Field of the Invention
The present invention relates to a sheet conveyance apparatus adapted to convey a sheet as well as to an image forming apparatus equipped with the sheet conveyance apparatus.
Description of the Related Art
Generally, an image forming apparatus such as an electrophotographic copier transfers a toner image to a sheet and fixes the transferred toner image onto the sheet by applying heat and pressure using a fixing device. Then, after passing through the fixing device, the sheet is discharged out of the apparatus by a discharge roller pair.
Japanese Patent Application Laid-Open No. H11-311893 proposes a printer in which a discharge roller pair includes a conveyance roller driven by a motor, and a pinch roller placed by being inclined at a predetermined angle to a rotation axis of the conveyance roller and adapted to rotate following the conveyance roller.
However, in the printer described above, when the conveyance roller and pinch roller are cylindrical, the conveyance roller and pinch roller contact each other only at a single point. In this way, when the conveyance roller and pinch roller making up a roller pair adapted to convey a sheet have a small number of contact points, sheet holding force will be impaired, resulting in a reduced conveying force, and sheet conveyance will become unstable. Also, nip pressure between the conveyance roller and pinch roller will concentrate on the single point, and the sheet might be creased, scarred, or otherwise damaged.
According to a first aspect of the present invention, a sheet conveyance apparatus includes a first roller configured to rotate around a first rotation axis; and a second roller configured to rotate around a second rotation axis, the second roller coming into contact with the first roller and thereby forming a nip portion in which a sheet is conveyed, the second rotation axis being inclined with respect to the first rotation axis, wherein the second roller includes a first outer circumferential portion having a first outside diameter, a second outer circumferential portion arranged on one side of the first outer circumferential portion in an axial direction of the second rotation axis and having a second outside diameter larger than the first outside diameter, and a third outer circumferential portion arranged on the other side of the first outer circumferential portion in the axial direction of the second rotation axis and having a third outside diameter larger than the first outside diameter, and wherein an outer circumferential surface of the first roller contacts with at least the first outer circumferential portion, the second outer circumferential portion, and the third outer circumferential portion of the second roller, to form the nip portion.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
[Overall Configuration]
First, a first embodiment of the present invention will be described. A printer 100 (image forming apparatus) according to the first embodiment is a laser beam printer of an electrophotography type. As shown in
The sheet feeding unit 40 includes a cassette 1 loaded with sheets S, a sheet feeding roller 2 adapted to feed sheets S loaded in the cassette 1, and a separation unit (not shown) made up, for example, of a separation roller. The image forming unit 50 includes a photosensitive drum 5, an electrostatic charger, a developing apparatus, a cleaning apparatus, a cartridge 4 provided with a toner container, and a laser scanner 7 adapted to irradiate the photosensitive drum 5 with a laser beam. Also, the image forming unit 50 includes a transfer roller 6 adapted to form a transfer nip N (transfer unit) in conjunction with the photosensitive drum 5. The cartridge 4 is detachably attached to the printer 100.
When an image forming signal is input to the printer 100, the laser scanner 7 irradiates the photosensitive drum 5, which has been charged uniformly by the electrostatic charger, with a laser beam 8 based on image information transmitted from an external PC or scanner. An electrostatic latent image formed on the photosensitive drum 5 by the laser beam 8 is developed into a toner image by the developing apparatus.
Concurrently with an image forming process of the image forming unit 50, the sheets S loaded in the cassette 1 are fed one by one by being separated by the sheet feeding roller 2 and separation unit. The sheets S fed by the sheet feeding unit 40 are conveyed to the transfer nip N by the intermediate conveyance unit 3 made up of a roller pair or the like. The toner image formed on the photosensitive drum 5 is transferred to the sheets in the transfer nip N. Toner remaining on the photosensitive drum 5 is collected by the cleaning apparatus.
Heat and pressure are applied by the fixing roller 9 and a pressure roller 10 of the fixing device 60 to the sheets S to which the toner image has been transferred, and consequently the toner image is fixed thereto. The sheets S with the toner image fixed thereto are discharged out of the printer to an output tray 70 by the discharge unit 11 placed downstream of the fixing device 60 in a sheet conveying direction.
[Discharge Unit]
Next, a configuration of the discharge unit 11 (sheet conveyance apparatus) will be described in detail. As shown in
As shown in
Note that a discharge roller 12R (third roller) of the discharge roller pair 11R is fixed to the rotating shaft 12a in such a way as to be coaxial with the discharge roller 12L. An idle roller 13R (fourth roller) is rotatably supported by the upper frame 18 via a holding member 14R separately from the idle roller 13L.
When the rotating shaft 12a is driven by the motor (not shown), the discharge rollers 12L and 12R rotate and the idle rollers 13L and 13R placed in pressure contact with the discharge rollers 12L and 12R rotate by being driven by driving forces of the discharge rollers 12L and 12R.
[Arrangement of Idle Rollers]
Next, arrangement of the idle rollers 13L and 13R will be described in detail.
The idle rollers 13L and 13R are installed symmetrically with respect to the center line m at a center of the conveying path along which the sheet is conveyed, by being inclined outward with respect to the sheet conveying direction. As the idle rollers 13L and 13R are placed at an inclination, the sheet S is stretched outward on both sides, thereby preventing the sheet S from being creased while being conveyed in the discharge unit 11.
[Shape of Idle Rollers]
Next, shape of the idle rollers 13L and 13R will be described in detail. As shown in
The first outer circumferential portion 13L1 is located in an approximate center portion of the idle roller 13L in an axial direction, and the second outer circumferential portion 13L2 and third outer circumferential portion 13L3 are located, respectively, on edges of the idle roller 13L in the axial direction. That is, the second outer circumferential portion 13L2 is placed on one side of the first outer circumferential portion 13L1 in the axial direction and the third outer circumferential portion 13L3 is placed on another side of the first outer circumferential portion 13L1 in the axial direction.
The first outside diameter Ra is set smaller than the second outside diameter Rb and third outside diameter Rc, and the second outside diameter Rb and third outside diameter Rc are set equal to each other (Ra<Rb=Rc). Also, the idle roller 13L is formed continuously, gradually increasing in outside diameter from the first outer circumferential portion 13L1 toward the second outer circumferential portion 13L2 as well as from the first outer circumferential portion 13L1 toward the third outer circumferential portion 13L3. Then, the idle roller 13L is formed into a so-called reverse camber shape or hourglass shape as a whole, being depressed in a central portion in the axial direction and gradually increasing in outside diameter toward opposite ends.
Note that the idle roller 13R has a configuration similar to that of the idle roller 13L and includes a fourth outer circumferential portion 13R1, a fifth outer circumferential portion 13R2, and a sixth outer circumferential portion 13R3 as shown in
The idle roller 13L, which has the arrangement and shape described above, abuts (contacts) an outer circumferential surface 12Ls of the discharge roller 12L on at least the first outer circumferential portion 13L1, second outer circumferential portion 13L2 and third outer circumferential portion 13L3. In the present embodiment, the idle roller 13L forms a nip portion to convey the sheet by abutting the outer circumferential surface 12Ls of the discharge roller 12L, for example, at contact points X, Y, and Z.
This allows the idle roller 13L to contact the discharge roller 12L at three or more points, increasing a sheet conveying force during conveyance of the sheet and enabling stable sheet conveyance. Also, nip pressure between the discharge roller 12L and idle roller 13L is distributed over the three contact points X, Y, and Z, reducing damage such as creases and scars left on the sheet.
Also, since the discharge roller 12L is placed by being inclined obliquely with respect to the idle roller 13L, high-temperature toner on the sheet passing through the fixing device 60 comes into sliding contact with the idle roller 13L, preventing the toner from sticking in clumps to the idle roller 13L. Recently, in particular, melting points of toner have been becoming lower and image forming processes have been becoming faster, creating an environment in which toner is prone to attach to the idle roller 13L, but the present embodiment can prevent this.
Also, in the nip of the discharge roller pair 11L, the sheet winds itself around the discharge roller 12L, which is formed of rubber, and an effect of the winding can further increase the conveying force. The sheet passing through the fixing device 60 is prone to curl because moisture content in the sheet changes as well as because the sheet passes through the curved conveying path R1. However, since the sheet winds itself around the discharge roller 12L, the curl formed on the sheet S passing through the fixing device 60 can be removed. Note that the above effect works not only on the discharge roller pair 11L, but also on the discharge roller pair 11R in a similar manner.
Note that in the present embodiment, the outside diameters of the idle rollers 13L and 13R are formed continuously by changing gradually, but this is not restrictive. That is, the idle rollers may be configured to have a stepped section when viewed in a radial direction of the rollers.
Also, in the present embodiment, the outside diameter Rb of the second outer circumferential portion 13L2 and outside diameter Rc of the third outer circumferential portion 13L3 are set equal to each other, but may be set different from each other.
Next, a second embodiment of the present invention will be described. The second embodiment is configured by applying the idle rollers 13L and 13R according to the first embodiment to the intermediate conveyance unit 3. Thus, the same components as those in the first embodiment will be described by denoting with the same reference numerals as the corresponding components in the first embodiment or illustration thereof will be omitted.
[Intermediate Conveyance Unit]
The intermediate conveyance unit 3 (sheet conveyance apparatus) is installed upstream of the transfer nip N in the sheet conveying direction (see
As shown in
When the rotating shaft 22a is driven by the motor (not shown), the intermediate conveyance rollers 22L and 22R rotate and the idle rollers 23L and 23R placed in pressure contact with the intermediate conveyance rollers 22L and 22R rotate by being driven by driving forces of the intermediate conveyance rollers 22L and 22R.
[Arrangement and Shape of Idle Rollers]
Next, arrangement of the idle rollers 23L and 23R will be described in detail.
Similarly, a rotation axis 23Ra of the idle roller 23R is placed by being obliquely inclined at the angle θ2 to the rotation axis 22b of an intermediate conveyance roller 22R. The idle rollers 23L and 23R are installed symmetrically with respect to the center line m at a center of the conveying path along which the sheet is conveyed, by being slightly inclined outward with respect to the sheet conveying direction.
Also, as with the idle rollers 13L and 13R according to the first embodiment, each of the idle rollers 23L and 23R is formed into a so-called reverse camber shape or hourglass shape as a whole, being depressed in a central portion in the axial direction and gradually increasing in outside diameter toward opposite ends.
Since the idle rollers 23L and 23R are symmetric to each other with respect to the center line m and slightly inclined outward with respect to the sheet conveying direction as described above, the idle rollers 23L and 23R are prevented from both being inclined in the same direction due to parts tolerances. Consequently, the sheet S can be conveyed straight through the transfer nip N, preventing the image from being transferred obliquely to the sheet S.
Also, since the idle roller 23L is formed into a reverse camber shape, the idle roller 23L can contact the intermediate conveyance roller 22L at three or more points, increasing the sheet conveying force during conveyance of the sheet. This enables stable sheet conveyance. Also, nip pressure between the intermediate conveyance roller 22L and idle roller 23L is distributed, reducing damage such as creases and scars left on the sheet. Note that the above effect works not only on the intermediate conveyance roller pair 30L, but also on the intermediate conveyance roller pair 30R in a similar manner.
Next, a third embodiment of the present invention will be described. The third embodiment is configured by changing the shape of the idle rollers 13L and 13R according to the first embodiment. Thus, the same components as those in the first embodiment will be described by denoting with the same reference numerals as the corresponding components in the first embodiment or illustration thereof will be omitted.
[Arrangement and Shape of Idle Rollers]
As shown in
The idle roller 33L includes a first disk portion 33b, a second disk portion 33a, a third disk portion 33c, a fourth disk portion 33d and a fifth disk portion 33e fixed to a rotating shaft 35L and each formed into a disk shape. A vacant space is provided between each pair of adjacent disk portions from among the first disk portion 33b, second disk portion 33a, third disk portion 33c, fourth disk portion 33d and fifth disk portion 33e.
The first disk portion 33b (first outer circumferential portion) is located in an approximate center portion of the idle roller 33L in the axial direction, and the second disk portion 33a (second outer circumferential portion) and third disk portion 33c (third outer circumferential portion) are placed on opposite sides of the first disk portion 33b in the axial direction. The fourth disk portion 33d (first small-diameter portion) is placed on the opposite side of the first disk portion 33b from the second disk portion 33a and the fifth disk portion 33e (second small-diameter portion) is placed on the opposite side of the first disk portion 33b from the third disk portion 33c.
An outside diameter Db of the first disk portion 33b is set smaller than an outside diameter Da of the second disk portion 33a and an outside diameter Dc of the third disk portion 33c, and the outside diameter Da of the second disk portion 33a and the outside diameter Dc of the third disk portion 33c are set equal to each other (Db<Da=Dc). Also, an outside diameter Dd of the fourth disk portion 33d is set smaller than the outside diameter Da of the adjacent second disk portion 33a and an outside diameter De of the fifth disk portion 33e is set smaller than the outside diameter Dc of the adjacent third disk portion 33c (Dd<Da; De<Dc).
The idle roller 33L, which has the arrangement and shape described above, abuts the outer circumferential surface 12Ls of the discharge roller 12L on at least the first disk portion 33b, second disk portion 33a and third disk portion 33c. In the present embodiment, the idle roller 33L abuts the outer circumferential surface 12Ls of the discharge roller 12L, for example, at contact points X, Y and Z.
This allows the idle roller 33L to contact the discharge roller 12L at three or more points, increasing the sheet conveying force during conveyance of the sheet and enabling stable sheet conveyance. Also, nip pressure between the discharge roller 12L and idle roller 33L is distributed over the three contact points X, Y and Z, reducing damage such as creases and scars left on the sheet.
Also, since the outside diameters Dd and De of the fourth disk portion 33d and fifth disk portion 33e are set smaller than the outside diameters Da and Dc of the second disk portion 33a and third disk portion 33c, the fourth disk portion 33d and fifth disk portion 33e do not come into contact with the discharge roller 12L. That is, even if the idle roller 33L is inclined with respect to the discharge roller 12L, the sheet does not come locally into contact with the fourth disk portion 33d and fifth disk portion 33e. This prevents formation of streaks on the sheet.
Also, the idle roller 33L, which is formed of plural disk portions, can be mold-formed relatively easily and produced at low costs.
Note that the reverse camber idle rollers applied to the discharge unit 11 and intermediate conveyance unit 3 in the first to third embodiments may be applied in other places.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2015-196504, filed Oct. 2, 2015, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-196504 | Oct 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4188109 | Idenawa | Feb 1980 | A |
4589654 | Kanoto | May 1986 | A |
5143366 | Svyatsky | Sep 1992 | A |
5186448 | Ohsawa et al. | Feb 1993 | A |
5640649 | Kikuchi et al. | Jun 1997 | A |
5793399 | Kawakami et al. | Aug 1998 | A |
5867196 | Kiyohara et al. | Feb 1999 | A |
5886729 | Hiramatsu et al. | Mar 1999 | A |
5899451 | Kiyohara et al. | May 1999 | A |
5992993 | Kiyohara et al. | Nov 1999 | A |
6045220 | Kiyohara et al. | Apr 2000 | A |
6330419 | Sano | Dec 2001 | B1 |
7500670 | Kitazawa | Mar 2009 | B2 |
7661674 | Izuchi | Feb 2010 | B2 |
7828292 | Kitazawa | Nov 2010 | B2 |
9132989 | Norikane | Sep 2015 | B2 |
9280118 | Endo | Mar 2016 | B2 |
9517906 | Nishimura | Dec 2016 | B2 |
9588476 | Endo | Mar 2017 | B2 |
20040135310 | Yang | Jul 2004 | A1 |
20040178571 | Ohama et al. | Sep 2004 | A1 |
20080247797 | Yoshino | Oct 2008 | A1 |
20120183338 | Kanai | Jul 2012 | A1 |
20140064812 | Liu | Mar 2014 | A1 |
20170001825 | Baek | Jan 2017 | A1 |
20170008713 | Yamaguchi | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
1530306 | Sep 2004 | CN |
1721305 | Jan 2006 | CN |
101288863 | Oct 2008 | CN |
102976125 | Mar 2013 | CN |
103662894 | Mar 2014 | CN |
104555518 | Apr 2015 | CN |
S63-272742 | Nov 1988 | JP |
S64-64943 | Mar 1989 | JP |
H05-107984 | Apr 1993 | JP |
H11-311893 | Nov 1999 | JP |
2002-226077 | Aug 2002 | JP |
Entry |
---|
Office Action dated Jun. 4, 2018, in Chinese Patent Application No. 201610871008.4. |
Number | Date | Country | |
---|---|---|---|
20170096310 A1 | Apr 2017 | US |