a) is a diagram illustrating an essential part of the apparatus in
a) is a diagram illustrating a sheet aligning operation state, showing an operation of the widthwise aligning device; and
a) is a diagram illustrating the sheet aligning operation state, showing an operation of the widthwise aligning device; and
a) is a diagram illustrating the sheet aligning operation state, showing an operation of the widthwise aligning device;
a) to 9(c) are diagrams illustrating an embodiment (second embodiment) different from the embodiment of the apparatus shown in
a) is a diagram illustrating an embodiment (third embodiment) different from those shown in
a) and 11(b) are diagrams illustrating operating states in the embodiment shown in
The present invention will be described below in detail on the basis of illustrated embodiments.
The image forming system shown in
The scanner section 3 is composed of a platen 3a on which a document is placed, a reading carriage 3b that scans a document image in order of lines along the platen 3a, and a photoelectric converting sensor 3c. The document feeding section 4 is mounted above the scanner section 3 to separate and feed each of the documents set on the document tray 4a to the platen 3a. The sheet is then accommodated on a sheet discharging tray 4b. The apparatus also has a network printer function of transferring image data from an external image forming apparatus, for example, a computer, to the print head 6 to form an image on a sheet on the basis of the data.
The post-processing apparatus B in accordance with the present invention is coupled to the sheet discharging port 8 in the image forming apparatus A to sequentially receive sheets with images formed thereon to execute a “stapling process”, a “jog process”, and a “sheet carry-out (housing) process” on the sheets. Accordingly, the image forming system is composed of the image forming apparatus main body comprising a copier, a print function, a facsimile function, or the like and the post-processing apparatus coupled to the image forming apparatus main body.
The post-processing apparatus B comprises, as operation modes, a series of processing operations including a stapling process of arranging sheets with images formed thereon in the order of pages and stapling the sheets and a jog process of distributing and housing the set sheets before discharging the sheets. To control each of the operation modes, an operator sets, in the image forming apparatus A, a print mode, that is, the number of copies and a printing function, and a post-process mode, that is, the “stapling process”, the “jog process”, or the “sheet carry-out (housing) process”. In accordance with relevant command signals from the image forming apparatus A, the post-processing apparatus B executes a process corresponding to the operation mode.
The post-processing apparatus B is composed of a sheet discharging path 11 that receives sheets sequentially discharged by the image forming apparatus A to take the sheets out to a downstream side, a processing tray 20 located below a sheet discharging port 13 of the sheet discharging path 11, and a housing stacker 30 located at a downstream side of the processing tray 20. The processing tray 20 has a built-in “sheet aligning device”. The sheet discharging path 11 has a conveying roller 14 which conveys a sheet fed toward a carry-in port 12 and is composed of a pair of rollers that is in pressure contact with each other. The sheet discharging path 11 has an inlet sensor S1 that detects a leading end and a trailing end of the conveyed sheet.
Accordingly, a sheet from the image forming apparatus A is guided to the sheet discharging path 11 and then fed to the sheet discharging port 13 by the conveying roller 14. The sheet is then taken out to the sheet discharging port 13. The processing tray 20 is located below the sheet discharging port 13 so as to form a step. The sheet is temporarily placed and supported on the processing tray 20 and subjected to the post-process in this state. The processing tray 20 has a built-in mechanism corresponding to the function of the post-process executed on the sheet. The illustrated processing tray 20 comprises a “stapling function”, a “jog function”, and a “sheet carry-out function” of carrying out the sheet out of the sheet discharging port 13 to the housing stacker 30, located downstream of the processing tray 20.
The “stapling function” involves stacking and stapling a series of sheets carried out of the image forming apparatus A on the processing tray 20 in the order of pages, stapling the sheets, and carrying out the resulting sheet bundle to the housing stacker 30. The “jog function” involves distributing, housing, and setting the series of sheets carried out of the image forming apparatus A, in the housing stacker 30. The processing tray 20 thus comprises a jog shift mechanism that shifts the sheets by a predetermined amount in a direction orthogonal to a conveying direction. The function of the illustrated jog shift mechanism is provided by a widthwise aligning device 23. The “sheet carry-out function” involves sequentially carrying out the series of sheets from the image forming apparatus A onto the housing stacker 30 without post-processing the sheets on the processing tray 20. Thus, the processing tray 20 has a forward and backward rotating roller device 26.
The processing tray 20 has a staple device 24 (post-processing device; shown in
The processing tray 20 has a sheet feeding rotating member 17 that guides a sheet from the sheet discharging port 13 onto the tray, the forward and backward rotating roller device 26 that carries the sheet on the processing tray 20 downstream and then switches back the sheet so that the sheet travels upstream, a sheet transfer device (the function of the sheet transfer device is provided by the sheet feeding rotating member 17) for transferring the sheet on the processing tray 20 toward the sheet end regulating member 21a, and a widthwise aligning device 23 that transfers the sheet on the processing tray 20 toward the side regulating member 21b.
According to the present invention, the sheet transfer device is composed of a rotating member such as a roller or a belt (hereinafter representatively referred to as the “sheet feeding rotating member 17”) which engages with the sheet on the tray to convey the sheet on the processing tray 20 toward the sheet end regulating member 21a. The present invention is not limited to a belt on which the sheet from the discharging port 13 is transferred onto the processing tray 20 as shown in the figure. Any of various configurations can be adopted.
The sheet feeding rotating member (sheet transfer device; this also applies to the description below) 17 is composed of a pair of pulleys 16a and 16b and a caterpillar belt 18 extending between the pulleys 16a and 16b. The sheet feeding rotating member 17 is located between the sheet discharging port 13 and the processing tray 20 along the sheet conveying direction. The sheet feeding rotating member 17 is configured so that the upper half of the belt (loose side) 18a carries a sheet from the sheet discharging port 13 onto the processing tray 20, while the lower half of the belt (tensile side) 18b transfers the sheet on the processing tray 20 toward the sheet end regulating member 21a. Thus, the pulley 16a (hereinafter referred to as the fixed pulley), positioned at the sheet discharging port 13, is fixed to an apparatus frame. The pulley 16a has a rotating shaft 16c to which a driving motor M1 is coupled, so as to rotate counterclockwise in the figures.
The other pulley (movable pulley) 16b is supported by a swinging arm member 19 borne by the rotating shaft 16c of the fixed pulley 16a. The caterpillar belt 18 (hereinafter simply referred to as the belt) extends between the fixed pulley 16a and the movable pulley 16b. Consequently, the movable pulley 16b elevates and descends integrally with the belt 18 in a vertical direction, installed around the movable pulley 16b. The swinging arm member 19 has a bias spring 27 and shift device 28.
A coupling plate 19b is integrated with the swinging arm member 19. The bias spring 27 extends between the coupling plate 19b and the bias spring 27 to keep urging the movable pulley 16b toward the processing tray 20. A cam pin 19c is provided on the coupling plate 19b and engages with the shift device 28, composed of an eccentric cam, to withdraw the movable pulley 16b to above the processing tray 20 against the force of the bias spring 27. Reference numeral 19d denotes a stopper. A control motor M3 is coupled to a rotating shaft 28a of the shift device 28, composed of an eccentric cam. Thus, when a cam surface engages with the cam pin 19c, the movable pulley 16b is placed at an inoperative position above the processing tray 20. When the cam pin 19c leaves the cam surface, the movable pulley 16b moves, under the force of the bias spring 27, to an operative position where the pulley 16b comes into pressure contact with the uppermost sheet on the processing tray 20. The shift device 28 is not limited to the eccentric cam. The shift device 28 may have any of various structures provided that the shift device 28 constitutes a mechanism that elevates and descends the movable pulley 16b between the operative position, where the pulley 16b comes into pressure contact with the sheet on the processing tray 20, and the inoperative position, where the pulley 16b is withdrawn from the sheet.
A pinch roller 29 is located in pressure contact with the sheet feeding rotating member 17 and closer to the sheet discharging port. A guide plate 15 is located over the belt upper half portion 18a so as to be able to swing freely. Reference numeral 31 denotes a sheet scrubbing paddle composed of a flexible blade member. A forward and backward rotating motor M6 is coupled to the paddle 31. Forward and backward rotating roller device 26 is located at the processing tray 20 to feed a sheet downstream which has been carried onto the processing tray 20. The sheet is then supported between the housing stacker 30, described below, and the processing tray 20 like a bridge. That is, the sheet from the sheet discharging port 13 has its leading end supported by the housing stacker 30 and its trailing end supported by the processing tray 20. Thus, the forward and backward rotating roller device 26 is supported so as to swing freely in the vertical direction with respect to the processing tray 20. The forward and backward rotating roller device 26 is coupled to a driving motor so as to rotate forward and backward.
The sheet feeding rotating member 17 also serves as the sheet transfer device for transferring a sheet on the processing tray 20 toward the sheet end regulating member 21a. Thus, in the illustrated apparatus, the sheet feeding rotating member 17 feeds the sheet on the processing tray 20 toward the sheet end regulating member 21a. Accordingly, the apparatus has a sheet pressing device 22 for preventing the leading end of the sheet from being deflected owing to curling or the like. The sheet pressing device 22 is an elastic pressing plate (weight member) that abuts against the uppermost sheet on the processing tray 20. The sheet pressing device 22 hangs from above the processing tray 20 so as to swing freely.
The post-processing device (shown in
The widthwise aligning device 23 is composed of a plate-like member provided on the processing tray 20 so as to be movable in the sheet conveying orthogonal direction. The widthwise aligning device 23 comprises, for example, a mechanism shown in
The sheet feeding rotating member 17 and the guide plate 15 are arranged in a pair with an appropriate distance between the sheet feeding rotating member 17 and the guide plate 15 in the sheet width direction (the conveying orthogonal direction; this also applies to the description below). A sheet push-out device 25 is also located on the processing tray 20 as described below in order to transfer the post-processed sheet to the downstream housing stacker 30. A guide groove (not shown) is formed in the center of the processing tray 20 in the sheet width direction so that a push-out pawl 45 moves through the guide groove. The push-out pawl 45 transfers the sheet located on the downstream sheet end regulating member 21a, along the guide groove to an upstream eject port 20a. Thus, a belt member 48 extends between a pair of pulleys 46 and 47 provided below the processing tray 20, and the push-out pawl 45 is integrally fixed to the belt member 48. A sheet push-out pawl driving motor 45 is coupled to the pulley 46. Consequently, the sheet push-out pawl driving motor M5 moves the push-out pawl 45 around the periphery of the processing tray 20 so that the push-out pawl 45 travels longitudinally. Similarly to the sheet push-out pawl 45, the forward and backward rotating device 26 configured as described above is provided at the eject port 20a.
Description will be given of the structure of the housing stacker 30, located downstream of the processing tray 20, described above. As shown in
Consequently, the housing stacker 30 is supported so as to be freely elevated and descended along the guide rail 33 by the pair of rollers 34 and 35, integrated with the housing stacker 30. The apparatus frame 32 has a vertical pair of pulleys 37 and 38 and an elevating and lowering belt 39 extending between the pulleys 37 and 38. The fixing member 36 is fixed to the elevating and descending belt 39. An elevating and descending motor M is coupled to one of the pulleys 37 and 38 via a transmission gear 40. The elevating and descending motor M4 drivingly elevates and descends the housing stacker 30 in the vertical direction of the figure.
On the other hand, an upper limit sensor (not shown) is mounted above the housing stacker 30. The elevating and descending motor M4 gradually descends the housing stacker 30 in accordance with the amount of stacked sheets so that the uppermost sheet on the housing stacker 30 lies at the position of the upper limit sensor. After the sheets on the housing stacker 30 are removed, the elevating and descending motor M4 elevates the top surface of the tray to the position of the upper limit sensor. According to the present embodiment, the housing stacker 30 may be fixedly attached to the apparatus frame 32 so as not to elevate or descend as shown in the figure.
In the present invention, a sheet from the sheet discharging port 13 is placed on the processing tray 20 and along the sheet end regulating member 21a and the side regulating member 21b as described below. The sheet transfer device (sheet feeding rotating member) 17 transfers the sheet on the processing tray 20 toward the sheet end regulating device (hereinafter referred to as the “sheet end regulating member”) 21a. Further, the widthwise aligning device 23, located on the processing tray 20, transfers the sheet in the conveying orthogonal direction. The driving motors M1 and M2 are coupled to the sheet feeding rotating member 17 and the widthwise aligning device 23. The sheet feeding rotating member 17 has the shift device 28, composed of the eccentric cam and the control motor M3 thereby to move the sheet feeding rotating member 17 between an operative position where the member 17 abuts against the sheet on the processing tray 20 and an inoperative position where the member 17 leaves the sheet. The driving motors M1, M2, and M3 are controlled by control device 50 composed of a control CPU or the like.
The sheet carried onto the processing tray 20 is then placed at a predetermined position for alignment. The alignment involves, if a post-process such as stapling is executed on the sheet, placing the conveying-direction leading or trailing end and conveying-orthogonal-direction side end of the sheet at respective predetermined positions so as to meet processing criteria for the post-processing device 24. Further, to subject the sheet to a jog process, the sheet on the processing tray 20 is displaced in the conveying orthogonal direction by a predetermined amount (offset).
In the present invention, sheet alignment is performed as follows. (1) The sheet end (leading or trailing end) is abutted against the sheet end regulating member 21a, and the sheet is then moved in the orthogonal direction, that is, the width direction. In this case, (2) when the sheet end is abutted against the sheet end regulating member 21a, the sheet transfer device (sheet feeding rotating member) 17 reduces the conveying force applied to the sheet. Then, (3) when the widthwise aligning device 23 places the sheet at the appropriate position in the width direction, the conveying force applied to the sheet by the sheet transfer device (sheet feeding rotating member) 17 is increased.
The adjustment of the conveying force of the sheet transfer device (sheet feeding rotating member) 17 is achieved by (1) adjusting the peripheral speed of the sheet feeding rotating member 17 (first embodiment described below), (2) allowing the brake device (paddle) 31 to brake the sheet feeding rotating member 17 to adjust the conveying force of the sheet feeding rotating member 17 (second embodiment described below), or (3) adjusting the magnitude of the engaging force between the sheet feeding rotating member 17 and the sheet (third embodiment described below). These operations will be described below.
According to the first to third embodiments described above, upon receiving a sheet discharge instruction signal as shown in
At this time, the guide plate 15 guides the sheet to above the processing tray 20. A sheet discharging sensor S2 senses the sheet leading end. Then, after an expected time when the sheet leading end reaches the forward and backward rotating roller device 26, the control device 60 moves the forward and backward rotating roller device 26 from the withdrawal position to the operative position, where the device 26 abuts against the sheet carried onto the processing tray 20. The roller is thus rotated clockwise. Then, the sheet is drawn from the processing tray 20 to the housing stacker 30 by the forward and backward rotating roller device 26 and the sheet feeding rotating member 17. The sheet is thus supported by the processing tray 20 and the housing stacker 30 like a bridge.
Then, after an expected time when the sheet discharging sensor S2 detects the sheet trailing end carried onto the processing tray 20, the control device 60 reversely rotates the forward and backward rotating roller device 26 counterclockwise and rotates the paddle 31 counterclockwise. At the same time, the control device 60 descends the sheet feeding rotating member 17 to the operative position. The movement of the sheet feeding rotating member 17 is achieved by drivingly rotating the control motor M3 to separate the eccentric cam (shift device) 28 from the cam pin 19c. Then, the swinging arm member 19 of the sheet feeding rotating member 17 is subjected to the action of the bias spring 27 to move the sheet feeding rotating member 17 to the operative position, where the member 17 abuts against the uppermost sheet on the processing tray 20 as shown in
The widthwise aligning device 23 is held at the standby position Wp, shown in
The first embodiment will be described below. The control device 60 switches the sheet feeding rotating member 17 from a high speed to a low speed immediately before (expected time) the sheet trailing end abuts against the sheet end regulating member 21a (as shown in
Then, at a timing when the sheet trailing end reaches the regulating member 21a, the control device 60 actuates the driving motor M2 for the widthwise aligning device 23 to move the aligning plate 23a toward the center of the tray. Then, as shown in
Then, the control device 60 stops the driving motor M2 for the aligning plate 23a. After an expected time when the sheet trailing end is reliably aligned with the sheet end regulating member 21a, the control device 60 operates the shift device 28 to move the sheet feeding rotating member 17 to the withdrawal position. The above sheet aligning state will be described with reference to
A second embodiment different from the first embodiment described above will be described with reference to
The driving motor M6 for the paddle 31 is composed of a forward and backward rotating motor. To move a sheet toward the sheet end regulating device 21a, the paddle 31 rotates counterclockwise to guide the sheet so that the sheet is caught on the sheet feeding rotating member 17 as shown in
The control device 60 then actuates the driving motor M for the widthwise aligning device 23 to move the aligning plate 23a toward the center of the tray. Then, as shown in
Now, an embodiment different from the above first and second embodiments will be described on the basis of
The weight member 41 is borne by the rotating shaft 16c and is movable between a position corresponding to a weighting state where the weight is placed on the swinging arm member 19 and a position located away from the above position and corresponding to a no weight state where no weight is placed on the swinging arm member 19. The shift device 28 is coupled to the weight device 41 to allow the swinging arm member 19 to move between a withdrawal position where the swinging arm member 19 is separated from the sheet on the processing tray as shown in
Thus, a weight control groove 41a is formed in the coupling plate 19b so that a control pin 19a provided on the swinging arm member 19 is fitted in the weight control groove 41a. On the other hand, a link member 28b constituting the shift device 28 is coupled to the weight member 41 via a rotating shaft 28a so as to be cranked around the rotating shaft 28a. The control motor M3 is coupled to the rotating shaft 28a and rotated clockwise in the figure to allow the link member 28b to move the weight member 41 as shown in
Thus, in the state shown in
Then, after an expected time when the sheet trailing end approaches the sheet end regulating member 21a, the control device 60 reversely rotates the control motor M3 (counterclockwise in the figure) to move the sheet feeding rotating member 17 to the low pressurization state shown in
When the sheet trailing end collides hard against the sheet end regulating member 21a, the control device 60 actuates the driving motor M2 to move the widthwise aligning device 23 from the standby position Wp to an alignment position Sp. At this time, the sheet is moved in the width direction along the sheet end regulating member 21a without being skewed, to a predetermined position (post-processing position or jog position) for alignment. Then, after the widthwise movement is completed, the control device 60 moves the sheet feeding rotating member 17 to the withdrawal position shown in
As described above, according to the present invention, (1) the sheet is transferred at a high speed by the sheet feeding rotating member 17 until the sheet trailing end abuts against the sheet end regulating member 21a. (2) Then, the conveying force applied to the sheet by the sheet feeding rotating member 17 is reduced, and the sheet is abutted against the sheet end regulating member 21a for alignment. At this time, the widthwise aligning device 23 starts moving the sheet toward the side regulating member 21b. (3) Then, the sheet feeding rotating member 17 presses the sheet against the sheet end regulating member 21b at a high speed or under a high pressure contact force. The widthwise aligning device 23 moves the sheet in the width direction for alignment. This allows the sheet to be orderly placed along the sheet end regulating device 21a while preventing damage to the sheet trailing end, for example, bending of the sheet trailing end and skewing of the sheet.
As described above, the present invention reduces the conveying force exerted on the sheet on the tray when the sheet abuts against the sheet end regulating device, and increases the conveying force when the sheet is moved for widthwise alignment. Consequently, the sheet carried onto the tray is transferred to the sheet end regulating device at a high speed in a short time by means of the sheet transfer device. Immediately before the sheet trailing end reaches the regulating device, the speed is reduced to transfer the sheet under a weaker conveying force. This prevents a thick sheet from being rebounded, while preventing the leading end of a thin sheet from being bent. Further, to place the sheet at the appropriate position for widthwise alignment, the sheet transfer device applies a strong conveying force to the sheet so that the sheet moves toward the regulating device at a high speed. The sheet thus moves in the orthogonal direction along the regulating device (regulating member or the like) while maintaining the appropriate posture. This prevents the sheet from being skewed.
The configuration required to exert the above effects varies the speed of the sheet feeding rotating member, which applies the conveying force to the sheet. The configuration has a simple structure and can be easily controlled. The present invention sets the speed at which the sheet is conveyed toward the regulating device higher than that at which the sheet is moved in the orthogonal direction by the widthwise aligning device. This enables the sheets to be orderly stacked on the tray, allowing the subsequent post-process to be executed at the exact position.
The disclosure of Japanese Patent Applications No. 2006-257524, filed on Sep. 22, 2006, is incorporated in the application.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-257524 | Sep 2006 | JP | national |