Embodiments described herein relate generally to a technology for controlling sizes of sheets accommodated in a plurality of cassettes.
An image processing apparatus is known which comprises an image forming section for forming an image on a sheet and an image erasing section for erasing the image by heating the sheet. A plurality of cassettes is used in the image processing apparatus, including: a cassette in which a used sheet is accommodated, a cassette in which a sheet subjected to an erasing processing is accommodated and a cassette in which a new sheet is accommodated.
To conform to the sizes of a variety of sheets, each cassette is equipped with a mechanism by means of which the size of the sheet capable of being accommodated in the cassette can be manually changed. Further, in order to match the size of accommodated sheet with a cassette for accommodating a sheet prior to the erasing processing and a cassette for accommodating a sheet subjected to the erasing processing, a user manually adjusts to make the size of each cassette match with the size of the sheet.
However, if the user changes the size of the sheet accommodated in one of cassettes and then carries out a processing without changing the size of the sheet accommodated in other one of cassettes, then there is a case in which the non-matching of the accommodated sheets in size leads to a jam or the damage of a sheet.
In accordance with embodiments described herein, a sheet conveyance apparatus comprises a first sheet accommodation unit, a second sheet accommodation unit, a conveyance path and a controller. The first sheet accommodation unit and the second sheet accommodation unit are both provided with a movable guide plate which determines the size of the accommodated sheet. The conveyance path conveys a sheet between the first sheet accommodation unit and the second sheet accommodation unit. The controller carries out a control processing so as to change, in a case in which the accommodation size of the first sheet accommodation unit is changed, the accommodation size of the second sheet accommodation unit to be the same as that of the first sheet accommodation unit.
The image processing apparatus described hereinafter is provided with at least two cassettes, including: a cassette in which a used sheet (a sheet the image on which is to be erased for the recycle) is accommodated and a cassette in which a sheet subjected to an erasing processing is accommodated. If the size of one of cassettes accommodating the sheet (hereinafter referred to as accommodation size as needed) is changed, the image processing apparatus provided herein changes the accommodation size of the other one of cassettes to be the same as that of one of cassettes.
Each of embodiments is described below with reference to accompanying drawings.
An image processing apparatus 100 comprises a new sheet cassette 106 which stacks and accommodates a new sheet, an image forming section 105 which forms an image on a sheet and a discharge tray 107 for stacking a sheet subjected to image formation. The image processing apparatus 100 comprises conveyance paths R2 and R3 which convey a sheet in the sequence of the new sheet cassette 106, the image forming section 105 and the discharge tray 107. Further, the image processing apparatus 100 comprises an operation panel 104 which receives input of a parameter value such as ‘print copies’ or a processing start instruction from the user and displays the progress status of a job.
An image erasing apparatus 200 is arranged at the lower part of a main body of the image processing apparatus 100. The image erasing apparatus 200 can be alternatively mounted on the main body of the image processing apparatus 100 or provided as an individual.
The image erasing apparatus 200 comprises a used sheet cassette 202 (sheet accommodation section), an erasing section 204 and a recycle sheet cassette 213 (sheet accommodation section). The used sheet cassette 202 accommodates a sheet which is used and to be recycled. That is, the used sheet cassette 202 accommodates a sheet on which an image is formed with a color material (toner or ink) which is decolorized at a temperature more than a specified temperature. The erasing section 204 heats, by using a heat source 214 at the forgoing temperature more than a specified temperature, the sheet fed from the used sheet cassette 202. In this way, the erasing section 204 erases the image formed on the sheet. The recycle sheet cassette 203 stacks and accommodates the sheet for which the erasing section 204 carries out an erasing processing. Further, the ‘decolorize’ mentioned here means that an image which is formed with a color different from the fundamental color of a sheet (achromatic colors such as white and black in addition to chromatic colors) cannot be seen visually.
The image erasing apparatus 200 comprises a conveyance path R1 which conveys a sheet in the sequence of the used sheet cassette 202, the heat source 214 of the erasing section 204 and the recycle sheet cassette 213. Further, the image erasing apparatus 200 comprises a conveyance path R4 with one end connected with the conveyance path R2 in the main body of the image processing apparatus 100, and the other end connected with the recycle sheet cassette 203. If the image erasing apparatus 200 is optionally mounted on the main body of the image processing apparatus 100, then the conveyance path R2 can be connected with the conveyance path R4, and the sheet accommodated in the recycle sheet cassette 203 is also fed to the inside of the main body. Thus, the image processing apparatus 100 is capable of causing the image forming section 105 to form an image on a sheet fed from the recycle sheet cassette 203 and then discharging the sheet to the discharge tray 107 through the conveyance paths R4 and R2. The mounting of the image erasing apparatus 200 on the image processing apparatus 100 enables the image processing apparatus 100 to excuse a series of operations, including: erasing an image by using the erasing section 204 and forming an image on a sheet subjected to an image erasing processing by using the image forming section 105.
The image processing apparatus 100 comprises a network I/F 103 (I/F: interface) which receives a print job from a personal computer and returns a message indicating the result or status of a processing to the personal computer of the sending source according to an instruction from the controller 110. The image forming section 105, the new sheet cassette 106 and the discharge tray 107 shown in
The image erasing apparatus 200 comprises a controller 201. The controller 201 is a unit which collectively controls each internal unit of the image erasing apparatus 200. In the present embodiment, it is assumed that the controller 201 is installed with an ASIC (Application Specific Integrated Circuit) having a storage area. But not limited to this, the controller 201 may also be a unit which has a processor and a storage section and carries out a control processing according to the data or program codes stored in the storage section. Further, the controller 110 of the image processing apparatus 100 may also take charge of the operations and the functions of the controller 201.
The used sheet cassette 202 comprises a motor section 212 for activating the machine mechanism shown in
Further, a device including the controller 201, the used sheet cassette 202 and the recycle sheet cassette 203 in the image erasing apparatus 200 and the conveyance path R1 shown in
The recycle sheet cassette 203 has a wall 52 (guide plate) serving as a guider for aligning sheet bundles in the X-axis direction. The wall 52 is jointed with a rack 56 serving as a linear gear. The wall 52 is moved upwards on the paper surface operating together with the rack 56 through the rotation of a pinion 57 in the clockwise direction shown in
Further, the pinions 55 and 57 obtain motive power from the motor section 213 to rotate clockwise or anticlockwise. The control of rotation start/stop and the rotational speed indicating how much degree of rotation of the motor section 213 follow an instruction signal from the controller 201. Further, the user may move the walls 51A, 51B and 52 manually.
Further, the recycle sheet cassette 203 comprises a plurality of size detection sensors 53. If the size detection sensor 53 is turned into “ON”, it is deemed that there is a sheet above the sensor (the upper direction of the Z-axis direction, the front side of the paper surface). The size of the sheet can be detected by a combination of size detection sensors 53 in an ‘ON’ state. Further, the size detection sensor 53 is also ‘ON’ even when the walls 51A, 51B and 52 are located above the sensor (the upper direction of the Z-axis direction, the front side of the paper surface). Thus, in a case in which the user manually moves the walls 51A, 51B and 52, the size detection sensor 53 can also detect whether or not the accommodation size of the recycle sheet cassette 203 is changed for accommodating any sheet size. It is assumed that the sizes detectable to the size detection sensor 53 are standard sizes, for example, A4, Letter and A3.
The recycle sheet cassette 203 shown in
The operations illustrated in
In the examples shown in
According the first embodiment, it is assumed that after the accommodation size of one of cassettes is changed by the user, the accommodation size of the other one of cassettes is also changed to be the same as that of one of cassettes, thus inhibiting the occurrence of the jam and sheet damage caused by the non-matching of accommodation sizes.
For example, it is assumed that the user desires an erasing processing on an A4-sized sheet smaller than an A3-sized sheet in a case in which the accommodation sizes of the used sheet cassette 202 and the recycle sheet cassette 203 are both A3 size. At this time, the user manually changes the accommodation size of the used sheet cassette 202 from A3 size to A4 size. In this case, if an A3-sized sheet is loaded in the recycle sheet cassette 203 serving as the other one of cassettes, each wall is moved to form an A4 size smaller than an A3 size in the first embodiment, and thus, a problem occurs that the sheet in the recycle sheet cassette 203 is folded or corrugated.
In the second embodiment, an installation example of discharging the remaining sheets or notifying the user of the existence of the remaining sheets is described when the accommodation size of the other one of cassettes is changed while the remaining sheets exist in one of cassettes.
In the second embodiment, as shown in
In the second embodiment, the used sheet cassette 202 is also equipped with a mechanism or a sensor which is identical to the structure shown in
The controller 110 determines whether or not a button ‘start erasing’ on the operation panel 104 is pressed (ACT 201). If the button ‘start erasing’ is pressed (ACT 201: Yes), the processing proceeds to ACT 202. Further, the operations subsequent to Act 202, although assumed in the present example to be carried out when the button ‘start erasing’ is pressed, are not limited to be triggered in this way. Further, a trigger signal is notified to controller 201.
The controller 201 determines whether or not the accommodation size of the used sheet cassette 202 is changed (ACT 202). In the case where the accommodation size of the used sheet cassette 202 is changed, the controller 201 also detects the changed accommodation size of the used sheet cassette 202 through the processing. In the case where the accommodation size of the used sheet cassette 202 is not changed (ACT 202: No), the controller 201 proceeds to execute the processing in ACT 208. In the case where the accommodation size of the used sheet cassette 202 is changed (ACT 202: Yes), the controller 201 determines whether or not there is a remaining sheet in the recycle sheet cassette 203 according to the value detected by the load detection sensor 58 of the recycle sheet cassette 203 and if so, determines whether or not there are a given quantity of remaining sheets in the recycle sheet cassette 203 (ACT 203). It is assumed that there may be an installation that the quantity mentioned here refers to a number of sheets for the comparison with a given number of sheets (e.g. 10); however, the detected weight is also applicable as it is, for comparison with a given weight (e.g. the weight of 10 sheets).
If the quantity is below the given quantity (ACT 203: Yes), the controller 201 activates the operation panel 104 to notify the existence of remaining sheets in the recycle sheet cassette 203 and synchronously inquire the user whether or not to discharge the remaining sheets automatically (ACT 204). Herein, if the user selects an automatic discharge (selects “Yes”) (ACT 205: Yes), the controller 201 carries out a control processing so that the remaining sheets in the recycle sheet cassette 203 are all conveyed to the discharge tray 107 through the conveyance paths R4 and R2 (ACT 206).
Then, the controller 201 moves walls to change the accommodation size of the recycle sheet cassette 203 to be the same as the changed accommodation size of the used sheet cassette 202 (ACT 207). The controller 201 starts feeding the sheets from the used sheet cassette 202 (ACT 208) so that the erasing section 204 is operated to carry out a erasing processing (ACT 209).
On the other hand, if the result of ACT 203 is that the quantity is not below the given quantity (ACT 203: No), then it takes some time to discharge the remaining sheets as there are too many remaining sheets in the recycle sheet cassette 203. In this case, the controller 201 enables the operation panel 104 to display a message indicating that the walls of the two cassettes are located at different positions and a message ‘remove manually’ (ACT 210). Likewise, the message displayed in ACT 210 is displayed if the selection of the user in ACT 205 is No (ACT 205: No).
With such a structure, a jam or an alignment failure can be prevented which is caused by the difference in the location of the walls of the used sheet cassette 202 and the recycle sheet cassette 203.
In the third embodiment, the image processing apparatus 100 determines whether or not there is a sheet in the other one of cassettes after the user changes the accommodation size of one of cassettes. If there is a sheet in the cassette, the image processing apparatus 100 informs the user to remove the sheet. Further, if one of cassettes is slide or a cover for covering the cassette is detected to be opened or closed, the image processing apparatus 100 of the third embodiment changes the accommodation size of the other one of cassettes.
The opening and closing detection sensor 222 is equipped with a physical switch. The switch is in an ‘OFF’ state and outputs an “OFF” signal when the external wall cover is closed, and in an ‘ON’ state and outputs an “ON” signal when the external wall cover is opened. It is assumed that the opening and closing detection sensor 223 is also equipped with a physical switch. The switch may also be turned on/off when the external wall cover is closed/opened.
Further, it is assumed in the present example that the opening/closing of the external wall cover is detected, however, it is also applicable that the used sheet cassette 202 and the recycle sheet cassette 203, for example, are slide forwards in the Y-axis direction so that sheets can be taken out. In this case, the opening and closing detection sensors 222 and 223 may be installations for detecting whether or not the used sheet cassette 202 and the recycle sheet cassette 203 are slide. That is, the opening and closing, detection sensors 222 and 223 detect whether or not the internal side of a sheet accommodation section is exposed to the outside.
Next, the operations carried out in embodiment 3 are described with reference to the flowcharts of
The flowchart of
The controller 201 determines, according to a signal from the opening and closing detection sensor 223, whether or not opening and closing operation of cassette is carried out (ACT 304). In the present example, it is assumed that the determination result of ACT 304 is positive if cassette B is in the transition from an opened state to a closed state. If the determination result of Act 304 is negative (ACT 304: No), the processing returns to ACT 303 to inform the user to remove sheets. If the determination result of ACT 304 is positive (ACT 304: Yes), the processing returns to ACT 302 again and the controller 201 determines whether or not there is a sheet in cassette B (ACT 302).
Herein, if it is determined that the sheet in cassette B is removed or that there are no sheets in cassette B from the beginning (ACT 302: No), the controller 201 activates a machine mechanism to change the accommodation size of cassette B (ACT 305).
Herein, if it is determined that the sheet in cassette A is removed or that there are no sheets in cassette A from the beginning (ACT 402: No), the controller 201 sequentially determines whether or not there is a sheet in cassette B (ACT 405), informs the user to remove the sheet if there are sheets (ACT 406) and determines whether or not opening and closing operation of the cassette is carried out (ACT 407). ACTs 405-407 are identical to ACTs 402-404 in operations.
If there are no sheets in either cassette (ACT 405: No), the controller 201 changes the accommodation sizes of cassettes A and B (ACT 408). In this case, the controller 201 carries out a control processing to change the accommodation sizes of cassettes A and B to an accommodation size specified by the user with the operation panel 104 and to be the same as each other.
Further, in the description of the foregoing embodiments, the ‘erasing processing’ is described as the decoloring of the color of an image; however, the ‘erasing processing’ may also refer to the erasing of an image. That is, not limited to an apparatus for thermally decoloring the color of an image, the erasing apparatus of the present embodiments may also be, for example, an apparatus for decoloring the color of an image formed on a sheet by irradiating the sheet with light, or an apparatus for erasing an image formed on a special sheet, or an apparatus for removing (erasing) an image formed on a sheet. The erasing apparatus may be a structure which makes the image formed on a sheet invisible so that the sheet is reusable.
Each of modes described in the first to third embodiments may also be combined.
According to the embodiments, a control processing can be carried out to unify the accommodation sizes of a plurality of sheet accommodation sections, thus reducing the occurrence of the problems caused by the non-matching of accommodation sizes.
While certain embodiments have been described, these embodiments have been presented byway of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3589710 | Yagi | Jun 1971 | A |
5366216 | Ahlvin | Nov 1994 | A |
5781822 | Nishiyama et al. | Jul 1998 | A |
6073925 | Sato | Jun 2000 | A |
6334388 | Kimura | Jan 2002 | B1 |
6401606 | Sato | Jun 2002 | B1 |
6654586 | Lyon | Nov 2003 | B2 |
9126786 | Taki | Sep 2015 | B2 |
20030180078 | Lyon | Sep 2003 | A1 |
20110065574 | Taguchi et al. | Mar 2011 | A1 |
20130271547 | Umetsu | Oct 2013 | A1 |
20140193183 | Endo | Jul 2014 | A1 |
20150071668 | Katakura | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
5-124737 | May 1993 | JP |
Entry |
---|
Machine translation of JP 5-124737. |
Number | Date | Country | |
---|---|---|---|
20170113892 A1 | Apr 2017 | US |