, 39.5, 40, or more centimeters.
Although only one skin-attachment apparatus 32 is illustrated in the present figures, certain operations may benefit from the use of two or more such apparatuses. Accordingly, two, three, four, five, or more skin-attachment apparatuses configured to be coupled to elongated member 26 may be coupled to and used with elongated member 26. Each of these skin-attachment apparatuses may be coupled to elongated member 26 at coupling locations spaced apart from the ends of elongated member 26. One combination of skin-attachment apparatuses includes permanently attaching one to elongated member 26, and coupling another skin-attachment apparatus in between the permanently-attached skin-attachment apparatus and a valve apparatus coupled to the first end of the elongated member such that the coupling location of the second skin-attachment apparatus is variable. Furthermore, each skin-attachment apparatus may have a flexible skin-attachment flap that is configured for attachment to the skin of a patient. In this regard, while openings 56 are shown in flexible skin-attachment flap 34 for attaching the flexible skin-attachment flap to the skin of a patient, it will be understood that any suitable manner of configuring the flap for attachment to the skin may be used, including the use of a temperature sensitive adhesive, a repositionable adhesive, clips (such as small alligator clips), tape, glue, and the like.
Although not shown in
Turning to
Turning next to
Furthermore, as shown in
Moving ahead to
Currently, catheters are available that have compound wall constructions that impart a variable stiffness along the length of the catheter. Catheters are also available with reinforcing material braided into the wall of the catheter to give the catheter greater strength and resistance to kinking. The present devices such as catheter 42 and sheath 24 may have lengths and stiffnesses that vary along those lengths, and they may have walls that include braided materials therein. Also, the present devices such as catheter 42 and sheath 24 may be bendable, and may retain a shape after being bent.
As those of skill in the art will understand, the size of a given passageway of one of the present devices (such as sheath 24 or catheter 42) may be sized appropriately for a given application. Diameters for a passageway within a given device (such as sheath 24, and specifically elongated member 26, and catheter 42) may, for example, be chosen from sizes that include 0.008, 0.009, 0.010, 0.011, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019, 0.020, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.027, 0.028, 0.029, 0.030, 0.031, 0.032, 0.033, 0.034, 0.035, 0.036, 0.037, 0.038, 0.039, 0.040, 0.041, 0.042, 0.043, 0.044, 0.045, 0.046, 0.047, 0.048, 0.049, 0.050, 0.051, 0.052, 0.053, 0.054, 0.055, 0.056, 0.057, 0.058, 0.059, 0.060, 0.061, 0.062, 0.063, 0.064, 0.065, 0.066, 0.067, 0.068, 0.069, 0.070, 0.071, 0.072, 0.073, 0.074, 0.075, 0.076, 0.077, 0.078, 0.079, 0.080, 0.081, 0.082, 0.083, 0.084, 0.085, 0.086, 0.087, 0.088, 0.089, 0.090, 0.091, 0.092, 0.093, 0.094, 0.095, 0.096, 0.097, 0.098, 0.099, and 0.10 inches. These same dimensions may, for example, serve as the size of either the widest or most narrow dimension of a passageway of one of the present devices (such as sheath 24, and specifically elongated member 26, and catheter 42) that has a non-circular shape. The outer diameter of the present devices (such as sheath 24, and specifically elongated member 26, and catheter 42) may, for example, be chosen from sizes that include 1, 2, 3, or 4 millimeters. These same dimensions may, for example, serve as the size of either the widest or most narrow dimension of the outer surface of one of the present devices (such as sheath 24, and specifically elongated member 26, and catheter 42) that has a non-circular shape.
As explained with reference to
The braiding pattern used may affect the MR-visibility of the resulting catheter or sheath. The subarachnoid space is filled with CSF that is relatively static and is of very high signal intensity on T2-weighted images. While a material that presents a signal void on MR could not be seen on either TI- or T2-weighted fluoroscopy in the vascular space (flowing blood has a signal void in either of these settings), a material that has a signal void is very conspicuous on T2-weighted imaging in the subarachnoid space. Platinum is a metal that is appropriate for enhancing the MR-visibility of the present devices. Additionally, other metals having low signal intensity may be appropriate. For example, there is a non-ferromagnetic form of stainless steel that is used in some needles for biopsy under MR guidance (Cook, Inc.). Also, there is an alloy of nickel and titanium (nitinol) that is used for guidewires and has been used in catheter braiding in the past (Target Therapeutics) that may have desirable signal characteristics. These materials may be used as markers on the present devices, and for braiding material 130. In addition, stainless steel, which is currently used in some catheter braiding by Cordis, may be used as braiding material 130. Kevlar may also be used for braiding material 130.
Medical devices such as sheaths and catheters that have the configurations discussed in
Furthermore, medical devices such as sheaths and catheters that have the configurations discussed in
One membrane that may be punctured by operating penetration apparatus 120 is the pia mater—a membrane surrounding the brain that is fragile in some locations and tough in others. Distal tip 130 of inner puncture element may be configured to be sharp enough to penetrate the pia mater at any location therealong without exerting a degree of force or manipulation that results in either tearing of brain tissue or distortion of brain tissue prior to penetration. In operation, a device (such as sheath 24 or catheter 42) may be percutaneously introduced into the spinal subarachnoid space at an entry location, the device having a first passageway sized to slidably receive, and operate with, at least a guidewire; the device may be advanced within the subarachnoid space at least more than 10 centimeters from the entry location, or to facilitate intracranial access with a second device introduced through the first passageway; penetration apparatus 120 may be advanced through the first passageway of the device, and a membrane, such as the pia mater, may be punctured using penetration apparatus 120. More specifically, penetration apparatus 120 may be advanced along a guidewire, or it may simply be advanced through the first passageway, to the edge of the membrane; inner puncture element 126 may be further advanced until it punctures the membrane; inner puncture element may then be retracted into outer sleeve element 122 and penetration apparatus 120 advanced through the plane of the punctured membrane, or outer sleeve element 122 may be advanced over inner puncture element 126 through the plane of the punctured membrane. Outer sleeve element 122 may then act as a guidewire for a device such as catheter 42 as the same advances into the brain substance.
The material that may be used for the inner and outer elements of penetration apparatus 120 may, for example, be metallic or polymeric, such as plastic. Suitable materials for both outer sleeve element 122 and inner puncture element 126 include a nickel-titanium alloy, such as nitinol, that is treated to enhance its radiopacity. Alternatively, stainless steel may be used for either element, which can be plated with gold or platinum to enhance radiographic visibility. If an imaging modality such as MRI or radiographic visualization (e.g., fluoroscopy), that imaging modality used may impact the materials used in the construction of the elements of penetration apparatus 120.
Another embodiment of penetration apparatus 120 that is not shown in
The present methods will offer many advantages over conventional methods of surgically accessing the intracranial and spinal subarachnoid space, which have historically consisted of the skin incision, dissection to either the cranium or spinal bony covering, removal of some bone, and dissection through the meninges to gain access to the neurological structures. For example, the present methods will avoid a craniotomy and a brain retraction, which are typical for conventional approaches to brain surgery; the present methods will enable operators to surgically approach the brain from a remote location (such as from a lumbar puncture, for instance); they will make it possible to perform such surgery in a MR scanner without interference from magnets in the surgical field; they will allow access to areas of the brain that are difficult to reach from a craniotomy approach; and the present methods may enable some types of procedures (subarachnoid space lavage, etc.) not easily performed via craniotomy.
Representative Applications of the Present Methods
The following representative applications may be performed using devices such as catheter 42 and sheath 24, and further using any embodiment of those devices depicted in
Furthermore, it will be understood that for a given application, it may be feasible to introduce one device into the subarachnoid space at one entry location, and later, or simultaneously, introduce another device into the subarachnoid space at a different entry location, thereafter using the devices together to achieve a therapeutic result. For example, in altering the temperature of at least some brain tissue, discussed below in greater detail, it may be possible to introduce a fluid through the passageway of one device introduced into the subarachnoid space (such as the spinal subarachnoid space) at one entry location, and withdrawing fluid through the passageway of another device introduced into the subarachnoid space (such as the spinal subarachnoid space) at another entry location. As another example, in flushing CSF as described below, it may be beneficial to use two passageways of a sheath or catheter having multiple passageways to deliver fluid to a target area. Further, this may be achieved using a sheath or catheter that includes 2 sub-elongated members whose distal portions are spaced apart from each other, as in a “Y” shape. Fluid may be withdrawn through the passageway of a device introduced at a different entry location, or fluid may be withdrawn through a third passageway within the sole sheath or catheter.
Flushing of Cerebrospinal Fluid to Help Alleviate Vasospasm
The present methods can be used in the treatment of subarachnoid hemorrhage. A major complication of subarachnoid hemorrhage is vasospasm, which is related to the presence of blood in the subarachnoid space surrounding cerebral blood vessels. One treatment that is used neurosurgically to help alleviate vasospasm entails the lavage of the cerebrospinal fluid within the subarachnoid space with both saline and with hemolytic agents to remove the blood. Using the present methods, it may be feasible from a percutaneous spinal approach to catheterize the subarachnoid space in the region of a hemorrhage or clot and perform lavage from that approach without craniotomy. For example, after introducing a device (such as sheath 24 or catheter 42 discussed in relation to
Modifying the Temperature of at Least Some Brain Tissue
The present methods can be used to modify the temperature of at least some brain tissue. Such a modification may be achieved by flushing selected brain tissue with a fluid that may be temperature-controlled, such as saline, which fluid is introduced through a device introduced into the spinal subarachnoid space. For example, after introducing a device (such as sheath 24 or catheter 42 discussed in relation to
One example of modifying the temperature of at least some brain tissue is inducing hypothermia in at least some brain tissue. The potential beneficial effects of hypothermia in protection against injury are well known, both in the public domain and in the medical literature. The most commonly encountered instance in the uncontrolled environment is probably in near drowning. In these situations, survival is enhanced in cold water because the metabolism is slowed and hypoxia is better tolerated.
In neurosurgical practice, hypothermia is used therapeutically to prolong cerebral vascular occlusion times that can be tolerated during aneurysm surgery. However, most traditional neurosurgical techniques are unable to create isolated cerebral hypothermia. Thus, whole-body hypothermia is used, often in association with circulatory arrest, with all the attendant risks.
A pumping apparatus may be utilized in the process of modifying the temperature of at least some brain tissue to assist in maintaining pressures and temperatures within the subarachnoid space. This pumping apparatus may be coupled to the device through which the fluid is introduced. This pumping apparatus may include 2 independently-controlled, calibrated pumps that may be coupled to a hub adapter coupled to, for example, the device through which the fluid is introduced. To control the intracranial fluid volume, the volume of fluid pumped into the subarachnoid space may be matched by an equal volume that is withdrawn from the subarachnoid space. This pumping apparatus may be configured to achieve this balance with flow monitors and flow controls, even in circumstances in which the outflow may be achieved without introducing negative pressure at the outflow site. Further, in this regard, this pumping apparatus may be configured to operate with pressure monitors and pressure controls that enable both the measurement of intracranial pressures and the manipulation of the same. In addition, this pumping apparatus may be configured to operate with temperature monitors and temperature controls that enable both the measurement of intracranial temperatures and the manipulation of the same. In this regard, the pumping apparatus may be configured to operate with temperature monitors and temperature controls that enable both the measurement of infused fluid temperatures and the manipulation of the same.
Flow rates as low as a fraction of a cubic centimeter per second or as high as multiple cubic centimeters per second may be achieved with this pumping apparatus, though pressures exceeding 200 millimeters mercury are considered unlikely since this would exceed intracranial pressures likely to be compatible with life. Infusate (i.e., infused liquid) temperatures varying between 32 and 110 degrees Fahrenheit may be achieved using this pumping apparatus.
Monitoring Physiologic and Biochemical Properties
The present devices that have passageways sized to slidably receive, and work with, at least a guidewire (including those illustrated as sheath 24 and catheter 42 in
Detector 94 may be an electroencephalography electrode useful for monitoring electrical activity (i.e., an attribute). Detector 94 may be a sensor useful for monitoring a biochemical property (i.e., an attribute) such as pH, glucose concentration, oxygen tension, carbon dioxide concentration, or sodium concentration. Thus, one of those biochemical properties may be monitored using the sensor. Detector 94 may be a thermal sensor useful for monitoring temperature (i.e., another attribute). Thus, temperature, such as of a fluid or a temperature, may be monitored using the thermal sensor. Detector 94 may also be useful for monitoring neurotransmitter concentration (i.e., an attribute). Thus, neurotransmitter concentration may be monitored using the detector. In this document (including the claims), an element such as a detector, which may take the form of a sensor, that is “useful for monitoring” something need only play a role in the monitoring, and need not completely perform all the steps necessary to achieve the monitoring. Also, in this document (including the claims), monitoring an attribute “using” a sensor or a detector means that the sensor or detectors is involved, or plays a role, in the monitoring, but need not be the only device used to achieve the monitoring
The same types of monitoring that may be achieved using a detector attached to a device such as sheath 24 or catheter 42 (which is illustrated in the form of device 90 in
In addition to the embodiments illustrated in
Placement of Electroencephalography Electrodes
As discussed above, detectors that are electroencephalography (EEG) electrodes may be introduced into the subarachnoid space in both the spinal and intracranial regions, and in brain tissue using the present methods. By way of explanation, in epilepsy treatment, it is often difficult to localize the site of a seizure focus. One technique used in particularly difficult cases involves placement of EEG electrodes either directly on the surface of the brain (electrocorticography) or within the brain substance (depth electrode implantation). Since EEG monitoring involves detection of extremely weak electrical signals that are emitted from brain cells, elimination of interference from scalp muscles, elimination of signal resistance from the skull bone, and placement of electrodes closer to the brain tissue emitting those signals is one way to increase the sensitivity and specificity of localization and detection.
While increasing the sensitivity and specificity of epileptiform activity detection, such techniques as electrocorticography and depth electrode implantation have traditionally been invasive, requiring either burr holes in the skull for depth electrode placement or craniotomy for cortical array placement in electrocorticography. If bilateral monitoring is desired, bilateral burr holes or craniotomies have been necessary.
However, using the present methods, which involve percutaneous access to the subarachnoid space, usually in the lumbar region, followed by placement of devices such as sheath 24 and catheter 42, EEG electrode placement may be achieved, for example, in the cerebral subarachnoid space after entry via the foramen magnum. EEG electrodes may be placed on the surface of the brain or within brain tissue using the present methods.
In instances in which EEG electrodes take the form of detectors 112 discussed above with respect to
In instances in which the EEG electrodes take the form of detectors 94 discussed above with respect to, for example,
Spinal and Cerebral Stimulation
There are situations in medicine and in research where it is desirable to deliver an electrical impulse to the brain and spinal cord. Using the present methods, an electrode suited to such stimulation may be placed, thereby enabling the application of electric current, heat, or cryothermal stimulation of a patient's tissue. Such electrodes may be configured the same way as detectors 94 and 112 discussed above—that is, they may be attached to, or placed within, the wall of a device such as sheath 24 or catheter 42, or they may not be associated with a device, such as can be achieved using detector 112. Furthermore, a transmission device such as a wire may be coupled to the electrode (and either attached to a device like sheath 24 or catheter 42, or not attached in that fashion, depending on the application) to introduce the stimulating signal to the electrode. However, the stimulating signal may also be introduced to the electrode via a wireless transmission. Furthermore, in certain embodiments in which a transmission device such as a wire is used, the wire may be linked to a station useful in delivering the stimulating signal, and that is located outside of the patient's body or implanted within the patient, such as a station that is implanted in the subcutaneous space of the patient. Such stations currently exist in cardiac pacemakers and in transcutaneous neural stimulation devices used for pain control.
Implantation of Radioactive Pellets, or Beads, for Treatment of Tumors
The present methods can be used to implant radioactive pellets, or beads, into patients, in areas such as the brain, in order to irradiate a tumor. While the use of radioactive pellets for tumor irradiation is known, the placement of such pellets using the present methods is novel. As with all the other applications that may be achieved using the present methods, the placement of radioactive pellets may be monitored under direct MR visualization. Further, a series of pellets may be implanted into patients using a smaller introduction apparatus than is currently utilized for placing the pellets using conventional techniques.
Ablation of Brain Lesions
In functional neurosurgery, it is sometimes desirable to create lesions in the brain. This is seen in chronic pain syndromes, Parkinson's disease, and other settings. Current techniques for creation of these lesions involve CT- or MR-guided stereotaxis, in which a cryothermal or thermal ablation device is introduced to the desired location in the brain via a burr hole in the skull that the neurosurgeon drills in the operating room.
Using the present methods, a device (such as sheath 24 or catheter 42) or a guidewire (such as guidewire 44) may be introduced into the subarachnoid space (for example, the spinal subarachnoid space) and advanced as described above with respect to
Using one or more imaging modalities to monitor the therapy resulting from the ablation may make it feasible to create a lesion, observe partial success, and enlarge the lesion without repositioning the introducing device (such as catheter 42), or with minimal manipulation of the introducing device. Furthermore, tissue ablation achieved using the present methods may be performed in conjunction with conventional surgery such that lesions are created either before or after conventional resections, either to enhance the resection preoperatively or to improve margins of incompletely-resected lesions, or to provide an alternate approach to large-scale resections in diseases with multiple brain lesions such as metastatic disease from different forms of malignancy.
Accessing One or More Ventricles
In medicine, the ventricular system is frequently catheterized, both temporarily (ventriculostomy) and permanently (shunting). This occurs to combat hydrocephalus, to monitor pressure and, less often, for introduction of various medications or withdrawal of cerebrospinal fluid. However, the current neurosurgical approach requires placement of a burr hole in the skull bone and insertion of the catheter through the brain tissue—usually the frontal or parietal lobe—to access the ventricles.
Using the present methods of percutaneous subarachnoid navigation, the lateral ventricles, the 3.sup.rd ventricle, and the 4.sup.th ventricle may be accessed via medical devices such as catheter 42 or guidewire 44. Accordingly, using the present methods, at least one ventricle located within the head may be accessed. Imaging modalities may be used as described above (and with all the movements of medical devices described herein) to monitor the position of such devices as they approach and enter a ventricle.
Furthermore, using the present methods, at least one ventricle located within the head may be drained. For example, in applications involving shunting, there will be a need for placement of a shunt component in the peritoneal cavity or venous return to the heart. This may be accomplished using the present methods. Specifically, after percutaneously introducing a device (such as sheath 24 or catheter 42) into the spinal subarachnoid space at an entry location, the device having a first passageway sized to slidably receive, and operate with, at least a guidewire, and advancing the device within the subarachnoid space at least more than 10 centimeters from the entry location, or to facilitate intracranial access with a second device introduced through the first passageway, one or more ventricles located within the head may be accessed and/or drained. The draining may be achieved using a commercially available mechanism that spans a ventricle and a drainage location, and that acts as a one-way valve that allows that CSF and other fluid to flow in one direction—away from the ventricle or ventricles in question.
Brain Biopsies
The brain is a very soft and gelatinous tissue once the membrane surrounding it (pia) is penetrated. Neurosurgeons resecting brain often use a tubular apparatus attached to suction to aspirate brain tissue rather than cutting it with a scalpel or scissors. That quality of brain tissue should lend it to biopsy by way of aspiration.
Using the present methods, a device may be introduced through the passageway of a device such as catheter 42 or sheath 24 that may be used to remove a part of the brain. For example, the device that may be used to remove a part of the brain may be a traditional stereotactic device that is configured for introduction through the passageway of a device such as catheter 42 or sheath 24.
Alternatively, a device such as catheter 42 or sheath 24 may be coupled to suction by was of a syringe or other mechanism, and used to retrieve a sample of tissue located at the tip of the catheter or sheath. Another feature of biopsies is that often, multiple samplings of tissue are required to retrieve diagnostic material. Hence, it may be necessary to reposition the catheter or sheath for more than one biopsy sample. Once the device has been positioned the first time, it is desirable to avoid having to repeat the navigation that was performed to achieve initial positioning. Thus, using an embodiment of the sheath or catheter that has two passageways, an operator may be able to use the sheath or catheter in the manner discussed above with respect to EEG electrode placement. That is, the sheath or catheter may be positioned proximate (i.e., near) a target area, suction may be applied to an open passageway to retrieve a portion of the brain. The sheath or catheter may then be removed along the guidewire used to initially facilitate placement (leaving the guidewire in position), and if the tissue sample is inadequate, the catheter or sheath can be repositioned over the guidewire and another biopsy sample can be obtained in a similar manner. Without the retention of the guidewire via the one of the two passageways, it would be necessary to reposition from scratch, repeating whatever risk or difficulties were encountered during the first catheter or sheath placement.
Treating Neurologic Conditions
Using the present methods, genetic material may be introduced through the passageway of a device such as catheter 42 or sheath 24 and placed within a patient suffering from a neurologic condition in order to assist in treating that neurologic condition. Such genetic material may include human stem cells.
Furthermore, neurologic conditions arising from pressure on cranial nerves may also be treated using the present methods. For example, the present methods may be used to perform microvascular decompressions. In such an application, a device (such as sheath 24 or catheter 42) may be percutaneously introduced into the spinal subarachnoid space at an entry location, the device having a first passageway sized to slidably receive, and operate with, at least a guidewire; the device may be advanced within the subarachnoid space at least more than 10 centimeters from the entry location, or to facilitate intracranial access with a second device introduced through the first passageway; and a second device (which may be described as “material”) may be introduced through the first passageway and placed between a vascular loop and one or more cranial nerves (which may take the form of placing the device proximate a cranial nerve) in order to relieve compression of the cranial nerve by the vascular loop. Furthermore, a second device may be introduced through the first passageway and used to cut a nerve, such as a cranial nerve.
Vascular Coagulation or Cauterization
Using the present methods, vessels may be coagulated at the time of surgery, either because they are observed to bleed or in order to prevent bleeding. Specifically, a device (such as sheath 24 or catheter 42) may be percutaneously introduced into the spinal subarachnoid space at an entry location, the device having a first passageway sized to slidably receive, and operate with, at least a guidewire; the device may be advanced within the subarachnoid space at least more than 10 centimeters from the entry location, or to facilitate intracranial access with a second device introduced through the first passageway; and an apparatus that is or that is like a “two-point” or “Bovie” apparatus (which are used in conventional surgery or neurosurgery) configured for introduction through the first passageway may be introduced through the first passageway and used to coagulate a vessel.
In conventional surgery, a metallic electrode is applied to a bleeding vessel and a current is applied through the electrode that heats the tissue such that the vessel is cauterized. That cauterization is achieved with the “two-point” apparatus via approximation of the points of a forceps, thus completing the current loop. However, monopolar cautery apparatuses also exist, and may be configured for introduction through the first passageway of a device introduced as described above.
Thus an apparatus having a cauterization element and a transmission device (such as a wire, an insulated wire, a wire loop, or an insulated wire loop) connected to the cauterization element that is configured for attachment to a current-inducing apparatus may be used with the present methods to apply heat to a vessel, thereby cauterizing or coagulating it. Alternatively, the apparatus may include a set of forceps positioned at the end of a guidewire as the cauterization element, which forceps would function to open and close and act similarly to the forceps on conventional “two-point” devices. The apparatus should be configured for introduction through the first passageway (as discussed above), or it should be combined with one of the present devices, such as catheter 42 or sheath 24, in the manner that detector 94 discussed above may be attached to device 90. The transmission device may be attached to one of the present devices (including a guidewire) in the same manner discussed above with respect to wire 96. The transmission device that is part of this apparatus may be a wire loop that flares slightly after it exits the passageway through which it is introduced.
Hence, using the present methods, a device (such as sheath 24 or catheter 42) may be percutaneously introduced into the spinal subarachnoid space at an entry location, the device having a first passageway sized to slidably receive, and operate with, at least a guidewire; the device may be advanced within the subarachnoid space at least more than 10 centimeters from the entry location, or to facilitate intracranial access with a second device introduced through the first passageway; and an the aforementioned apparatus configured for introduction through the first passageway may be introduced through the first passageway, current may be introduced to the cauterization element, the cauterization element applied to a selected vessel tissue, and coagulation achieved.
Cadaver Studies
Materials and Methods
Two recently deceased, unembalmed male human cadavers were placed in prone positions. Using fluoroscopic guidance, lumbar punctures were performed in each subject at both the L3-4 and L4-5 interspaces using a standard, single-wall puncture angiography needle. A 0.038 inch guidewire was then introduced and directed superiorly. Subsequently, a 5 French (F) angiographic dilator was advanced into the subarachnoid space over the guidewire to dilate the tract, and a 5 F arterial sheath was placed with its tip directed superiorly. In each cadaver, one sheath was subsequently used for catheterization posterior to the spinal cord and the other was used for catheterization anterior to the spinal cord.
Following sheath placement, angiographic techniques were applied to the subarachnoid space. Specifically, under fluoroscopic guidance a hydrophilic-coated angle-tipped guidewire (Radifocus Glidewire, Terumo, Inc., Tokyo, Japan, distributed by Meditech Boston Scientific Corp., Watertown, Mass.) was advanced with its tip directed either anteriorly or posteriorly under operator control. Care was taken to maintain a midline position whenever possible, but it could not always be maintained. The advancement was performed with inflation of the subarachnoid space via saline infusion. The pressure of the infusion was easily controlled via management of the height of the flush bag above the patient's spine, though the pressures of the infusion and of the subarachnoid space were not specifically monitored.
After entering the cranial space, manipulations with the catheters were undertaken to explore areas for catheterization. Following catheterization manipulations, the catheters were left in place for subsequent dissection. The sheaths were cut at the skin with the introducers and microcatheters in place using standard wire cutters. The stumps of the systems were then oversewn and the cadavers were embalmed.
Following embalming, one cadaver was examined for evidence of spinal cord injury from the catheterization process. Laminectomy was performed throughout the cervical and thoracic spine and extended inferiorly to the point of catheter entry. The opened dura was photographed with the catheters in place. The spinal cord was removed and photographed with the ventral catheter in place. Brain dissections were performed to confirm catheter locations and to examine for unanticipated injury to brain tissue, with specific attention to the optic chiasm region in the case of catheters which passed through that region.
Results
In each case, the guidewire advanced relatively easily through the thoracic and cervical spine. In some cases, the catheter was advanced readily without guidewire placement. Once at the foramen magnum, attempts were made with the posterior catheters to enter the 4th ventricle. Observation was made during these attempts that navigation of the retrocerebellar space in the posterior fossa occurred relatively easily, on some occasions circum-navigating the posterior fossa to a position anterior to the pons. Also, advancement superiorly behind the cerebellum to the level of the tentorium occurred relatively easily. In each cadaver, a tough membrane was encountered at the base of the skull when midline catheterization was attempted. Whereas deflection of the guidewire for lateral or posterior catheterization occurred easily, the soft tip of the guidewire was inadequate for penetration of the membrane in the midline and the stiff end of the guidewire was used to penetrate the membrane. Subsequently, catheterization superiorly proceeded easily. In Cadaver 1, the posterior fossa catheter ultimately traversed the cerebellum during an attempt at fluoroscopically-directed 4th ventricular catheterization. In Cadaver 2, the 4th ventricle was successfully catheterized and injected with contrast, as described below.
Attempts were made without complete success to determine the location of the 4th ventricle using only fluoroscopy. Contrast injections resulted in intracranial spilling of contrast without outline of cerebellar structures. Blind passes with the catheter to where the 4th ventricle should be resulted in successful catheterization of the 4th ventricle in one of the two subjects. This was confirmed with contrast injection showing filling of the 4th ventricle, retrograde flow into the aqueduct of Sylvius, flow into the 3rd ventricle, and subsequent flow into the frontal horns of the lateral ventricles bilaterally via the foramina of Munro.
In both subjects, catheterization of the subarachnoid space anterior to the pons occurred easily. Catheters as large as 5 F were successfully advanced to this position. At the upper pontine level, a tough membrane was encountered in both subjects that would not permit higher catheterization using standard techniques. In both cases, the guidewire was deflected repeatedly from that location, regardless of multiple catheter repositioning attempts. Therefore, the guidewire was reversed and the stiff end of the guidewire was used to “punch” through this membrane. The membrane was believed to be the membrane of Lilequist, though this could not be confirmed with certainty subsequent to the dissection. Once it was crossed, catheterization to the suprasellar cistern with the standard end of the microguidewire (Radifocus™ Guide Wire M, Terumo, Inc., Tokyo, Japan, Tapered Glidewire Gold™ 0.018-0.013 inches, distributed by Target Therapeutics Boston Scientific Corp., Fremont, Calif.) proceeded smoothly. A Transit® 18 microcatheter (Cordis® Endovascular Systems, Johnson & Johnson, Miami Lakes, Fla.) was used in most cases, using in some cases a Tracker™ 38 catheter (Target Therapeutics® Boston Scientific Corp., Fremont, Calif.) as a guide catheter. In Cadaver 1, a single 4 F introducer catheter was used that came from a company bought by Medtronic (MIS, Inc., Sunnyvale, Calif.) that is now no longer commercially available. With that catheter, the introducer catheter was advanced to the suprasellar cistern.
Once in the suprasellar cistern in Cadaver 1, advancement of the catheter was relatively easy, and catheterization of the sylvian fissure was observed and confirmed when contrast was injected and seen to flow dependently within the fissure. The catheter was left in that position and the subject was embalmed.
In Cadaver 2, catheterization of the suprasellar cistern was followed by experimentation regarding the degree of control had over placement. First, the frontal fossa on the side opposite from the previously catheterized middle fossa was catheterized. The catheter was advanced along the orbital roof and observed to curve superiorly, with its tip ultimately anterior to the frontal lobe and deep to the frontal sinus. The catheter was then withdrawn to the location on the orbital roof and this was confirmed with contrast injection. Next, that catheter was repositioned and the contralateral floor of the middle cranial fossa was catheterized and confirmed with contrast injection.
The posterior fossa catheter was then advanced and seen to be in the 4th ventricle, as described above. After contrast injection, some opacification of the 3rd ventricle was seen. This opacification was used as a “road map” for the anteriorly placed catheter and attempts were made to catheterize the 3rd ventricle directly through the region of the interpeduncular cistern (with fluoroscopy, the exact position was not identified). The pial lining of the undersurface of the brain resisted perforation with the soft end of the guidewire and the ventricle was elevated by the attempt but not punctured. Ultimately, however, the 3rd ventricle was entered successfully, as evidenced by drainage of the retained contrast. This was subsequently confirmed directly by contrast injection through the 3rd ventricular catheter. This subject was then embalmed.
Cadaver 1 was the only subject in which the spinal component of the catheterization was examined anatomically. Following full spinal laminectomy from the upper cervical area to the area of puncture in the lumbar spine, the posterior dura was incised and reflected. The dorsal introducer catheter was seen lying superficial to the spinal cord without apparent spinal cord violation or laceration. This was then removed and the spinal cord was resected by cutting the nerve roots bilaterally and lifting it out, retaining the ventral catheter with the spinal cord. It was observed to traverse anterolaterally, weaving anterior and posterior to different nerve roots. Again, there was no apparent spinal cord violation or laceration.
In Cadaver 1, anatomic exposure of the brain was preceded by latex impregnation of the vasculature following decapitation, with arteries impregnated with red latex and veins impregnated with blue latex. Dissection was performed via extensive bone drilling of the left frontotemporal area to reproduce an expanded surgical approach to the sylvian fissure and the region of the basilar apex. Exposure using an operating microscope revealed the microcatheter anterior to the midbrain, between the clivus and midbrain. It was followed inferiorly as it migrated to the right side of the basis pontis. There was no apparent violation of cerebral structures by the catheter during its passage anterior to the brain stem. The catheter traversed laterally in a sulcus in the left sylvian fissure. Removal of the temporal lobe revealed the catheter in the sylvian fissure, near branches of the middle cerebral artery. The posterior fossa catheter was observed to enter the cerebellum and was not pursued via further detailed dissection.
Dissection of Cadaver 2 revealed the 3rd ventricular catheter to be in place as suspected from the radiographs, located within the 3rd ventricle. The catheter was seen passing anterior to the brain stem along the clivus without brain stem penetration. Also, the basilar artery was seen separate from the catheter. The point of penetration of the 3rd ventricle was essentially vertical in the midline from the interpeduncular cistern. The 4th ventricular catheter was under some tension and sprang laterally as the cerebellum was split in the midline and its exact location could not be reconstructed. However, based on the images during contrast injection, it appeared to lie in the cerebellar tissue in the roof of the 4th ventricle.
All of the present methods and devices disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While this invention has been described in terms of specific embodiments, the described embodiments are not exhaustive, and it will be apparent to those of skill in the art that other variations exist. For example, the flexible member portion that extends away from a skin-attachment apparatus (and thus away from a patient) should enhance robotic applications in angiography similarly to their enhancement of robotic access of the subarachnoid space. Also, the flexible member portion enables angiographic applications in which the sheath is placed in a femoral artery and the patient is rolled into a supine position for intraspinal or other surgical access posteriorly while retaining anterior arterial access for angiography via the flexible member portion, which can be placed out from under the patient.
The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
This application is a continuation of U.S. patent application Ser. No. 13/413,368, filed on Mar. 6, 2012 and issued as U.S. Pat. No. 8,961,452 on Feb. 24, 2015, which is a divisional of U.S. patent application Ser. No. 12/872,575, filed on Aug. 31, 2010 and issued as U.S. Pat. No. 8,131,353 on Mar. 6, 2012, which is a divisional of U.S. patent application Ser. No. 12/323,204, filed on Nov. 25, 2008 and issued as U.S. Pat. No. 7,787,954 on Aug. 31, 2010, which is a continuation of U.S. patent application Ser. No. 09/905,670, filed on Jul. 13, 2001 and issued as U.S. Pat. No. 7,455,666 on Nov. 25, 2008. The entireties of all the foregoing applications are being incorporated by reference herein and made a part of the present specification.
Number | Name | Date | Kind |
---|---|---|---|
3782388 | Page | Jan 1974 | A |
3918019 | Nunn | Nov 1975 | A |
4274423 | Mizuno et al. | Jun 1981 | A |
4402694 | Ash et al. | Sep 1983 | A |
4481497 | Kurtz et al. | Nov 1984 | A |
4483345 | Miwa | Nov 1984 | A |
4487206 | Aagard | Nov 1984 | A |
4593703 | Cosman | Jun 1986 | A |
4619643 | Bai | Oct 1986 | A |
4660568 | Alderson | Apr 1987 | A |
4682978 | Martin | Jul 1987 | A |
4691708 | Kane | Sep 1987 | A |
4711246 | Alderson | Dec 1987 | A |
4722348 | Ligtenberg et al. | Feb 1988 | A |
4726374 | Bales | Feb 1988 | A |
4787396 | Pidorenko | Nov 1988 | A |
4808157 | Coombs | Feb 1989 | A |
4809536 | Nishiguchi | Mar 1989 | A |
4815471 | Stobie | Mar 1989 | A |
4815472 | Wise et al. | Mar 1989 | A |
4825684 | Nishiguchi et al. | May 1989 | A |
4825876 | Beard | May 1989 | A |
4838878 | Kalt et al. | Jun 1989 | A |
4858615 | Meinema | Aug 1989 | A |
4873989 | Einzig | Oct 1989 | A |
4881410 | Wise et al. | Nov 1989 | A |
4901735 | Von Berg | Feb 1990 | A |
4904237 | Janese | Feb 1990 | A |
4908693 | Nishiguchi | Mar 1990 | A |
4911163 | Fina | Mar 1990 | A |
4950232 | Ruzicka et al. | Aug 1990 | A |
4973305 | Goltzer | Nov 1990 | A |
4991590 | Shi | Feb 1991 | A |
5018529 | Tenerz et al. | May 1991 | A |
5050297 | Metzger | Sep 1991 | A |
5085631 | Leighton | Feb 1992 | A |
5086777 | Hishii | Feb 1992 | A |
5098393 | Amplatz et al. | Mar 1992 | A |
5108369 | Ganguly et al. | Apr 1992 | A |
5113868 | Wise et al. | May 1992 | A |
5125058 | Tenerz et al. | Jun 1992 | A |
5133358 | Gustafson et al. | Jul 1992 | A |
5160323 | Andrew | Nov 1992 | A |
5178153 | Einzig | Jan 1993 | A |
5203340 | Gustafson et al. | Apr 1993 | A |
5207103 | Wise et al. | May 1993 | A |
5218965 | Ring | Jun 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5297437 | Schneider | Mar 1994 | A |
5297564 | Love | Mar 1994 | A |
5318533 | Adams et al. | Jun 1994 | A |
5354271 | Voda | Oct 1994 | A |
5377524 | Wise et al. | Jan 1995 | A |
5378241 | Haindl | Jan 1995 | A |
5385152 | Abele et al. | Jan 1995 | A |
5397305 | Kawula et al. | Mar 1995 | A |
5423760 | Yoon | Jun 1995 | A |
5423849 | Engelson et al. | Jun 1995 | A |
5425273 | Chevalier | Jun 1995 | A |
5437637 | Lieber et al. | Aug 1995 | A |
5445625 | Voda | Aug 1995 | A |
5449343 | Samson et al. | Sep 1995 | A |
5450853 | Hastings et al. | Sep 1995 | A |
5470318 | Giffith, III et al. | Nov 1995 | A |
5478331 | Heflin et al. | Dec 1995 | A |
5487739 | Aebisher et al. | Jan 1996 | A |
5520647 | Solar | May 1996 | A |
5542936 | Razi | Aug 1996 | A |
5569205 | Hart | Oct 1996 | A |
5613950 | Yoon | Mar 1997 | A |
5617870 | Hastings et al. | Apr 1997 | A |
5630802 | Moellmann et al. | May 1997 | A |
5701905 | Esch | Dec 1997 | A |
5702373 | Samson | Dec 1997 | A |
5704915 | Melsky et al. | Jan 1998 | A |
5715827 | Corl et al. | Feb 1998 | A |
5731284 | Williams | Mar 1998 | A |
5738650 | Gregg | Apr 1998 | A |
5800374 | Beyersdorf | Sep 1998 | A |
5810869 | Kaplan et al. | Sep 1998 | A |
5814016 | Valley et al. | Sep 1998 | A |
5830188 | Abouleish | Nov 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5837234 | Gentile | Nov 1998 | A |
5846226 | Urmey | Dec 1998 | A |
5891112 | Samson | Apr 1999 | A |
5902248 | Millar et al. | May 1999 | A |
5908385 | Chechelski et al. | Jun 1999 | A |
5919221 | Miesel | Jul 1999 | A |
5928155 | Eggers et al. | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5951520 | Burzynski et al. | Sep 1999 | A |
5954050 | Christopher | Sep 1999 | A |
5980480 | Rubenstein et al. | Nov 1999 | A |
5980484 | Ressemann et al. | Nov 1999 | A |
5984879 | Wallace et al. | Nov 1999 | A |
5987995 | Sawatari et al. | Nov 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6004295 | Langer et al. | Dec 1999 | A |
6004310 | Bardsley et al. | Dec 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6026316 | Kucharczyk et al. | Feb 2000 | A |
6036654 | Quinn et al. | Mar 2000 | A |
6042559 | Dobak, III | Mar 2000 | A |
6044845 | Lewis | Apr 2000 | A |
6061587 | Kucharczyk et al. | May 2000 | A |
6080140 | Swaminathan et al. | Jun 2000 | A |
6090072 | Kratoska et al. | Jul 2000 | A |
6106476 | Corl et al. | Aug 2000 | A |
6120457 | Coombes et al. | Sep 2000 | A |
6120499 | Dickens et al. | Sep 2000 | A |
6129713 | Mangosong et al. | Oct 2000 | A |
6146354 | Beil | Nov 2000 | A |
6162170 | Foley et al. | Dec 2000 | A |
6171252 | Roberts | Jan 2001 | B1 |
6183443 | Kratoska et al. | Feb 2001 | B1 |
6190349 | Ash et al. | Feb 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6213995 | Steen et al. | Apr 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6245026 | Campbell | Jun 2001 | B1 |
6248083 | Smith et al. | Jun 2001 | B1 |
6251079 | Gambale et al. | Jun 2001 | B1 |
6251115 | Williams et al. | Jun 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6295990 | Lewis et al. | Oct 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6328694 | Michaeli | Dec 2001 | B1 |
6330466 | Hofmann et al. | Dec 2001 | B1 |
6352530 | Mangosong | Mar 2002 | B1 |
6379331 | Barbut et al. | Apr 2002 | B2 |
6389902 | Aigner et al. | May 2002 | B2 |
6394986 | Millar | May 2002 | B1 |
6435189 | Lewis et al. | Aug 2002 | B1 |
6436091 | Harper et al. | Aug 2002 | B1 |
6460234 | Gianchandani | Oct 2002 | B1 |
6470754 | Gianchandani | Oct 2002 | B1 |
6481292 | Reich | Nov 2002 | B1 |
6536260 | Williams | Mar 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6616597 | Schock et al. | Sep 2003 | B2 |
6644125 | Siess et al. | Nov 2003 | B1 |
6652565 | Shimada et al. | Dec 2003 | B1 |
6656153 | Sakai et al. | Dec 2003 | B1 |
6699269 | Khanna | Mar 2004 | B2 |
6758832 | Barbut et al. | Jul 2004 | B2 |
6761715 | Carroll | Jul 2004 | B2 |
6817983 | Millar | Nov 2004 | B1 |
6817989 | Svendsen et al. | Nov 2004 | B2 |
6820487 | Esashi et al. | Nov 2004 | B2 |
6827710 | Mooney et al. | Dec 2004 | B1 |
6886411 | Kjellman et al. | May 2005 | B2 |
6918924 | Lasheras et al. | Jul 2005 | B2 |
6935999 | Schock et al. | Aug 2005 | B2 |
6955675 | Jain | Oct 2005 | B2 |
6959608 | Bly et al. | Nov 2005 | B2 |
6973835 | Rangsten et al. | Dec 2005 | B2 |
6988412 | Wilner | Jan 2006 | B1 |
6994695 | Millar | Feb 2006 | B1 |
7004936 | Ryba et al. | Feb 2006 | B2 |
7007551 | Zdeblick et al. | Mar 2006 | B2 |
7011647 | Purdy et al. | Mar 2006 | B2 |
7013734 | Zdeblick et al. | Mar 2006 | B2 |
7014624 | Meythaler et al. | Mar 2006 | B2 |
7017416 | Liu et al. | Mar 2006 | B1 |
7017420 | Kalvesten et al. | Mar 2006 | B2 |
7025718 | Williams | Apr 2006 | B2 |
7028550 | Zdeblick et al. | Apr 2006 | B2 |
7029468 | Honebrink | Apr 2006 | B2 |
7052452 | Ulmsten et al. | May 2006 | B2 |
7059195 | Liu et al. | Jun 2006 | B1 |
7060038 | Letort et al. | Jun 2006 | B2 |
7066031 | Zdeblick et al. | Jun 2006 | B2 |
7073387 | Zdeblick et al. | Jul 2006 | B2 |
7077812 | Naghavi | Jul 2006 | B2 |
7112170 | Schock et al. | Sep 2006 | B2 |
7118565 | Abboud et al. | Oct 2006 | B2 |
7146865 | Wilner | Dec 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7156840 | Lentz et al. | Jan 2007 | B2 |
7162925 | Dietrich | Jan 2007 | B2 |
7162926 | Guziak et al. | Jan 2007 | B1 |
7163535 | Ryba et al. | Jan 2007 | B2 |
7167457 | Vanttinen et al. | Jan 2007 | B2 |
7175605 | Tiedtke et al. | Feb 2007 | B2 |
7207227 | Rangsten et al. | Apr 2007 | B2 |
7229403 | Schock et al. | Jun 2007 | B2 |
7238168 | Sirhan et al. | Jul 2007 | B2 |
7263894 | Tenerz | Sep 2007 | B2 |
7267667 | Houde et al. | Sep 2007 | B2 |
7275447 | Krivitski et al. | Oct 2007 | B2 |
7284441 | Zdeblick | Oct 2007 | B2 |
7286879 | Wallace | Oct 2007 | B2 |
7322960 | Yamamoto et al. | Jan 2008 | B2 |
7338452 | Shiina et al. | Mar 2008 | B2 |
7351914 | Kaneto et al. | Apr 2008 | B2 |
7381190 | Sugrue et al. | Jun 2008 | B2 |
7392716 | Wilner | Jul 2008 | B2 |
7393339 | Zawack et al. | Jul 2008 | B2 |
7398688 | Zdeblick et al. | Jul 2008 | B2 |
7452333 | Roteliuk | Nov 2008 | B2 |
7455666 | Purdy | Nov 2008 | B2 |
7500947 | Kucklick et al. | Mar 2009 | B2 |
7505810 | Harlev et al. | Mar 2009 | B2 |
7510533 | Mauge et al. | Mar 2009 | B2 |
7503904 | Choi | Apr 2009 | B2 |
7513884 | Miesel et al. | Apr 2009 | B2 |
7515954 | Harlev et al. | Apr 2009 | B2 |
7520858 | Ofek et al. | Apr 2009 | B2 |
7539531 | Camus et al. | May 2009 | B2 |
7577477 | Allen et al. | Sep 2009 | B2 |
7591816 | Wang et al. | Sep 2009 | B2 |
7611482 | Naimark et al. | Nov 2009 | B2 |
7632236 | Kaneto et al. | Dec 2009 | B2 |
7640053 | Verin | Dec 2009 | B2 |
7684657 | Donlagic et al. | Mar 2010 | B2 |
7686781 | Vinten-Johansen | Mar 2010 | B2 |
7689071 | Belleville et al. | Mar 2010 | B2 |
7697798 | Lagakos et al. | Apr 2010 | B2 |
7708705 | Iddan et al. | May 2010 | B2 |
7727199 | Fernandes et al. | Jun 2010 | B2 |
7727228 | Abboud et al. | Jun 2010 | B2 |
7729745 | Maschke | Jun 2010 | B2 |
7731664 | Millar | Jun 2010 | B1 |
7787954 | Purdy | Aug 2010 | B2 |
8131353 | Purdy | Mar 2012 | B2 |
D711005 | Purdy et al. | Aug 2014 | S |
8926520 | Purdy et al. | Jan 2015 | B2 |
8961452 | Purdy | Feb 2015 | B2 |
9597480 | Purdy et al. | Mar 2017 | B2 |
20010035046 | Williams | Nov 2001 | A1 |
20020072679 | Schock | Jun 2002 | A1 |
20020072680 | Schock et al. | Jun 2002 | A1 |
20020091356 | Barbut et al. | Jul 2002 | A1 |
20020162399 | Esashi et al. | Nov 2002 | A1 |
20030014016 | Purdy | Jan 2003 | A1 |
20030029245 | Izadnegahdar et al. | Feb 2003 | A1 |
20030083617 | St. Germain et al. | May 2003 | A1 |
20030093105 | Huffmaster | May 2003 | A1 |
20030130577 | Purdy et al. | Jul 2003 | A1 |
20030171736 | Edwin | Sep 2003 | A1 |
20040060362 | Kjellmann et al. | Apr 2004 | A1 |
20040147433 | Keep et al. | Jul 2004 | A1 |
20040168519 | Kalvensten et al. | Sep 2004 | A1 |
20040193021 | Zdeblick et al. | Sep 2004 | A1 |
20040236223 | Barnes et al. | Nov 2004 | A1 |
20040243057 | Vinten-Johansen | Dec 2004 | A1 |
20040243115 | Abboud et al. | Dec 2004 | A1 |
20040249295 | Ueno et al. | Dec 2004 | A1 |
20040249337 | DiFiore | Dec 2004 | A1 |
20040254483 | Zdeblick et al. | Dec 2004 | A1 |
20040254495 | Mabary et al. | Dec 2004 | A1 |
20040260229 | Meir | Dec 2004 | A1 |
20040260241 | Yamamoto et al. | Dec 2004 | A1 |
20040260328 | Zvuloni et al. | Dec 2004 | A1 |
20050004450 | Ben-Haim et al. | Jan 2005 | A1 |
20050038328 | Stoehrer et al. | Jan 2005 | A1 |
20050043669 | Rosenberg | Feb 2005 | A1 |
20050043670 | Rosenberg | Feb 2005 | A1 |
20050049451 | Schock et al. | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050075624 | Miesel | Apr 2005 | A1 |
20050103114 | Bly et al. | May 2005 | A1 |
20050107738 | Slater et al. | May 2005 | A1 |
20050124971 | Koch et al. | Jun 2005 | A1 |
20050142783 | Kim | Jun 2005 | A1 |
20050148884 | Parks et al. | Jul 2005 | A1 |
20050159659 | Sawan et al. | Jul 2005 | A1 |
20050160823 | Zdeblick et al. | Jul 2005 | A1 |
20050160824 | Zdeblick et al. | Jul 2005 | A1 |
20050160825 | Zdeblick et al. | Jul 2005 | A1 |
20050160826 | Zdeblick et al. | Jul 2005 | A1 |
20050166683 | Krivitski et al. | Aug 2005 | A1 |
20060009740 | Higgins et al. | Jan 2006 | A1 |
20060030843 | Lane et al. | Feb 2006 | A1 |
20060032039 | Rangsten et al. | Feb 2006 | A1 |
20060095032 | Jackson et al. | May 2006 | A1 |
20060100492 | Hartle et al. | May 2006 | A1 |
20060100639 | Levin et al. | May 2006 | A1 |
20060106321 | Lewinsky et al. | May 2006 | A1 |
20060116564 | Mintchev et al. | Jun 2006 | A1 |
20060117859 | Liu et al. | Jun 2006 | A1 |
20060117871 | Wilner | Jun 2006 | A1 |
20060122589 | Abboud et al. | Jun 2006 | A1 |
20060129061 | Kaneto et al. | Jun 2006 | A1 |
20060130596 | Wilner | Jun 2006 | A1 |
20060133715 | Belleville et al. | Jun 2006 | A1 |
20060135942 | Fernandes et al. | Jun 2006 | A1 |
20060137457 | Zdeblick | Jun 2006 | A1 |
20060142783 | Lewis et al. | Jun 2006 | A1 |
20060149141 | Sheets | Jul 2006 | A1 |
20060149218 | Slater et al. | Jul 2006 | A1 |
20060173365 | Thompson | Aug 2006 | A1 |
20060189928 | Camus et al. | Aug 2006 | A1 |
20060211944 | Mauge et al. | Sep 2006 | A1 |
20060211945 | Mauge et al. | Sep 2006 | A1 |
20060211946 | Mauge et al. | Sep 2006 | A1 |
20060243061 | Krivitski et al. | Nov 2006 | A1 |
20060244177 | Kaneto et al. | Nov 2006 | A1 |
20060258981 | Eidenschink | Nov 2006 | A1 |
20060271029 | Abboud et al. | Nov 2006 | A1 |
20060278248 | Viswanathan | Dec 2006 | A1 |
20060281986 | Orilla et al. | Dec 2006 | A1 |
20060287569 | Schock et al. | Dec 2006 | A1 |
20070027393 | Williams et al. | Feb 2007 | A1 |
20070028698 | Guziak et al. | Feb 2007 | A1 |
20070032783 | Abboud et al. | Feb 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070062546 | Viswanathan et al. | Mar 2007 | A1 |
20070066890 | Maschke | Mar 2007 | A1 |
20070093710 | Maschke | Apr 2007 | A1 |
20070129667 | Tiedtke et al. | Jun 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070135736 | Addington et al. | Jun 2007 | A1 |
20070151348 | Zdeblick et al. | Jul 2007 | A1 |
20070161882 | Pappone | Jul 2007 | A1 |
20070173777 | Murphy | Jul 2007 | A1 |
20070179492 | Pappone | Aug 2007 | A1 |
20070191717 | Rosen et al. | Aug 2007 | A1 |
20070197922 | Bradley et al. | Aug 2007 | A1 |
20070213669 | Eskuri et al. | Sep 2007 | A1 |
20070250050 | Lafontaine | Oct 2007 | A1 |
20070255090 | Addington et al. | Nov 2007 | A1 |
20070270782 | Miesel et al. | Nov 2007 | A1 |
20070282211 | Ofek et al. | Dec 2007 | A1 |
20080009832 | Barron et al. | Jan 2008 | A1 |
20080009837 | Miesel | Jan 2008 | A1 |
20080009925 | Abboud et al. | Jan 2008 | A1 |
20080027332 | Bradley | Jan 2008 | A1 |
20080033316 | Kassab et al. | Feb 2008 | A1 |
20080097383 | Vinten-Johansen | Apr 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080142783 | Emerson et al. | Jun 2008 | A1 |
20080161794 | Wang et al. | Jul 2008 | A1 |
20080194933 | Kunze | Aug 2008 | A1 |
20080214983 | Mauge et al. | Sep 2008 | A1 |
20080228167 | Mittermeyer et al. | Sep 2008 | A1 |
20080243074 | Miesel et al. | Oct 2008 | A1 |
20080255467 | Acker et al. | Oct 2008 | A1 |
20080269581 | Wood et al. | Oct 2008 | A1 |
20090013791 | Zdeblick et al. | Jan 2009 | A1 |
20090018504 | Pile-Spellman et al. | Jan 2009 | A1 |
20090024016 | Zhang et al. | Jan 2009 | A1 |
20090036754 | Pons et al. | Feb 2009 | A1 |
20090069714 | Eichmann et al. | Mar 2009 | A1 |
20090082678 | Smith | Mar 2009 | A1 |
20090088609 | Schmitz-Rode et al. | Apr 2009 | A1 |
20090088735 | Abboud et al. | Apr 2009 | A1 |
20090105799 | Kemat et al. | Apr 2009 | A1 |
20090118637 | Kassab et al. | May 2009 | A1 |
20090125007 | Splinter | May 2009 | A1 |
20090138007 | Govari et al. | May 2009 | A1 |
20090156953 | Wondka et al. | Jun 2009 | A1 |
20090156960 | Mauge et al. | Jun 2009 | A1 |
20090171201 | Olson | Jul 2009 | A1 |
20090177183 | Pinkernell et al. | Jul 2009 | A1 |
20090192450 | Miesel et al. | Jul 2009 | A1 |
20090202195 | Lagakos et al. | Aug 2009 | A1 |
20090209950 | Starksen | Aug 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20090270739 | Hatib et al. | Oct 2009 | A1 |
20090287118 | Malek | Nov 2009 | A1 |
20090299356 | Watson | Dec 2009 | A1 |
20100094209 | Drasler et al. | Apr 2010 | A1 |
20100106087 | Evans et al. | Apr 2010 | A1 |
20100106140 | Odland et al. | Apr 2010 | A1 |
20100113939 | Mashimo et al. | May 2010 | A1 |
20100113945 | Ryan | May 2010 | A1 |
20100113949 | Sathyanarayana | May 2010 | A1 |
20100113967 | Bobo | May 2010 | A1 |
20100114063 | Recinella et al. | May 2010 | A1 |
20100114083 | Sharma | May 2010 | A1 |
20100121159 | Burnett et al. | May 2010 | A1 |
20100121213 | Giftakis et al. | May 2010 | A1 |
20100121214 | Giftakis et al. | May 2010 | A1 |
20100125211 | Stahmann et al. | May 2010 | A1 |
20100137736 | Addington et al. | Jun 2010 | A1 |
20110092955 | Purdy et al. | Apr 2011 | A1 |
20150025396 | Purdy et al. | Jan 2015 | A1 |
20150112211 | Purdy | Apr 2015 | A1 |
20150112212 | Purdy | Apr 2015 | A1 |
20150289816 | Purdy et al. | Oct 2015 | A1 |
20150367105 | Purdy | Dec 2015 | A1 |
20160022956 | Purdy et al. | Jan 2016 | A1 |
20160250451 | Purdy | Sep 2016 | A1 |
20170296778 | Purdy et al. | Oct 2017 | A1 |
20170296779 | Purdy et al. | Oct 2017 | A1 |
20170296780 | Purdy et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
3726453 | Feb 1989 | DE |
0263190 | Apr 1988 | EP |
0454264 | Oct 1991 | EP |
1062959 | Nov 2004 | EP |
WO 199744082 | Nov 1997 | WO |
WO 199838953 | Sep 1998 | WO |
WO 199857603 | Dec 1998 | WO |
WO 199920334 | Apr 1999 | WO |
WO 200051669 | Sep 2000 | WO |
WO 0137924 | May 2001 | WO |
WO-0137924 | May 2001 | WO |
WO 200154766 | Aug 2001 | WO |
WO 2002068036 | Sep 2002 | WO |
WO 2004047647 | Jun 2004 | WO |
WO 2008021437 | Feb 2008 | WO |
Entry |
---|
“Back Break,” Article from Forbes Magazine, pp. 123-124, Aug. 12, 2002. |
“Keeping it Cool,” Article from Health Communities, United Hospital, 11:1, 8, Winter 2003. |
Amar et al., “Microcatheterization of the cervical epidural space via lumbar puncture: Technical note,” Neurosurgery, 48(5):1183-1187, 2001. |
Blomberg, “A method for eipiduroscopy and spinaloscopy. Presentation of preliminary results,” Acta Anaesthesiol Scand, 29(1):113-116 (1985). |
Blomberg, “Fibrous structures in the subarachnoid space: a study with spinaloscopy in autopsy subjects,” Anesth Analg, 80(5):875-879 (1995). |
Delhaas, “Extradural and subarachnoid catheterization using the Seldinger technique,” Br J Anaesth, 76(1):149-150 (1996). |
Eguchi et al., “Endoscopy of spinal cord and posterior fossa by a lumbar percutaneous approach: endoscopic anatomy in cadavers,” Minim Invasive Neurosurg, 42(2):74-78 (1999). |
Eguchi et al., “Endoscopy of the spinal cord: cadaveric study and clinical experience,” Minim Invasive Neurosurg, 42(3): 146-151 (1999). |
Fries et al., “Biportal Neuroendoscopic Microsurgical Approaches to the Subarachnoid Cisterns. A Cadaver Study,” Minim Invas Neurosurg, 39:99-104 (1996). |
Hamada et al., “Microcatheter intrathecal urokinase infusion into cisterna magna for prevention of cerebral vasospasm,” Stroke, 31:2141-2148 (2000). |
Karakhan et al., “Use of intracranial endoscopy in morphologic studies,” Arkh Anat Gistol Embriol, 98(1):75-82, (1990). |
Miyamoto et al., “The development of spinal endocope using a flexible optic fiber,” No To Shinkei, 41(12):1233-1238 (1989) abstract on page 1238. |
Stefanov et al., “A new method for transcutaneous coaxial neuroendoscopy,” Anat Embryol, 194(4):319-326 (1996). |
Suzukawa et al., Percutaneous fiberoptic spinal laser endoscopy, J Clin Laser Med Surg, 8(6):27-30 (1990). |
Tanaka et al., “Endoscopic treatment of symptomatic spinal subarachnoid cysts,” AJR Am J Roentgenol, 169(6):1719-1720 (1997). |
Uchiyama et al., “Ultrafine flexible spinal endoscope (Myeloscope) and discovery of an unreported subarachnoid lesion,” Spine, 23(21):2358-2362 (1998). |
Vinas et al., “Microanatomical basis for the third ventriculostomy,” Minim Invasive Neurosug, 39(4):116-121 (1996). |
U.S. Appl. No. 09/905,670, filed Jul. 13, 2001, now U.S. Pat. No. 7,455,666, Methods and Apparatuses for Navigating the Subarachnoid Space. |
U.S. Appl. No. 12/323,204, filed Nov. 25, 2008, now U.S. Pat. No. 7,787,954, Methods and Apparatuses for Navigating the Subarachnoid Space. |
U.S. Appl. No. 12/872,575, filed Aug. 31, 2010, now U.S. Pat. No. 8,131,353, Methods and Apparatuses for Navigating the Subarachnoid Space. |
U.S. Appl. No. 13/413,368, filed Mar. 6, 2012, now U.S. Pat. No. 8,961,452, Multi-Sheath Member Apparatus. |
U.S. Appl. No. 15/138,127, filed Apr. 25, 2016, Methods of Using a Dual-Lumen Sheath in Intraluminal Procedures. |
U.S. Appl. No. 10/328,560, filed Dec. 23, 2002, now U.S. Pat. No. 7,150,737, Methods and Apparatuses for Navigating the Subarachnoid Space. |
U.S. Appl. No. 10/328,349, filed Dec. 23, 2002, now U.S. Pat. No. 7,011,647, Introducer Sheath. |
U.S. Appl. No. 10/328,373, filed Dec. 23, 2002, Guide Catheter for Introduction Into the Subarachnoid Space and Methods of Use Thereof. |
U.S. Appl. No. 12/900,360, filed Oct. 7, 2010, Pressure-Sensing Medical Devices, Systems and Methods, and Methods of Forming Medical Devices. |
U.S. Appl. No. 14/687,761, filed Apr. 15, 2015, Device Configured for Real-Time Pressure Sensing. |
U.S. Appl. No. 14/876,764, filed Oct. 6, 2015, now U.S. Pat. No. 9,597,480, Intraluminal Devices and Systems. |
U.S. Appl. No. 15/640,255, filed Jun. 30, 2017, Methods for Pressure Measurements Within a Body Lumen. |
U.S. Appl. No. 15/640,314, filed Jun. 30, 2017, Devices for Intraluminal Sensing. |
U.S. Appl. No. 15/640,261, filed Jun. 30, 2017, Devices and Systems for Use in Bodily Lumens. |
U.S. Appl. No. 13/946,646, filed Jul. 19, 2013, now U.S. Pat. No. 8,926,520, Transducer Interface System and Method. |
U.S. Appl. No. 14/553,922, filed Nov. 25, 2014, Transducer Interface System and Method. |
U.S. Appl. No. 14/554,546, filed Nov. 26, 2014, Transducer Interface System and Method. |
U.S. Appl. No. 14/335,525, filed Jul. 18, 2014, Blood Pressure Analysis System and Method. |
U.S. Appl. No. 29/461,117, filed Jul. 18, 2013, now U.S. Pat. No. D711,005, Patient Monitor. |
Number | Date | Country | |
---|---|---|---|
20150367105 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12872575 | Aug 2010 | US |
Child | 13413368 | US | |
Parent | 12323204 | Nov 2008 | US |
Child | 12872575 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13413368 | Mar 2012 | US |
Child | 14627990 | US | |
Parent | 09905670 | Jul 2001 | US |
Child | 12323204 | US |