The present invention relates to a sheathed thread for fabricating a tire, to a tire provided with the sheathed thread, to a device for fabricating the sheathed thread, and to a method and an installation for fabricating the tire.
A tire that comprises a casing reinforcement ply provided with a sheathed thread of the type comprising a bare thread covered in a rubber sheath is known in the state of the art. The term “thread” should be understood broadly herein. Thus, in the following description, the term “thread” is used to designate, for example, a monofilament thread, a multifilament thread, or twisted wire or yarn, or a cable. The thread may be made of one or more materials, such as for example, a textile material or a metal material, and it may optionally be treated. Sheathing the casing reinforcement thread improves bonding between the thread and the surrounding rubber, in particular when fabricating a tire blank.
To fabricate the sheathed thread, it is known to make use of a device, such as that described, for example, in FR-A-2 687 094, that comprises a sheathing chamber for feeding with rubber and through which the thread passes. The bare thread driven through the sheathing chamber becomes covered in rubber so as to obtain a sheathed thread at the outlet from the sheathing chamber.
In order to fabricate a tire having sheathed casing-reinforcement threads, it is known to use an installation of the kind described in particular in EP-A-1 590 169 that comprises means for laying the sheathed thread on the tire blank.
In that type of installation, the blank is generally carried by a removable rigid core that is movable in rotation and matching the shape of the blank so as to present the usual portions of a tire, and in particular a crown and two sidewalls. Prior to laying the casing reinforcement, the blank may comprise, for example, a layer of sealing rubber covered by a layer of rubber for bonding to the casing reinforcement and onto which the sheathed thread is to be laid. After the casing reinforcement has been laid, this layer is covered with other layers of rubber so as to be completely embedded in rubber.
In the installation as described in EP 1 590 169 the means for laying the sheathed thread comprise a thread guide member that is movable with back-and-forth reciprocating motion, in particular substantially between the two sidewalls of the blank.
Generally, the continuous sheathed thread forming the casing reinforcement extends from one sidewall to the other of the blank of the tire, passing over the crown, following a boustrophedon path so as to form go-and-return bends in the thread. These bends extend in a sidewall zone for securing the tire to a wheel rim. This zone of the tire is commonly referred to as the “low zone”.
Because different portions of a tire perform different functions (thus, for example, the crown of the tire provides contact between the tire and the ground, whereas the low zone of the tire connects the tire to the wheel rim), it is desirable to adapt the structures of the various portions of the tire as much as possible to their functions. This adaptation may consist in using different layers of rubber adapted to the different functions of the portions of the tire, and/or to using different means for connecting the casing reinforcement with the rubber in the different portions of the tire.
One object of the invention is to enable the structure of the different portions of the tire, e.g. the crown and the low zone of the tire, to be adapted to their functions.
This and other objects are attained in accordance with one aspect of the invention directed to a sheathed thread for fabricating a tire of the above-specified type, wherein the sheath comprises a plurality of segments that are spaced apart from one another along the bare thread so that bare portions of the thread alternate with sheathed portions of the thread.
The alternating bare and sheathed portions make it possible to differentiate means for connecting the rubber and the thread forming the casing reinforcement according to the rubber of the different portions of the tire. Thus, the sheathed thread of the invention serves to adapt the structures of the different portions of the tire to their functions.
According to an optional characteristic of the thread of the invention, the sheathed portions are substantially identical in length.
Such a thread is particularly adapted to fabricating a tire since the bare and sheathed portions alternate periodically.
Another aspect of the invention is directed to a tire of the type comprising at least one sheathed thread for reinforcing the casing, wherein the sheathed thread is as defined above.
Such a tire presents portions in which the structures adapt as well as possible to the different functions they are to perform.
According to other characteristics of the tire of the invention that are optional:
The various types of casing reinforcement as formed in this way by the different threads present structures that are different. Thus, two tires presenting two different types of casing reinforcement will have two different structures, each structure being adapted specifically to the functions it is to perform.
Another aspect of the invention is directed to a device for fabricating a sheathed thread comprising a bare thread coated in a rubber sheath, the device being of the type comprising a so-called stationary sheathing chamber for being fed with rubber and having the thread passing therethrough, wherein the device comprises a member for isolating from the rubber a portion of bare thread passing through the stationary sheathing chamber, referred to as the through portion of the thread, said isolator member being movable between:
Such a device is for fabricating a sheathed thread having bare portions corresponding to the through portions of the bare thread that pass through the stationary sheathing chamber while the isolator member is in its isolating position. These bare portions alternate with sheathed portions corresponding to the through portions of the bare thread that pass through the stationary sheathing chamber while the isolator member is in its contacting position.
According to an optional characteristic of the device of the invention, the isolator member is movable in translation between its isolating and contacting positions, in particular parallel to a direction that is substantially parallel to the travel direction of the thread through the stationary sheathing chamber.
Such an isolator member is simple to move between its isolating and contacting positions.
According to other characteristics of the device of the invention, that are optional:
According to another optional characteristic of the device of the invention, the device comprises means for imparting periodic reciprocating displacement to the isolator member.
The periodic reciprocating displacement means enable displacement to be imparted to the isolator member between its isolating and contacting positions at a given frequency.
According to other characteristics of the device of the invention, that are optional, the device comprises:
Advantageously, the means for adjusting the mean position of the isolator member relative to the stationary sheathing chamber comprise a first support carrying the means for imparting reciprocating displacement to the isolator member and mounted to move on a second support that is stationary relative to the stationary sheathing chamber.
According to another optional characteristic of the device of the invention, the means for imparting reciprocating displacement to the isolator member comprise a connecting rod and crank type assembly.
This assembly allows the isolator member to be displaced between the isolating and contacting positions by transforming the rotary motion of the crank into periodic reciprocating motion of the isolator member.
Advantageously:
Another aspect of the invention is directed to an installation for fabricating a tire, the installation being of the type comprising laying means for laying a sheathed thread on a tire blank, wherein the installation also comprises a device for fabricating sheathed thread as defined above continuously feeding the laying means.
This installation makes use of the advantages of the invention for fabricating the sheathed thread in association with conventional means for laying a sheathed thread on a tire blank.
According to an optional characteristic of the installation of the invention, the means for laying the sheathed thread comprise a guide member for guiding the thread that is movable with periodic back-and-forth reciprocating motion, in particular substantially between two sidewalls of the blank, the installation further comprising means for synchronizing the periodic reciprocating motion of the guide member with the reciprocating displacement of the isolator member.
Synchronization enables a sheathed thread fabricated by means of the device as described above to be laid in alternation by the laying means between the two sidewalls of the blank following periodic movement that is synchronized with the displacement of the isolator member determining both the periodicity and the respective lengths of the bare and sheathed portions of the thread.
According to another optional characteristic of the installation of the invention, the installation comprises means for displacing the laying means relative to the device for fabricating the sheathed thread and enabling the length of the path of the sheathed thread between said laying means and the fabrication device to be adjusted.
Another aspect of the invention is directed to a method of fabricating a tire of the type in which a sheathed thread is laid on a tire blank, wherein the sheathed thread is fabricated and laid continuously by means of an installation as defined above.
Such a method makes it possible for a sheathed thread having bare portions alternating with sheathed portions to be laid continuously on a tire blank with the structure of its different portions being adapted to their respective functions.
Another aspect of the invention is directed to a method of fabricating a tire of the type in which a sheathed thread is laid on a tire blank, wherein a sheathed thread comprising a bare thread coated in a rubber sheath is laid continuously, the sheath comprising a plurality of segments that are mutually spaced apart along the bare thread in such a manner that bare portions of thread alternate with sheathed portions of thread.
According to other characteristics of the method of the invention that are optional:
The invention can be better understood on reading the following description given purely by way of non-limiting example and made with reference to the drawings, in which:
The blank 26 is carried by a rigid removable core 30 shaping the blank 26 so that it presents a crown 32 and two sidewalls 34. The core 30 is rotatable about an axis X of the blank 26.
As can be seen in
The laying means 22 also comprise a moving arm 38 presenting known motion enabling the thread to be laid on the surface of the tire blank and carrying the intermediate pulleys 36B and the outlet pulley 36C. The outlet pulley 36C can be moved with periodic back-and-forth reciprocating motion, in particular substantially between the two sidewalls 34 of the blank 36, passing over the crown 32.
The outlet pulley 36C forms a guide member for the thread 24 on the blank 26. More particularly, and as can be seen in particular in
In the example described, the sheathed thread 24 is laid substantially parallel to radial planes of the blank. In a variant, the thread 24 could be laid parallel to planes that are inclined relative to the axis X of the blank.
The thread 24 comprises a bare thread 24N covered in a rubber sheath 24G. The bare thread 24N comprises, for example, an optionally braided cable of metal and/or natural or synthetic fibers.
With reference for example to
With reference to
The baseplate 42 carries a housing 44 comprising a body 46 with two chambers formed therein, namely and as can be seen in
The stationary sheathing chamber 48 serves firstly to be fed with rubber from the chamber 50, and secondly to have the thread 24 pass therethrough.
Heated rubber is introduced and pressurized in the chambers 48 and 50 by feed means 52 such as a wormscrew, for example. In order to obtain alternating bare portions N and sheathed portions G of the thread 24, the device 28 comprises an isolator member 54 passing through the stationary sheathing chamber 48. The member 54 serves to isolate a portion of the bare thread 24N passing through the stationary sheathing chamber 48 from the rubber, which portion is referred to as the through portion of the thread. This isolator member 54 can be moved in translation, in particular parallel to a substantially rectilinear travel direction of the thread 24 through the stationary sheathing chamber 48, between a position in which the through portion of the thread is put into contact with the rubber, as shown in
The through portion of the thread 24 is sheathed when the isolator member 54 is in its contacting position and it is not sheathed when the isolator member 54 is in its isolating position.
With reference to
The isolator member 54 comprises an internal recess through which the thread 24 passes and forming a moving sheathing chamber 56.
The isolator member 54 also comprises at least one orifice 58 forming a passage for rubber between the stationary and moving chambers 48 and 56. In the example shown, the isolator member 54 has four orifices 58, each generally in the form of a slot.
The baseplate 42 also carries displacement means 60 for moving the isolator member 54. As can be seen in
In order to enable the mean position of the isolator member 54 to be adjusted relative to the stationary sheathing chamber 48, the connecting rod 62 and crank 64 assembly is carried by a first support forming a carriage 66 that is itself mounted to move on a second support 68 that is stationary relative to the stationary sheathing chamber 48. The second support 68 is secured to the baseplate 42.
The displacement means 60 also comprise motor-drive means 70 (see
As can be seen in
Furthermore, the crank 64 has orifices 80 for hinging to a big end 62T of the connecting rod 62. These orifices 80 are distributed in a spiral on the crank 64 and form means for adjusting the amplitude of the reciprocating displacement of the isolator member 54. Specifically, each orifice 80 forms a housing for a second hinge pin 82 connecting the crank 64 to the big end 62T of the connecting rod 62. It is thus possible to modify the amplitude of the reciprocating displacement of the isolator member 54 by adjusting the position in which the connecting rod 62 is hinged to the crank 64 by changing the orifice 80 that receives the pin 82.
In the example described, the position of the hinge of the connecting rod 62 on the crank 64 is adjusted by using means that are discontinuous (the orifices 80). In a variant, the position of the hinge of the connecting rod 62 on the crank 64 could be adjusted using means that are continuous.
The device 18 also comprises pulleys 84 for guiding the thread 24 upstream from the sheathing chamber 48. These guide pulleys 84 are carried by the carriage 66.
The device 28 for fabricating the sheathed thread 24 feeds the laying means 22 continuously. Conventional means 86, shown diagrammatically in
Furthermore,
In
In each of
In the case of an adjustment of the kinematics of the isolator member 54 according to
On leaving the fabrication device 28, the thread 24 presents appearance matching the segment of thread 24 shown immediately under the curve of
Furthermore, the laying means 22 are synchronized with the fabrication device 28 and more particularly with the isolator member 54 in such a manner that the go-and-return bends P of the thread 24 coincide with the bare portions Ni of the thread, as shown by the folded segments of the thread 24 shown under the curve of
This produces a tire 88 as shown in
In the case of an adjustment of the kinematics of the isolator member 54 according to
Nevertheless, unlike the configuration of
This produces a tire 88 as shown in
In
The laying means 22 are synchronized with the fabrication device 28 in such a manner that each bend P is connected directly to the preceding bend P and the following bend P via respective sheathed portions Gi of the thread and a bare portion Ni of the thread, as shown by the bent segments of thread 24 shown under the curve in
A tire is thus obtained which, unlike the tire shown in
In this example, the isolator member 54 separates upstream and downstream portions 48A and 48B of the stationary sheathing chamber 48. The downstream portion 48B of the stationary sheathing chamber 48 has the thread 24 passing therethrough.
The isolator member 54 has an orifice 90 forming a passage for rubber between the upstream and downstream portions 48A and 48B of the stationary sheathing chamber 48.
The operation of the isolator member 54 shown in
Amongst the advantages of the invention, it should be observed that it enables the structure of the different portions of the tire to be adapted to their functions. The various adjustment means of the fabrication device 28 make it possible to adjust the lengths of the bare and sheathed portions of the thread of the invention, depending on requirements.
The invention is not limited to the embodiments described above.
The rubber feed means 52 could be positive displacement type feed means enabling a quantity of rubber for sheathing the thread to be metered out continuously. Thus, it is possible to cause the quantity of rubber sheathing the thread to vary in such a manner that the diameter of the sheath of rubber around the thread is adapted to the radial position of the thread laid on the blank.
Furthermore, the periodic reciprocating displacement means 62, 64 could be other than a connecting rod and crank type assembly. Thus, the displacement means 62, 64 could comprise, for example, means having cams, solenoids, controlled motors, etc. Furthermore, the periodic reciprocating motion of the member 54 could be other than sinusoidal, for example it could present a squarewave configuration, at a frequency synchronized with the frequency of the means 22 for laying the thread.
Number | Date | Country | Kind |
---|---|---|---|
06/55088 | Nov 2006 | FR | national |
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/899,858 filed Feb. 5, 2007 and French application no. 06/55088 filed on Nov. 24, 2006 the content of each of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60899858 | Feb 2007 | US |