This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Application No. 2018-63663 filed on Mar. 29, 2018, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a sheet conveyance unit which is attachably and detachably connected to an upstream-side apparatus, such as an image forming apparatus, and which conveys a sheet received from the upstream-side apparatus to a downstream side, and also relates to a sheet conveyance system including the same.
Conventionally, sheet post-processing apparatuses are known which are capable of performing sheet post-processing, such as binding processing of stacking a plurality of sheets on each of which an image has been formed by an image forming apparatus such as a copier, a printer, or the like and binding the stacked plurality of sheets together as a sheet bunch by means of a stapler, punch-hole forming processing of punching a hole by means of a punch-hole forming device, and so forth, and such sheet post-processing apparatuses are used to perform the sheet post-processing such as the binding processing with respect to a comparatively large number of sheets.
Such sheet post-processing apparatuses are each provided with a sheet inlet port for receiving a sheet discharged via a sheet discharge port of an image forming apparatus. Here, the image forming apparatus may, for example, sink into a carpet laid on the floor, which sometimes creates a state where the sheet discharge port of the image forming apparatus and the sheet inlet port of the sheet post-processing apparatus are located at different height positions. Conventionally, such difference in height position between the sheet discharge port and the sheet inlet port has generally been compensated for by increasing the width of a conveyance guide on the upstream side (sheet discharge port side), the conveyance guide constituting the sheet inlet port of the sheet post-processing apparatus.
However, the increase in the width of the conveyance guide constituting the sheet inlet port may cause a soft sheet such as a thin paper sheet to curl at the sheet inlet port, and the thus curled thin paper sheet cannot be conveyed into the sheet inlet port smoothly, which disadvantageously results in paper jam. On the other hand, if the width of the conveyance guide is reduced, it becomes necessary to adjust the heights of the image forming apparatus and the sheet post-processing apparatus with good accuracy, which disadvantageously increases the time for the installation of the image forming apparatus and the sheet post-processing apparatus.
Here, as a method for smoothly achieving connection between an image forming apparatus and a sheet post-processing apparatus, there is known, for example, combined units including a first unit to which there is attached a fixed member on which a first connector is mounted, and a second unit to which there is attached a connection member on which a second connector is mounted. The connection member is movable in a front-back direction and configured to be switchable in position between a connection position at which the connection member is engaged with the fixed member and a release position at which the connection member is disengaged from the fixed member. The first connector and the second connector are connected to each other when the connection member is located at the connection position, and disconnected from each other when the connecting member is located at the release position.
According to one aspect of the present disclosure, a sheet conveyance unit being connected to a sheet discharge unit which discharge a sheet, includes a sheet inlet port, an inlet guide, and a guide switching mechanism. The sheet inlet port is connected to a discharge guide provided in the sheet discharge unit. The inlet guide is provided at the sheet inlet port, and has an upper guide facing an upper surface of the sheet and a lower guide disposed below the upper guide and so as to face a lower surface of the sheet. The guide switching mechanism switches a position of the inlet guide between a conveyance position at which the upper guide and the lower guide face each other with a first distance and a separation position at which the lower guide and the upper guide are spaced from each other with a second distance greater than the first distance. The inlet guide is disposed to the separation position before the discharge guide is inserted between the upper guide and the lower guide, and the position of the inlet guide is disposed to the conveyance position after the discharge guide is inserted between the upper guide and the lower guide.
Still other objects of the present disclosure and specific advantages provided by the present disclosure will become further apparent from the following descriptions of embodiments.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
The image forming apparatus 1 is a printer of an inkjet recording type, and includes a sheet storage section 4 arranged in a lower portion of the image forming apparatus 1, a sheet feeding section 5 arranged beside and above the sheet storage section 4, a sheet conveyance section 6 arranged above the sheet storage section 4, an image recording section 7 disposed above and opposite the sheet conveyance section 6, and a reverse conveyance section 8 provided above the image recording section 7.
The sheet storage section 4 is provided with a plurality of (here, three) attachable/detachable sheet feeding cassettes 4a in which a bundle of paper sheets P are stacked. The sheet feeding section 5 feeds a paper sheet P placed in the sheet storage section 4 to the sheet conveyance section 6 by means of a sheet feeding roller pair 5a, which is provided on a downstream side of each sheet feeding cassette 4a in a sheet feeding direction.
The sheet conveyance section 6 includes a conveyance belt 6a which is an endless belt wound around a plurality of rollers including a driving roller. The conveyance belt 6a is provided with a large number of air holes (not shown) through which air is sucked in. The paper sheet P fed out of the sheet feeding section 5 passes below the image recording section 7, during which the paper sheet P is adsorbed and held on the conveyance belt 6a by being sucked by a sheet sucking section 6b provided inside the conveyance belt 6a.
The image recording section 7 includes a plurality of inkjet heads which eject ink toward the paper sheet P conveyed by being adsorbed and held on the conveyance belt 6a. To each of the inkjet heads, ink of one of four colors (cyan, magenta, yellow, and black) stored in an ink tank (not shown) is supplied corresponding to the color of each of the inkjet heads.
In a case where recording is to be performed on both sides of the paper sheet P, after recording is finished on one side of the paper sheet P, the reverse conveyance section 8 switches the conveyance direction of the paper sheet P (that is, switches back the paper sheet P) to thereby turn the paper sheet P over, and then conveys the paper sheet P to the image recording section 7 with the side of the paper sheet P on which no image has been recorded facing upward. The paper sheet P on which predetermined images have been recorded by the image recording section 7 is discharged via a discharge roller pair 9, and conveyed into the relay conveyance apparatus 10.
The relay conveyance apparatus 10 performs reversing processing of turning over the paper sheet P after an image is recorded on the paper sheet P by the image forming apparatus 1, and drying processing of drying ink on the paper sheet P. As illustrated in
Further, there is provided a second conveyance path 12b which branches off from the first conveyance path 12a, and the paper sheet P having passed through the second conveyance path 12b is conveyed onto a second reversing tray 13b. The second reversing tray 13b receives the paper sheet P conveyed from the second conveyance path 12b, and then turns the paper sheet P over by switching the conveyance direction of (that is, by switching back) the paper sheet P.
The paper sheet P, which has been turned over by the first reversing tray 13a or the second reversing tray 13b passes through a third conveyance path 12c to be conveyed to a bypass conveyance path 14a or 14b. The bypass conveyance paths 14a and 14b are capable of making the paper sheet P stop (stand by) in accordance with what processing the sheet post-processing apparatus 20 is going to perform. Sheet stopping positions (that is, the horizontal portions in
The paper sheet P having passed through the bypass conveyance path 14a or 14b passes through a fourth conveyance path 12d, and is discharged from a relay outlet port 16 to be conveyed into the sheet post-processing apparatus 20. In a case of conveying the paper sheet P into the sheet post-processing apparatus 20 without performing the reversing processing, the paper sheet P passes through a fifth conveyance path 12e which branches off from the first conveyance path 12a on an upstream side of the first reversing tray 13a, and is discharged from the relay outlet port 16. The paper sheet P that is not to be conveyed into the sheet post-processing apparatus 20 passes through a sixth conveyance path 12f branching off from the first conveyance path 12a, and is discharged onto a relay discharge tray 17.
In each of the first conveyance path 12a, the second conveyance path 12b, and the bypass conveyance paths 14a and 14b, a fan 18 is disposed for sending air to the paper sheet P to dry the ink thereon. In each of the first to sixth conveyance paths 12a to 12f and the bypass conveyance paths 14a and 14b, a conveyance roller pair (conveyance member) 19, which conveys the paper sheet P, is disposed at a suitable position.
The sheet post-processing apparatus 20 is connected to the relay conveyance apparatus 10 on the downstream side of the relay conveyance apparatus 10 in the conveyance direction, and performs the post-processing such as the punch-hole forming processing, binding processing, or the like with respect to paper sheets P on which images have been recorded in the image forming apparatus 1 and which have passed through the relay conveyance apparatus 10.
As illustrated in
The punch-hole forming device 22 is disposed in an upper portion of the sheet post-processing apparatus 20. The paper sheet P on which an image has been formed in the image forming apparatus 1 is fed into the sheet post-processing apparatus 20 via the sheet inlet port 21 provided in an upper right portion of the sheet post-processing apparatus 20 to pass through the punch-hole forming device 22, and then, in a case where no stapling processing is to be performed, the paper sheet P is discharged as it is into the sub tray 24b. In a case where the staple processing is to be performed, the paper sheet P is conveyed to the end-binding unit 23 or the middle-binding middle-folding unit 25, of which both are disposed below the punch-hole forming device 22.
The end-binding unit 23 includes a stapler, a processing tray (of which neither is illustrated), etc. A bundle of paper sheets P are stacked on the processing tray with leading ends of the paper sheets P aligned, the stapler disposed at an end portion of the processing tray binds the bundle of paper sheets P at an end of the bundle, and then the bundle of the paper sheets P is discharged along the processing tray onto the main tray 24a.
The middle-binding middle-folding unit 25 disposed below the end-binding unit 23 includes a middle-binding stapler, a middle-folding device, a sheet guide (of which none is illustrated), etc. The middle-binding stapler performs stapling processing on a center portion of the bundle of paper sheets P stacked inside the sheet guide. The bundle of paper sheets P having undergone the staple processing performed by the middle-binding stapler is folded into a booklet form by the middle-folding device with the stapled portion as the center, and is then discharged into a booklet tray 26.
The inlet guide 41 includes an upper guide 42 and a lower guide 43, which is disposed below the upper guide 42. The upper guide 42 and the lower guide 43 respectively face an upper surface and a lower surface of the paper sheet P conveyed into the relay conveyance apparatus 10. On a downstream side (left side in
The upper conveyance guide 44 is supported to be openable and closable with respect to the lower conveyance guide 45, with one end side thereof in a width direction (left-right direction in
In a state in which the relay conveyance apparatus 10 is connected to the image forming apparatus 1 as illustrated in
Next, a detailed description will be given of a configuration of the guide switching mechanism 50.
The guide switching mechanism 50 includes a slide lever 51, the first rotation member 53, the second rotation member 55, a lower guide lever 57, an upper guide lever 59, and a torsion spring (biasing member) 75. The slide lever 51 is supported on the side surface frame 10a of the relay conveyance apparatus 10 to be slidable in a front-back direction (arrow-AA′ direction) of the relay conveyance apparatus 10.
As illustrated in
The second rotation member 55 has a shape vertically reverse to the shape of the first rotation member 53, and, as illustrated in
The lower guide lever 57 is a link member which connects the first rotation member 53 and the lower guide 43 to each other. As illustrated in
The upper guide lever 59 is a link member which connects the second rotation member 55 and the upper guide 42 to each other. As illustrated in
Next, a description will be given of a procedure of switching the inlet guide 41 when connecting the relay conveyance apparatus 10 of the present embodiment to the image forming apparatus 1. First, the slide lever 51 is pulled out toward the front side of the relay conveyance apparatus 10 (in the arrow-A direction in
Along with the rotation of the first rotation member 53 in the arrow-B direction, as illustrated in
On the other hand, as illustrated in
According to the above procedure, as illustrated in
Then, the slide lever 51 is pushed toward the rear surface side of the relay conveyance apparatus 10 (the arrow-A′ direction in
Along with the rotation of the first rotation member 53 in the arrow-B′ direction, the lower guide lever 57 connected to the first slit 61 of the first rotation member 53 is pushed up. Consequently, the engagement piece 57c of the lower guide lever 57 moves upward, and this allows the biasing force of the torsion spring 75 to cause the swing end 43a of the lower guide 43 to rotate upward.
Further, the pressing force on the pressed portion 69 from the connection portion 60 of the first rotation member 53 disappears, and as a result, the self weight of the upper guide lever 59 causes the second rotation member 55 to rotate in the arrow-C′ direction with the second support shaft 71 as a fulcrum. Consequently, the push-up piece 59c of the upper guide lever 59 moves downward, and this allows the self weight of the upper guide 42 to cause the swing end 42a to rotate downward.
By the swing end 42a of the upper guide 42 coming into contact with a restriction portion 77, the downward rotation of the swing end 42a is restricted. Further, as for the swing end 43a of the lower guide 43, its upward rotation is restricted by the engagement piece 57c of the lower guide lever 57. Consequently, as illustrated in
In a case where the vertical center of the discharge path 47 is located at a higher position than the vertical center of the inlet path 48, a lower surface of the swing end 42a of the upper guide 42 is pushed up by the discharge upper guide 46a of the discharge guide 46, and moves away from the restriction portion 77. Further, the swing end 43a of the lower guide 43 is caused, by the biasing force of the torsion spring 75, to rotate upward in a state where the swing end 43a is in contact with a lower surface of the discharge lower guide 46b of the discharge guide 46.
In a case where the vertical center of the discharge path 47 is located at a lower position than the vertical center of the inlet path 48, an upper surface of the swing end 43a of the lower guide 43 is pushed down by the discharge lower guide 46b of the discharge guide 46 against the biasing force of the torsion spring 75, and rotates downward in a state where the swing end 43a is in contact with the lower surface of the discharge lower guide 46b of the discharge guide 46. At this time, the swing end 42a of the upper guide 42 is supported by the restriction portion 77, and thus there is formed a space between the swing end 42a of the upper guide 42 and an upper surface of the discharge guide 46. However, since the discharge guide 46 is inserted between the upper guide 42 and the lower guide 43, there is no risk of the paper sheet P being caught between the discharge guide 46 and the upper guide 42.
According to the configuration of the present embodiment, to connect the relay conveyance apparatus 10 to the image forming apparatus 1, the discharge guide 46 located on the upstream side with respect to the conveyance direction is inserted into the inlet guide 41 located on the downstream side with respect to the conveyance direction. This helps achieve smooth delivery of the paper sheet P from the discharge guide 46 to the inlet guide 41.
Further, by pulling out the slide lever 51 to bring the inlet guide 41 of the relay conveyance apparatus 10 to the separation position, it is possible to insert the discharge guide 46 smoothly between the upper guide 42 and the lower guide 43 of the inlet guide 41. And, by pushing in the slide lever 51 to bring the inlet guide 41 to the conveyance position, the inlet guide 41 and the discharge are securely connected to each other.
Accordingly, even in a case where the state of an installation surface does not allow the height position of the inlet guide 41 on the relay conveyance apparatus 10 side and that of the discharge guide 46 on the image forming apparatus 1 side to completely coincide with each other, it is possible to effectively reduce occurrence of conveyance failure of the paper sheet P ascribable to difference in height position between the inlet guide 41 and the discharge guide 46. Further, since there is no need of adjusting the height of the image forming apparatus 1 or of the relay conveyance apparatus 10, it is possible to significantly reduce the time for the installation.
The embodiments described above are in no way meant to limit the present disclosure, which thus allows for many modifications and variations within the spirit of the present disclosure. For example, in the embodiment described above, an example has been dealt with where the present disclosure is applied to the connecting of the image forming apparatus 1 and the relay conveyance apparatus 10 to each other, but the present disclosure is also applicable to the connecting of the relay conveyance apparatus 10 and the sheet post-processing apparatus 20 to each other, or, to the connecting of the image forming apparatus 1 and an insert apparatus to each other in connecting the insert apparatus, which supplies an insert sheet in an interval between sheet supplies from the image forming apparatus 1 to the relay conveyance apparatus 10.
For example, the present disclosure is applicable to the connecting of the relay conveyance apparatus 10 and the sheet post-processing apparatus 20 to each other by providing the inlet guide 41, which includes the upper guide 42 and the lower guide 43, at the sheet inlet port 21 of the sheet post-processing apparatus 20, and providing the discharge guide 46 at the relay outlet port 16 of the relay conveyance apparatus 10.
Further, the embodiment described above has dealt with an inkjet printer as an example of the image forming apparatus 1, but needless to say, the present disclosure is also applicable to image forming apparatuses other than inkjet printers, such as copiers, laser printers, facsimile machines, etc.
The present disclosure is applicable to a sheet conveyance unit which is attachably and detachably connected to an upstream-side apparatus such as an image forming apparatus, and which conveys a sheet received from the upstream-side apparatus to the downstream side.
Use of the present disclosure makes it possible to provide a sheet conveyance unit capable of receiving a sheet from an upstream-side apparatus easily and securely, regardless of the state of an installation surface or the kind of a sheet.
Number | Date | Country | Kind |
---|---|---|---|
2018-063663 | Mar 2018 | JP | national |