This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Application No. 2013-198868 filed on Sep. 25, 2013, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a sheet conveying device that conveys a sheet member, and particularly relates to a sheet conveying device having a conveyance path for reversing a sheet member guided to a sheet discharge port and returning the sheet member to an image forming portion again, and an image forming apparatus including the sheet conveying device.
A typical image forming apparatus such as a copy machine, a printer, or the like has a reverse conveyance path used for forming images on both sides of a sheet member (print sheet). In the reverse conveyance path, a sheet member having an image formed on one side thereof is reversed and guided again to an image formation position at which an image is formed by an image forming portion. As the reverse conveyance path, for example, a path is known which branches from a discharge path extending from the image formation position to a sheet discharge port and extends from the branch point to a merging point that is at the upstream side of the image formation position in a conveying direction. The reversing of the sheet member is performed by the following method. Specifically, when an image has been formed on one side of a sheet member, the sheet member is sent to the discharge path. Then, when the rear end of the sheet member has passed through the branch point, conveyance of the sheet member being conveyed toward the sheet discharge port is stopped. Then, the sheet member is conveyed in the reverse direction (reversely conveyed) toward the branch point. Reversing the conveying direction and conveying the sheet member as described above is referred to as switch-back conveyance or reverse conveyance. The sheet member that has been switched back to be conveyed is guided to the reverse conveyance path by a guide member such as a flap. When the sheet member has been returned to an image transfer position via the reverse conveyance path, the reversing of the sheet member is completed. It should be noted that a method is also known in which a guide member such as a flap is not provided and a sheet member is introduced from the branch point to the reverse conveyance path owing to only stiffness of the sheet member.
A sheet conveying device according to one aspect of the present disclosure includes a first conveyance path, a second conveyance path, a third conveyance path, a merging portion, and a discharge roller pair. The first conveyance path is configured to guide a sheet member from a sheet storage portion to an image forming portion. The second conveyance path is formed at a downstream side of the first conveyance path in a conveying direction of the sheet member and configured to guide the sheet member having an image formed thereon by the image forming portion, to a sheet discharge port. One end of the third conveyance path is connected to the first conveyance path and the other end is connected to the second conveyance path and the third conveyance path is configured to reverse the sheet member guided to the sheet discharge port and guide the sheet member to the image forming portion. The merging portion is a portion at which the second conveyance path and the third conveyance path merge with each other. The discharge roller pair is provided near the sheet discharge port so as to be rotatable forward and reversely and is configured to nip the sheet member and convey the sheet member from the sheet discharge port either in a discharge direction or in a reverse direction. The second conveyance path includes a conveyance guide provided with a guide rib that projects upward from a guide surface thereof and extends along the conveying direction of the sheet member. A plurality of the guide ribs are provided in a width direction perpendicular to the conveying direction of the sheet member, and an outer guide rib provided outward of the discharge roller pair in the width direction is formed in a shape higher than an inner guide rib provided inward in the width direction.
An image forming apparatus according to another aspect of the present disclosure includes the sheet conveying device.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description with reference where appropriate to the accompanying drawings. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Hereinafter, a sheet conveying device 60 and an image forming apparatus 10 including the sheet conveying device 60 according to an embodiment of the present disclosure will be described with reference to the drawings. It should be noted that, for convenience of explanation, in a state where the image forming apparatus 10 is installed on a flat plane (a state shown in
First, a schematic configuration of the image forming apparatus 10 will be described with reference to
The image forming apparatus 10 includes an image reading portion 12 and an image forming portion 14. The image reading portion 12 performs a process of reading an image on a document, and is provided at an upper portion of the image forming apparatus 10. The image forming portion 14 performs a process of forming an image on the basis of an electrophotographic method, and is provided below the image reading portion 12. In addition, the image forming portion 14 includes two sheet feeders 27 and 28 arranged vertically at two stages. The sheet feeder 27 at the upper side is provided at a lowermost portion of the image forming portion 14 so as to be integrated with a housing 29. The sheet feeder 28 at the lower side is of an extension type connected as an option device to the bottom of the housing 29 of the image forming portion 14. The sheet feeder 28 is configured to be attachable to and detachable from the bottom of the housing 29. In addition, a sheet discharge portion 30 is provided at the right side of the image forming portion 14. It should be noted that the image forming portion 14 is not limited to an electrophotographic type, and may be an inkjet recording type or may be another recording type or another print type.
A sheet discharge space 21 to which a print sheet P is discharged is provided above the image forming portion 14. The sheet discharge portion 30 is provided so as to connect the image forming portion 14 to the image reading portion 12 while forming the sheet discharge space 21 between the image forming portion 14 and the image reading portion 12. As shown in
As shown in
In addition, as shown in
The image forming portion 14 forms an image on a print sheet P of a specified size such as A size or B size on the basis of image data read by the image reading portion 12 or externally inputted image data. In the present embodiment, in accordance with a preset print mode (one-side printing mode or double-sided printing mode), the image forming portion 14 performs either a one-side printing process (one-side image forming process) of forming an image on only one side of a print sheet P or a double-sided printing process (double-sided image forming process) of forming images on both sides of a print sheet P. When the one-side printing process is performed, as described later, the image forming portion 14 discharges a print sheet P having an image formed on one side thereof to the sheet discharge tray 21A of the sheet discharge space 21. On the other hand, when the double-sided printing process is performed, as described later, the image forming portion 14 switches back a print sheet P having an image formed on one side thereof, then sends the print sheet P to a later-described reverse conveyance path 39, forms an image again on the back surface of the print sheet P, and subsequently discharges the print sheet P having the images formed on both sides thereof to the sheet discharge tray 21A of the sheet discharge space 21.
As shown in
The sheet feeders 27 and 28 each convey a sheet member toward the image transfer portion 18. Each of the sheet feeders 27 and 28 includes a tray-shaped paper sheet storage portion 22 (an example of a sheet storage portion of the present disclosure) and a feeding mechanism 15. Print sheets P on which images are to be formed by the image transfer portion 18 (print sheets P used for image formation) are placed in the paper sheet storage portion 22. The feeding mechanism 15 takes out and conveys the print sheets P stored in the paper sheet storage portion 22 one by one. The feeding mechanism 15 is provided at the upper side of a right end portion of the paper sheet storage portion 22. The feeding mechanism 15 includes a feed roller 51 and a conveying roller pair 52 including a pair of rollers. When an instruction for feeding the print sheet P is inputted to the image forming apparatus 10, the conveyance motor is rotationally driven. Accordingly, the feed roller 51 and the conveying roller pair 52 are rotated. Then, the print sheet P is fed from the paper sheet storage portion 22 by the feed roller 51 and conveyed to the downstream side in a feeding direction of the print sheet P by the conveying roller pair 52.
As shown in
The sheet feeder 27 includes an outer cover 56 and an inner cover 57. The outer cover 56 and the inner cover 57 are provided at a right side end portion of the sheet feeder 27. When the outer cover 56 is opened in an open direction from a closed attitude shown in
The image transfer portion 18 is provided above the sheet feeder 27. The image transfer portion 18 performs an image transfer process on the print sheet P transferred from each of the sheet feeders 27 and 28. Specifically, on the basis of inputted image data, the image transfer portion 18 transfers a toner image to the print sheet P by using a printing material such as toner. As shown in
The photosensitive drum 31 is provided at the left side of the third section 26C. When an image forming operation is started, the surface of the photosensitive drum 31 is charged at a uniform potential by the charging portion 32. In addition, the LSU 34 scans the photosensitive drum 31 with laser light corresponding to image data. Accordingly, an electrostatic latent image is formed on the photosensitive drum 31. Then, toner is attached to the electrostatic latent image by the developing portion 33, whereby a toner image is formed on the photosensitive drum 31. The transfer roller 35 is provided at the right side of the third section 26C and disposed so as to face the photosensitive drum 31 across the third section 26C. When the print sheet P passing through the third section 26C passes through a nip portion of the transfer roller 35 and the photosensitive drum 31, the toner image is transferred onto the print sheet P by the transfer roller 35. The print sheet P on which the toner image has been transferred is conveyed through the third section 26C to the fixing portion 19 that is disposed at the downstream side of the image transfer portion 18 in a conveying direction of the print sheet P (i.e., at the upper side thereof).
The fixing portion 19 fixes the toner image transferred onto the print sheet P, on the print sheet P with heat. The fixing portion 19 includes a heating roller 41 and a pressure roller 42. The pressure roller 42 is urged toward the heating roller 41 side by an elastic member such as a spring. Accordingly, the pressure roller 42 is brought into pressure contact with the heating roller 41. The heating roller 41 is heated to high temperature by a heating device 41A (see
The sheet conveying device 60 is provided at the upper side of the fixing portion 19. As shown in
As shown in
The fourth section 26D is a conveyance path for guiding the print sheet P having an image fixed thereon by the fixing portion 19, to the paper sheet discharge port 37, and is formed as a section extending from a downstream-side exit of the fixing portion 19 to the paper sheet discharge port 37. The fourth section 26D is formed in a curved shape so as to extend upward in the vertical direction from the fixing portion 19 and then be curved near the branch point T1 that is in the middle of the fourth section 26D, toward the paper sheet discharge port 37. The fourth section 26D is formed by a plurality of the conveyance guides 62 to 65 (see
As shown in
The conveyance guides 64 and 65 are provided so as to extend along a curved path 26D2 of the fourth section 26D which curved path 26D2 extends from the branch point T1 to the paper sheet discharge port 37. The curved path 26D2 is formed by the conveyance guides 64 and 65. The conveyance guide 64 is an example of a downstream-side guide portion of the present disclosure and is provided at the lower side of the curved path 26D2. The conveyance guide 64 is connected to the conveyance guide 62 near the branch point T1. The conveyance guide 64 is gently inclined from the branch point T1 toward the paper sheet discharge port 37. A lower-side guide surface 64A of the curved path 26D2 is formed by the conveyance guide 64. In addition, the conveyance guide 65 is provided at the upper side of the curved path 26D2. An upper-side guide surface of the curved path 26D2 is formed by the conveyance guide 65. In a state where the conveyance guide 64 and the conveyance guide 62 are connected to each other, a guide surface from the guide surface of the conveyance guide 62 to the guide surface 64A of the conveyance guide 64 has a curved shape. It should be noted that a conveyance guide of the present disclosure is realized by the conveyance guides 62 and 64.
Each discharge roller pair 25 is provided near the paper sheet discharge port 37. Each discharge roller pair 25 is a roller pair including a driving roller 25A and a driven roller 25B that are brought into pressure contact with each other. An elastic member having a high sliding friction like rubber is attached on the roller surface of the driving roller 25A. The driving roller 25A is rotatably supported at the upper side of the curved path 26D2. Specifically, the driving roller 25A is supported about an axis by the conveyance guide 65. A rotational driving force in a forward or reverse direction is transmitted from the discharge motor (not shown) to the driving roller 25A. Thus, the driving roller 25A is rotatable in a rotation direction corresponding to the inputted rotational driving force. The driven roller 25B is rotatably supported at the lower side of the curved path 26D2. Specifically, the driven roller 25B is provided at the paper sheet discharge port 37 side of the conveyance guide 64. The driven roller 25B is supported about an axis by the conveyance guide 64. The driven roller 25B is urged toward the driving roller 25A side by an elastic member (not shown) such a coil spring. Accordingly, the driven roller 25B is always brought into pressure contact with the surface of the driving roller 25A by an appropriate elastic urging force. Therefore, when the driving roller 25A is rotationally driven, the driven roller 25B is also driven so as to follow the rotation of the driving roller 25A due to the contact friction.
In the present embodiment, as shown in
The rotary rollers 66 are rotatably provided at the conveyance guide 64 forming the lower-side guide surface 64A of the curved path 26D2. Each rotary roller 66 has a smaller size in the width direction than that of each of the respective rollers 25A and 25B of each discharge roller pair 25. The rotary rollers 66 are provided at the branch point T1 side of the conveyance guide 64. The roller surface of each rotary roller 66 is exposed in the fourth section 26D and near the branch point T1. In other words, the roller surface of each rotary roller 66 is exposed from the guide surface 64A of the conveyance guide 64 to the fourth section 26D side. Thus, when the print sheet P passes through the fourth section 26D, the roller surface of each rotary roller 66 contacts the print sheet P. In other words, each rotary roller 66 contacts an image formation surface of the print sheet P passing through the branch point T1. Specifically, each rotary roller 66 contacts the print sheet P at a position spaced apart from the conveyance guide 64 by the length from the conveyance guide 64 to the roller surface thereof. By contacting the print sheet P moving in the fourth section 26D toward the paper sheet discharge port 37, each rotary roller 66 rotates due to the contact friction thereof.
In the present embodiment, as shown in
When a one-side printing process is performed in the image forming portion 14, the print sheet P having a toner image transferred onto one side thereof by the image transfer portion 18 passes through the fixing portion 19, then moves in the fourth section 26D, and is discharged through the paper sheet discharge port 37 to the outside by the respective four discharge roller pairs 25.
On the other hand, when a double-sided printing process is performed in the image forming portion 14, the print sheet P having an image formed initially on one side thereof passes through the fixing portion 19, is sent to the fourth section 26D, then is reversely conveyed in the fourth section 26D, and is sent to the reverse conveyance path 39. Specifically, in a state where the leading end, in the discharge direction, of the print sheet P having the image formed on the one side thereof is exposed from the paper sheet discharge port 37 to the outside, the discharge roller pairs 25 are stopped. At that time, the rear end, in the discharge direction, of the print sheet P is held in a state of being nipped by the discharge roller pairs 25. Then, the discharge roller pairs 25 are rotated in the reverse rotation direction by reverse rotational driving of the discharge motor (not shown). Accordingly, the print sheet P is conveyed in the fourth section 26D again in the reverse direction. In other words, the print sheet P is reversely conveyed (switched back to be conveyed) in the fourth section 26D.
As shown in
As shown in
Conveying roller pairs 74 are provided on the curved portion of the reverse conveyance path 39 at the upper side thereof. Each conveying roller pair 74 is a roller pair including a driving roller 74A and a driven roller 74B that are brought into pressure contact with each other. An elastic member having a high sliding friction like rubber is attached on the roller surface of the driving roller 74A. The driving roller 74A is rotatably supported by the conveyance guide 72. In addition, the driven roller 74B is rotatably supported by the conveyance guide 71. In the present embodiment, as shown in
In the configuration in which the fourth section 26D and the reverse conveyance path 39 are formed as described above, in performing a double-sided printing process, the print sheet P conveyed reversely in the curved path 26D2 of the fourth section 26D does not enter into the straight path 26D1 but enters into the reverse conveyance path 39 due to the stiffness thereof and momentum in which the print sheet P is conveyed in the reverse direction. However, when a print sheet P having a width larger than the arrangement interval between the two outer discharge roller pairs 25 of the four discharge roller pairs 25 is reversely conveyed, sheet end portions located further outward of the two outer discharge roller pairs 25 in the front-rear direction 7 (width direction) may hang down. This hanging-down occurs since the sheet end portions are not nipped by the discharge roller pairs 25. In other words, since the sheet end portions are not nipped by the discharge roller pairs 25, the hanging-down occurs due to a force in the direction of gravity caused by the weights of the sheet end portions. Particularly, when a thin print sheet that is less stiff and has a large size is conveyed, the hanging-down is great. In the case where the print sheet P is reversely conveyed while the sheet end portions thereof hang down, when the print sheet P conveyed reversely along the conveyance guide 64 passes through the branch point T1, the sheet end portions thereof enter into the straight path 26D1. Due to this, the sheet end portions are bent or broken, which may cause the print sheet P to be jammed at the branch point T1.
In the present embodiment, in order to eliminate the problem of bending due to the hanging-down and smoothly convey the print sheet to the reverse conveyance path 39, inner guide ribs 76 and outer guide ribs 77 having different heights are provided on the guide surface 64A of the conveyance guide 64. These guide ribs 76 and 77 are formed so as to be integrated with the conveyance guide 64. As shown in
Specifically, a plurality of inner guide ribs 76 are formed inward of the discharge roller pairs 25 in the front-rear direction 7 (width direction). Specifically, the plurality of inner guide ribs 76 are formed inward of the two discharge roller pairs 25 located at both sides in the width direction, of the four discharge roller pairs 25. The respective inner guide ribs 76 are formed with the same height. In the present embodiment, as shown in
In addition, a plurality of outer guide ribs 77 are formed outward of the discharge roller pairs 25 in the front-rear direction 7 (width direction). The plurality of guide ribs 77 are formed outward of the two discharge roller pairs 25 located at both sides in the width direction. Two outer guide ribs 77 are formed at each of both sides, in the width direction, of the conveyance guide 64. Each outer guide rib 77 is formed in a shape higher than each inner guide rib 76. As shown in
Since the inner guide ribs 76 and the outer guide ribs 77 are provided to the conveyance guide 64 as described above, when the print sheet P is conveyed in the curved path 26D2 in the discharge direction in a state where an image fixation surface thereof faces the conveyance guide 64 after an image is fixed thereon by the fixing portion 19, each rotary roller 66 contacts the image fixation surface. Thereafter, the print sheet P is conveyed in the discharge direction while the image fixation surface thereof is supported by each rotary roller 66. Then, when the print sheet P is further conveyed in the discharge direction and nipped by each discharge roller pair 25, the print sheet P is supported by the nip portion of each discharge roller pair 25 and each rotary roller 66. At that time, the print sheet P is supported such that the image fixation surface thereof is located at the position of the reference straight line 79. In such a supported state, the image fixation surface does not contact each inner guide rib 76. In this state, the print sheet P is further conveyed in the discharge direction. Accordingly, the image fixation surface of the print sheet P does not contact each inner guide rib 76 after the fixation. Thus, the image fixation surface is prevented from being rubbed against each inner guide rib 76 to cause disturbance of the image. In addition, in the case where the print sheet P having moved past each rotary roller 66 in the discharge direction is conveyed in the reverse direction in a double-sided printing process, when the leading end, in the reverse direction, of the print sheet P advances toward the branch point T1, the end portions, in the width direction, (the sheet end portions) of the print sheet P are gradually lifted by the outer guide ribs 77. Then, the sheet end portions of the print sheet P are lifted to the reference straight line 79 by the portions 77A before each rotary roller 66. Accordingly, the sheet end portions of the print sheet P do not hang down, and hanging-down of the sheet end portions is eliminated. Moreover, since the print sheet P is curved in a mortar shape in the width direction, the stiffness of the entire print sheet P is increased, and the straightness of reverse conveyance in the reverse direction is increased. As a result, when the print sheet P passes through the branch point T1, the sheet end portions of the print sheet P do not enter into the straight path 26D1, and bending or jamming of the sheet end portions is eliminated.
In the above-described embodiment, the configuration in which each outer guide rib 77 is formed in a shape with the same height as the reference straight line 79 has been described as an example, but the present disclosure is not limited thereto. For example, each outer guide rib 77 may be formed in a shape higher than the reference straight line 79. In this case as well, the sheet end portions are lifted, and thus bending or jamming of the sheet end portions of the print sheet P is prevented from occurring when the print sheet P passes through the branch point T1.
In addition, the outer guide ribs 77 in the above-described embodiment may be provided outward of the discharge roller pairs 25 in the width direction (a direction that coincides with the front-rear direction 7) and outward of the rotary rollers 66 in the width direction. In this case, the sheet end portions that are not supported by the rotary rollers 66 are supported at the reference straight line 79 by the outer guide ribs 77. Accordingly, the sheet end portions are lifted to a position higher than the guide surface of the conveyance guide 71. Thus, the sheet end portions of the print sheet P are unlikely to enter into the straight path 26D1 from the branch point T1.
It is to be understood that the embodiments herein are illustrative and not restrictive, since the scope of the disclosure is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-198868 | Sep 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6328303 | Maetani | Dec 2001 | B1 |
8439357 | Arikawa et al. | May 2013 | B2 |
20040256790 | Saito et al. | Dec 2004 | A1 |
20060062619 | Tanjo | Mar 2006 | A1 |
20090108518 | Kawashima | Apr 2009 | A1 |
20120201564 | Masuda | Aug 2012 | A1 |
20130301089 | Arikawa et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
3059052 | Jul 1999 | JP |
11217144 | Aug 1999 | JP |
2006056664 | Mar 2006 | JP |
2011090170 | May 2011 | JP |
2011049204 | Apr 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150084265 A1 | Mar 2015 | US |