This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2017-172103 filed Sep. 7, 2017.
The present invention relates to a sheet containing system and an image forming apparatus.
According to an aspect of the present invention, a sheet containing system includes a containing member, a feed device, an ascending device, and a powder applying device. The containing member has a wall portion and is to contain a sheet. The feed device feeds the sheet to an outside of the containing member. The ascending device moves up the sheet contained in the containing member toward the feed device. The powder applying device is provided in the wall portion disposed on a downstream side in the containing member in a transport direction of the sheet. The powder applying device applies powder to an end portion of the sheet on the downstream side in the transport direction of the sheet.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
A sheet containing system and an image forming apparatus according to a first exemplary embodiment are described.
The image forming apparatus 10 includes the transport unit 12, an image forming section 14, and a fixing device 40. The transport unit 12 transports sheets of recording paper. Each of these recording sheets serves as an example of a recording medium. The image forming section 14 forms with toner images G on the recording sheet transported by the transport unit 12. The fixing device 40 applies heat and pressure to the toner images G so as to fix the toner images G onto the recording sheet. According to the present exemplary embodiment, the toner images G are formed on label sheets of paper P. Each of these label sheets P serves as the recording medium instead of the recording sheet. The details of the label sheet P will be described later. The following description describes the case where the label sheet P is used as the recording medium.
As illustrated in
The image forming units 20 include respective photosensitive drums 22 and respective developing devices 24.
The photosensitive drums 22 have a function of holding the toner images G developed by the developing devices 24. Here, on outer circumferential surfaces of the photosensitive drums 22Y, 22M, 22C, and 22K, the toner images G of the respective colors, that is, yellow (Y), magenta (M), cyan (C), and the black (K) are formed. The photosensitive drums 22 each have a cylindrical shape and are each rotated about its own axis (in an arrow R1 direction) by a drive device (not illustrated). The photosensitive drum 22 includes, for example, an aluminum base material and a photosensitive layer (not illustrated). The photosensitive layer includes an undercoating layer, a charge production layer, and a charge transport layer formed in this order on the base material.
The developing devices 24 have a function of developing electrostatic latent images formed on the photosensitive drums 22 into the respective toner images G. The developing devices 24 each extends in the axial direction of the photosensitive drum 22.
The transfer unit 30 has a function of transferring through second transfer the toner images G of the respective colors onto the label sheet P after the toner images G that had been developed on the outer circumferential surfaces of the photosensitive drums 22 by the developing devices 24 have been transferred through first transfer. The transfer unit 30 includes a transfer belt 32, first transfer rollers 34 for the respective colors, a drive roller 36, and a second transfer roller 38. Here, the transfer belt 32 is an example of an image holding body that holds the toner images G.
The transfer belt 32 is an endless belt. The first transfer rollers 34 and the drive roller 36 are disposed so as to be in contact with an inner circumferential surface of the transfer belt 32. The orientation of the transfer belt 32, which is inclined relative to the apparatus width direction in front view, is determined by rollers in contact with the inner circumferential surface of the transfer belt 32, that is, the four first transfer rollers 34, the drive roller 36, a tension applying roller 39, and so forth. The outer circumferential surfaces of the photosensitive drums 22 of the image forming units 20 arranged in a direction inclined relative to the apparatus width direction are in contact with a portion of an outer circumferential surface of the transfer unit 30 facing the lower side in the apparatus height direction. As illustrated in
A first transfer voltage is applied to the first transfer rollers 34, thereby transferring through first transfer the toner images G formed on the outer circumferential surfaces of the photosensitive drums 22Y, 22M, 22C, and 22K onto the outer circumferential surface of the transfer belt 32.
The second transfer roller 38 has an elongated shape. The second transfer roller 38 is pressed by a pressure device (not illustrated) during image forming operation, thereby a nip N is formed between the second transfer roller 38 and the transfer belt 32. A second transfer voltage is applied to the second transfer roller 38, thereby transferring through second transfer the toner images G having been transferred through first transfer onto the outer circumferential surface of the transfer belt 32 onto the label sheet P transported by the transport unit 12 and passing through the nip N.
The transport unit 12 has a function of transporting the label sheets P contained in the containing unit 50 toward an output unit 16. The transport unit 12 includes a feed roller 12A, a transport roller pair 12B, a transport roller pair 12C, an inversion transport unit 12D, and output rollers 12E. The label sheet P is transported in a transport direction F through a transport path 12F. In the containing unit 50 to be described later, a direction in which the label sheets P are moved from a containing member 52 to the feed roller 12A and the transport roller pair 12B, that is, toward the +X side is the transport direction F. Here, the feed roller 12A has a function of feeding each of the label sheets P contained in the containing unit 50 to the outside of the containing unit 50. The feed roller 12A serves as an example of a feed device.
The fixing device 40 has a function of fixing onto the label sheet P the toner images G transferred through second transfer onto the label sheet P. The fixing device 40 includes a fixing roller 42 and a pressure roller 44.
The image forming apparatus 10 according to the present exemplary embodiment is able to form images on the label sheet P serving as an example of the recording medium. As illustrated in
Here, the tacky layer P2 may extend outward past the surface material P1 to a surrounding region depending on the state of cutting of the label sheet P when the label sheet P is formed. Furthermore, the release paper P3 may be shifted relative to the surface material P1 due to warpage of the label sheet P during transportation. This may also cause the tacky layer P2 to extend outward past the surface material P1 to the surrounding region.
Examples of the surface material P1 include fine paper, kraft paper, recycled paper, and so forth. Examples of the glue applied to the tacky layer P2 include a variety of adhesives such as an acrylic adhesive, a polyester adhesive, a urethane adhesive, a silicone adhesive, a natural rubber adhesive, and a synthetic rubber adhesive.
Next, the containing unit 50 according to the present exemplary embodiment is described.
As illustrated in
The bottom plate 54 is a plate-shaped member provided at the bottom portion 52B of the containing member 52. Here, the label sheets P contained in the containing member 52 are stacked one on top of another on an upper surface of the bottom plate 54. The bottom plate 54 has a fulcrum on the upstream side (−X side) in the transport direction F and an end portion on the downstream side (+X side) in the transport direction F (referred to as “distal end” hereafter) that is upwardly movable in an arrow U direction. The bottom plate 54 according to the present exemplary embodiment includes a drive device (not illustrated) which moves the distal end of the bottom plate 54 upward in the arrow U direction. Thus, the bottom plate 54 is inclined relative the bottom portion 52B. When the label sheets P contained in the inclined state are moved upward together with the bottom plate 54, the feed roller 12A is brought into contact with an uppermost one of the label sheets P in the containing member 52 (see
The bottom plate 54 may be moved upward by a spring member such as a coil spring instead of the drive device. In this case, the bottom plate 54 is moved downward along with removal (drawing) of the containing unit 50 from an apparatus body 10A of the image forming apparatus 10 and held in a lowered state. Furthermore, when the holding of the lowered state has been released due to mounting of the containing unit 50 in the apparatus body 10A, the bottom plate 54 is moved upward until the label sheet P is brought into contact with the feed roller 12A.
The powder applying device 100 is provided in the containing member 52 and has a function of applying powder H to the leading end of each of the label sheets P. The powder applying device 100 according to the present exemplary embodiment is provided in the width direction of the label sheet P (Z direction) in the groove portion 52C provided in the wall portion 52A of the containing member 52 (see
As illustrated in
The contact portion 110 is a brush-shaped member including fibers embedded in a surface of the storing portion 120 closer to the inner side (−X side) of the containing member 52. The powder H is held on a surface (on the −X side) of the contact portion 110. As illustrated in
Examples of the powder H applied to the leading end of the label sheet P by the powder applying device 100 include, for example, silica, polymethyl methacrylate (PMMA), zinc stearate (ZnSt), calcium carbonate, and talc. The particle size (number-average particle size) of the powder H may be set to be, for example, from 0.5 to 14 μm. When the particle size of the powder H is smaller than 0.5 μm, the powder H is likely to be sunk into the tacky layer P2 of the label sheet P. Thus, it may be difficult to maintain the degree of suppression of the adherence of the glue. When the particle size of the powder H is larger than 14 μm, an initial degree of suppression of the adherence of the glue may tend to be smaller than a required degree of suppression. In addition to the above-described examples, the examples of the powder H may include a yellow (Y) toner and a clear toner.
As described above, the tacky layer P2 may extend outward past the surface material P1 in the label sheet P (see
As illustrated in
Next, as illustrated in
Furthermore, the contact portion 110, which is a brush-shaped member, is bent at a portion where the contact portion 110 and the label sheets P are in contact with each other when the contact portion 110 is brought into contact with the leading ends of the label sheets P. This allows each of the label sheets P to be fed toward the feed roller 12A side (+Y side) while the movement of the label sheet P is not blocked by the contact portion 110. That is, according to the present exemplary embodiment, compared to a structure in which the contact portion 110 is not deformed or displaced, the likelihood of the label sheet P being caught by the contact portion 110 when the label sheet P is brought into contact with the contact portion 110 may be reduced. When the contact portion 110 is brought into contact with the label sheets P, the contact portion 110 is bent, and further, the storing portion 120 is elastically deformed. As a result, the powder H contained in the storing portion 120 is supplied to the contact portion 110. That is, the storing portion 120 according to the present exemplary embodiment is able to supply the powder H when the contact portion 110 is a brush-shaped member. According to the present exemplary embodiment, compared to a structure that is not provided with the storing portion 120, shortage in supply of the powder H may be suppressed.
When the leading ends of the label sheets P are further moved upward in the arrow U direction, as illustrated in
Thus, with the containing unit 50 according to the present exemplary embodiment, when the label sheet P is used, the following features may be obtained compared to the structure with which the powder H is not applied to the leading end of the label sheet P. That is, according to the present exemplary embodiment, due to the upward movement of the label sheet P along with the upward movement of the bottom plate 54, the powder H is able to be applied to the leading end of the label sheet P. That is, since the powder H is able to adhere to the glue extending outward to the leading end of the label sheet P, exposure of the glue at the leading end of the label sheet P may be suppressed. This may suppress adhering of the glue to the transfer belt 32, and accordingly, may suppress image defects. Furthermore, since adhering of the glue to portions of the transport path 12F is suppressed, transport failure may be suppressed. In order to check whether or not the exposure of the glue is suppressed at the leading end of the label sheet P, it is sufficient to check, for example, whether or not an adhering force of the glue exposed at the leading end of the label sheet P is reduced.
Furthermore, as illustrated in
The powder applying device according to a second exemplary embodiment is differently structured from that of the first exemplary embodiment. The difference between the first exemplary embodiment and the second exemplary embodiment will be described. The same elements as those of the first exemplary embodiment are denoted by the same reference signs.
As illustrated in
The storing portion 220 has an opening 224 on the inner side of the containing member 52 (−X side) and the container 222 having a box shape elongated in the width direction of the label sheet P (Z direction). This storing portion 220 is contained in the groove portion 52C of the containing member 52. Furthermore, the contact portion 210 is contained in the container 222. Furthermore, a cover portion 226 is provided so as to cover the opening 224. The cover portion 226 has a gap 228 at its central portion in the Y direction. The contact portion 210 is disposed so as to close the gap 228 from which the cylindrical surface 210A of the contact portion 210 is exposed. In other words, the cover portion 226 covers the contact portion 210 so that the cylindrical surface 210A is exposed from the gap 228. The cover portion 226 is an elastic plate member, and a peripheral portion around the gap 228 is pressed against the cylindrical surface 210A.
Here, in the storing portion 220, the contact portion 210 is contained in a space defined by the container 222 and the cover portion 226, and the powder H is stored such that the powder H is in contact with the contact portion 210 (cylindrical surface 210A). The powder H is held on the cylindrical surface 210A of the contact portion 210 exposed from the gap 228.
Operation of the powder applying device 200 according to the second exemplary embodiment is as follows. That is, as illustrated in
As illustrated in
A support structure of the powder applying device according to a third exemplary embodiment is different from that of the first exemplary embodiment. The difference between the first exemplary embodiment and the third exemplary embodiment will be described. The same elements as those of the first exemplary embodiment are denoted by the same reference signs.
As illustrated in
Operation of the powder applying device 100 according to the third exemplary embodiment is as follows. That is, as illustrated in
Here, when the number of the label sheets P contained in the containing member 52 reduces, that is, the thickness of the stack of the label sheets P becomes smaller than the height of the contact portion 110 (length in the Y direction), the label sheets P are more easily deformed than the contact portion 110. Furthermore, the likelihood of the leading ends of the label sheets P being caught by the contact portion 110 increases. Accordingly, when the number of the label sheets P contained in the containing member 52 reduces, there may be transport failure of the label sheets P such as paper jamming due to damage to the label sheets P. In order to address this, the powder applying device 100 including the contact portion 110 is movable in the X direction according to the present exemplary embodiment. Thus, even when the number of the label sheets P contained in the containing member 52 reduces, the powder applying device 100 is pressed so as to be retracted to the groove portion 52C side, thereby allowing the label sheets P to be smoothly fed toward the feed roller 12A side (+Y side).
Although the coil springs 56 are used as examples of the pressure member according to the present exemplary embodiment, this is not limiting. Instead, a plate spring may be provided in the width direction of the label sheet P (Z direction). Furthermore, since the powder applying device 100 itself is movable in the X direction according to the present exemplary embodiment, the contact portion 110 is not necessarily formed of a brush-shaped member including fibers. For example, the contact portion 110 may be formed of a sponge having an open cell structure and serving as a porous elastic body. Furthermore, the structure according to the present exemplary embodiment may be used for the powder applying device 200 according to the second exemplary embodiment.
The disposition of the powder applying device according to a fourth exemplary embodiment is different from that of the first exemplary embodiment. The difference between the first exemplary embodiment and the fourth exemplary embodiment will be described. The same elements as those of the first exemplary embodiment are denoted by the same reference signs.
As illustrated in
The operation and the features of the powder applying device 100A according to the present exemplary embodiment are as follows. That is, as illustrated in
Although the bottom plate 54 is moved upward so as to be inclined relative to the bottom portion 52B in the containing unit 50 according to the above-described exemplary embodiments, this is not limiting. The bottom plate 54 may be moved upward while being parallel to the bottom portion 52B.
Furthermore, although the containing unit 50 contained in the apparatus body 10A serves as an example of the sheet containing system according to the exemplary embodiments, this is not limiting. The following structure may be used. That is, a feed unit mounted outside the apparatus body 10A serves as an example of the sheet containing system, and the powder applying device 100 is provided in this feed unit.
Although the toner images G of the colors developed by the respective image forming units 20 are transferred onto the label sheet P through the transfer belt 32 in the above-described exemplary embodiments, this is not limiting. The toner images G may be directly transferred onto the label sheet P. Furthermore, although the image forming apparatus is for forming toner images of multiple colors according to the above-described exemplary embodiments, this is not limiting. Techniques described herein may be used for an image forming apparatus for forming toner images of a single color (for example, black (K)). In the above-described cases, the label sheet P is transported toward the photosensitive drum 22 serving as an example of the image holding body.
For the exemplary embodiments, a switching device may be provided. With this switching device, whether or not to use the powder applying device 100 or 200 is switched in accordance with the type of the recording medium. As the switching device, for example, a cover (shutter) may be provided on a surface of the contact portion 110 or 210 on the inner side of the containing member 52. Alternatively, the powder applying device 100 or 200 may be removed and an elongated member (dummy) formed of resin may be mounted in the groove portion 52C. With the switching device, application of the powder H is able to be stopped when recording paper used as the recording medium is, for example, plain paper. That is, the containing unit 50 (containing member 52) is also usable for other types of sheets such as plain paper instead of being dedicated to the label sheets P.
For the exemplary embodiments, the powder applying device 100 or 200 may be irreplaceable. In this case, the storing portion 120 or 220 has such a capacity that the powder H is not exhausted in the life of the apparatus. Instead, for the exemplary embodiments, the powder applying device 100 or 200 may be replaceable. In this case, only the storing portion 120 may be replaced with a new storing portion 120 for the powder applying device 100 according to the first and third exemplary embodiments and for the powder applying device 100A according to the fourth exemplary embodiments, or the powder applying device 100 or 100A itself may be replaced with a new powder applying device 100 or 100A. Furthermore, regarding the powder applying device 200 according to the second exemplary embodiment, the storing portion 220 may be replenished with the powder H, or the powder applying device 200 itself may be replaced with a new powder applying device 200.
Although the sheet onto which the toner images G are transferred is the label sheet P that includes the tacky layer P2 to which the glue is applied according to the exemplary embodiments, the sheet usable with the techniques herein is not limited to the label sheet P. For example, the techniques herein may be used for coated paper formed by coating the surface of plain paper with resin or the like. Also with the coated paper, image defects may occur or the cleaning performance may be adversely affected when the resin on the surface of the coated paper is removed and adheres to the transfer belt 32. Accordingly, by causing the powder H to adhere to the leading end of the coated paper in the transport direction F, adhering of the resin on the surface of the coated paper to the transfer belt 32 may be suppressed.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2017-172103 | Sep 2017 | JP | national |