This patent application is based on and claims priority pursuant to 35 U.S.C. § 119(a) to Japanese Patent Application No. 2018-204141, filed on Oct. 30, 2018, in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
This disclosure relates to a sheet conveying device and an image forming apparatus incorporating the sheet conveying device.
Various types of sheet conveying devices convey sheets using a roller, a conveying belt, or both. Such sheet conveying devices are known to employ a technique that, in a case in which there is an area where any roller or conveying belt cannot be disposed due to functional reasons of a sheet conveying device, a roller or a belt disposed immediately before the area pushes a sheet to convey the sheet toward a further device or unit. In such a sheet conveying device, when a low-rigidity sheet such as a thin paper, or a large-size sheet is pushed to be conveyed, the leading end of the sheet is lifted or curled, which is likely to result in a paper jam.
In order to prevent such a problem, some techniques to convey a sheet while a nipping member such as a gripper is nipping the leading end of a sheet have been proposed. However, when performing these techniques, the nipping member is moved to open when a sheet is loaded onto a tray. In other words, since an opening and closing mechanism to open and close the nipping member is provided in the sheet conveying device, the cost of the sheet conveying device is likely to increase.
At least one aspect of this disclosure provides a sheet conveying device including a tray, a conveyor, and a guide body. The tray is configured to stack a sheet. The conveyor is configured to convey the sheet to the tray. The guide body has a space. A height of the space is greater than a thickness of the sheet. The guide body is configured to guide the sheet conveyed by the conveyor, with a leading end of the sheet being inserted in the space. The guide body is configured to separate the sheet from the space, according to a difference of a sheet conveying speed of the conveyor and a moving speed of the guide body, and to stack the sheet on the tray.
Further, at least one aspect of this disclosure provides an image forming apparatus including an image forming device configured to form an image on a sheet, and the above-described sheet conveying device configured to convey the sheet on which the image is formed.
An exemplary embodiment of this disclosure will be described in detail based on the following figured, wherein:
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements describes as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
The terminology used herein is for describing particular embodiments and examples and is not intended to be limiting of exemplary embodiments of this disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Descriptions are given, with reference to the accompanying drawings, of examples, exemplary embodiments, modification of exemplary embodiments, etc., of a sheet conveying device and an image forming apparatus according to exemplary embodiments of this disclosure. Elements having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted. Elements that do not demand descriptions may be omitted from the drawings as a matter of convenience. Reference numerals of elements extracted from the patent publications are in parentheses so as to be distinguished from those of exemplary embodiments of this disclosure.
This disclosure is applicable to any heating device, and is implemented in the most effective manner in any inkjet image forming apparatus.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this disclosure is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes any and all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, preferred embodiments of this disclosure are described.
Descriptions are given of an embodiment applicable to a sheet conveying device and an image forming apparatus incorporating the sheet conveying device, with reference to the following figures.
It is to be noted that elements (for example, mechanical parts and components) having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted.
A description is given of an image forming apparatus according to this disclosure, with reference to
Further, size (dimension), material, shape, and relative positions used to describe each of the components and units are examples, and the scope of this disclosure is not limited thereto unless otherwise specified.
As illustrated in
The image forming apparatus 500 is an inkjet recording apparatus that includes inkjet heads that discharge different inks of four colors of black (B), cyan (C), magenta (M), and yellow (Y).
The sheet conveying device 100 includes a tray 10 and a sheet conveying unit 20. The tray 10 loads the sheet S. The sheet conveying unit 20 that functions as a conveyor to convey the sheet S from the printing device 200 towards the tray 10.
The sheet conveying device 100 further includes a sheet holder 30. After receiving and nipping the sheet S that has been conveyed by the sheet conveying unit 20, the sheet holder 30 conveys the sheet S along a sheet conveying direction X in which the sheet conveying unit 20 conveys the sheet S, at a speed faster than a sheet conveying speed of the sheet conveying unit 20, to guide the sheet S onto the tray 10.
The sheet conveying device 100 further includes a detector 40 that is disposed in the sheet conveying unit 20 to detect the leading end of the sheet S.
In the sheet conveying device 100, the sheet S that has been held by the sheet holder 30 is separated from the sheet holder 30 according to a difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the sheet holder 30, so that the sheet S separated from the sheet holder 30 is staked onto the tray 10.
The sheet holder 30 includes a sheet conveying belt 31 and clips 32. The sheet conveying belt 31 is rotatably disposed in the sheet holder 30. Each of the clips 32 functions as a nipping body that is mounted on the sheet conveying belt 31.
The sheet holder 30 is disposed on a downstream side in the sheet conveying direction X of the sheet conveying unit 20. The sheet holder 30 holds and conveys the sheet S along the sheet conveying direction X, that is, in a direction to be parallel to the sheet conveying direction X of the sheet conveying unit 20.
As illustrated in
Force with which the nipping portion 32b nips the sheet S is set to be slightly smaller than frictional force generated between the sheet conveying unit 20 and the sheet S. Consequently, the nipping portion 32b allows entrance of the sheet S due to the rigidity of the sheet S that is inserted from the opening 32a according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the sheet holder 30, and nips the sheet S with the elasticity of the nipping portion 32b.
In the present embodiment, the opening 32a has a respectively wide opening area, and therefore the sheet S is inserted into either of the clips 32 easily. Since a sheet conveying passage from the opening 32a to the nipping portion 32b is flat and smooth without any projection or recess, an amount of load generated when the sheet S enters the nipping portion 32b is reduced. Each of the clips 32 contacts front and back faces of the sheet S to nip the sheet S from both sides. According to this configuration, the sheet S is reliably nipped without being affected by tolerances when compared with a case in which the clip 32 nips one side of the sheet S and a different member such as the sheet conveying belt 31 holds a different side of the sheet S. Consequently, the sheet S is reliably stacked onto the tray 10. Further, the sheet S is prevented from receiving stains from the different member such as the sheet conveying belt 31 or from a positional displacement caused by being hit or collided and conveyed by the different member such as the sheet conveying belt 31. A contact face of the clip 32 that contacts the sheet S is preferably formed by a material having high smoothness such as metal and resin. Accordingly, the sheet S is smoothly inserted into each of the clips 32.
The clips 32 stand by at respective home positions, which are different positions spaced apart from each other in the sheet conveying direction, until the detector 40 detects the leading end of the sheet S. Then, after having completed conveyance of the sheet S, the clips 32 return to the respective home positions along with rotation of the sheet conveying belt 31 and stop.
In the present embodiment, as illustrated in
Three or more clips 32 may be arranged along the rotational direction of the sheet conveying belt 31. When arranging the plurality of clips 32 on the sheet conveying belt 31, it is preferable to arrange the phase to be equally divided.
As illustrated in
The plurality of sheet conveying belts 31 is classified to two types, which are end side belts 31a and center side belts 31b. Each end side belt 31a is disposed on an end side in the direction Y, which is the width direction of the clips 32. Each center side belt 31b is disposed between the end side belts 31a in the direction Y.
The clips 32 on the end side belt 31a are different in arrangement in the sheet conveying direction X from the clips 32 on the center side belt 31b. That is, the clips 32 mounted on the center side belt 31b are disposed upstream from the clips 32 mounted on the end side belt 31a in a sheet conveying direction of the sheet holder 30 in which the sheet holder 30 conveys the sheet S.
According to this arrangement, a timing at which the sheet S is inserted into the clips 32 is shifted between the end side belt 31a and the center side belt 31b, and therefore a load applied when the sheet S enters the clips 32 is reduced. Since a timing at which the sheet is separated from the clip 32 is also shifted, the sheet S retains the stable attitude.
In the present embodiment, four sheet conveying belts 31 are provided in the direction Y. However, the number of the sheet conveying belts 31 is not limited to four. For example, three sheet conveying belts 31 may be provided in the direction Y or five or more sheet conveying belts 31 may be provided. In a case in which five or more sheet conveying belts 31 are provided, two or more end side belts 31a may be disposed on each side in the direction Y.
In a case in which no center side belt 31b is provided, the number of the sheet conveying belts 31 may be two.
As illustrated in
As long as the sheet conveying speed is controlled easily, the sheet conveying unit 20 may convey the sheet S with the sheet conveying belt 31 or may convey the sheet S with combination of the roller 21 and the sheet conveying belt 31.
As indicated in the flowchart of
In step S2, the sheet conveying unit 20 starts driving along with the start of driving of the printing device 200, so that the sheet conveying unit 20 starts conveyance of the sheet S that has entered from the printing device 200.
In step S3, it is determined whether the detector 40 has detected the leading end of the sheet S. When the detector 40 has not detected the leading end of the sheet S (NO in step S3), the operation of step S3 is repeated until the detector 40 detects the leading end of the sheet S.
When the detector 40 has detected the leading end of the sheet S (YES in step S3), in step S4, a predetermined time that functions as an elapsed time starting from a detection timing of the leading end of the sheet S (indicated as T1 in the graph of
When the predetermined time has elapsed (indicated as T2 in the graph of
Thus, the sheet S is inserted into the clip 32 according to a difference in speed of the sheet conveying unit 20 and the clips 32 before the speed of movement the clips 32 becomes equal to the sheet conveying speed of the sheet conveying unit 20.
When the sheet holder 30 holds (nips) the sheet S (i.e., the timing T3 in the graph of
At this time, force of the clip 32 to hold (nip) the sheet S is slightly smaller than frictional force between the sheet conveying unit 20 and the sheet S. Therefore, while gradually coming off from the clip 32, the clip 32 remains holding (nipping) the sheet S from a position at which the sheet S is nipped to a position at which the sheet S is separated.
When the predetermined time has elapsed since the sheet holder 30 nips the sheet S (indicated as T4 in the graph of
Thus, the sheet S that is held by the sheet holder 30 is separated from the sheet holder 30 according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the sheet holder 30, generated by the second acceleration. After having been separated from the sheet holder 30 and having come out from the sheet conveying unit 20, the sheet S falls onto the tray 10 to be stacked on the tray 10.
In step S8, a predetermined time according to the sheet length data previously obtained by the sheet conveying device 100 is counted.
When the predetermined time has elapsed since the sheet S has been separated from the sheet holder 30 (indicated as T6 in the graph of
In step S11, it is determined whether a print job in the printing device 200 is completed.
When it is determined in step S11 that the print job is not completed (NO in step S11), the process returns to step S3 to determine whether the detector 40 has detected the leading end of a subsequent sheet S. The operations of steps S3 to S10 are repeated until the print job is completed.
When it is determined in step S11 that the print job is completed (YES in step S11), the sheet conveying unit 20 stops in step S12.
Thus, the sheet S is inserted into the clip 32 and is separated from the clip 32, according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the sheet holder 30. Accordingly, the sheet S is stacked on the tray 10 without providing (installing) an opening and closing mechanism to open and close the clip 32.
As illustrated in
Next, a description is given of an example of a configuration of a sheet conveying device 100′, with reference to
The guide 30′ includes the sheet conveying belt 31 and a guide member 32′. The sheet conveying belt 31 is rotatably disposed in the guide 30′. The guide member 32′ functions as a guide body attached to the sheet conveying belt 31 to receive the leading end of the sheet S. In other words, the leading end of the sheet S enters the guide member 32′. The guide 30′ conveys the sheet S that has been conveyed by the sheet conveying unit 20 along the sheet conveying direction X while maintaining a state in which the leading end of the sheet S is inserted, so that the sheet S is guided to the tray 10.
The sheet conveying device 100′ according to another embodiment includes the sheet conveying unit 20, the guide member 32′, and a controller 300 that functions as circuitry (see
Similar to the clips 32 illustrated in
The plurality of guide members 32′ on the end side belt 31a are different in arrangement in the sheet conveying direction X from the plurality of guide members 32′ on the center side belt 31b. That is, the plurality of guide members 32′ mounted on the center side belt 31b are disposed upstream from the plurality of guide members 32′ mounted on the end side belt 31a in a sheet conveying direction of the guide 30′ in which the guide 30′ conveys the sheet S.
As illustrated in
The guide member 32′ has the space h that is greater than a thickness t of the sheet S to be conveyed by the sheet conveying unit 20. The space h is greater than the thickness t of the sheet S at any position over the entire length in the sheet conveying direction X. Specifically, a minimum gap h1 in the middle portion 32′b, which is the narrowest part of the space h in the guide member 32′, is greater than the thickness t of the sheet S. In other words, when conveying the sheet S, the guide member 32′ according to the present embodiment retains the sheet S without nipping the sheet S while contacting the sheet S. By setting the minimum gap h1 to be greater than the thickness t of the sheet S (h1>t), damage to the sheet S due to the nipping of the sheet S is prevented.
In the present embodiment, the space (gap) in the opening 32′a is set to be wider (greater) than the space (gap) in the middle portion 32′b and the space (gap) in the far side portion 32′c, so that the sheet S easily enters to the far side portion 32′c. Further, since a sheet conveying passage from the opening 32′a to the middle portion 32′b is flat and smooth without any projection or recess, the load applied when the sheet S enters the far side portion 32′c is reduced.
In the present embodiment, a gap h2 in the far side portion 32′c is wider (greater) than the minimum gap h1 in the middle portion 32′b. However, the configuration is not limited to the above-described configuration. For example, the gap h2 in the far side portion 32′c may be equal to or narrower (smaller) than the minimum gap h1 in the middle portion 32′b. In any case, it is preferable that the minimum gap h1 in the middle portion 32′b is greater than the thickness t of the sheet S (h1>t) and that the gap h2 in the far side portion 32′c is greater than the thickness t of the sheet S (h2>t). According to this configuration, damage to the sheet S due to nipping of the sheet S is prevented.
It is to be noted that it is preferable to move the guide member 32′ so that the leading end of the sheet S does not contact the end face of the far side of the guide member 32′ (i.e., a left end face in
It is preferable that a portion on the surface of the guide member 32′ to contact the sheet S is made of a material having high smoothness such as metal and resin. Accordingly, the sheet S is smoothly inserted into the guide member 32′ from the opening 32′a toward the middle portion 32′b.
As illustrated in
Thus, the sheet S is inserted into the guide member 32′ according to the difference of the moving speed of the guide member 32′ and the sheet conveying speed of the sheet conveying unit 20 before these speeds become equal.
When the sheet S is completely inserted into the guide member 32′, in step S6′, first acceleration of the sheet conveying speed of the guide 30′ is performed, and a predetermined time according to the sheet length data that has been previously obtained by the sheet conveying device 100′ is counted. The sheet S is conveyed by the sheet conveying unit 20 and the guide 30′ according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the guide 30′, generated by the first acceleration. Specifically, the sheet conveying speed of the guide 30′ becomes faster than the sheet conveying speed of the sheet conveying unit 20, and therefore sag of the sheet S is prevented when conveying the sheet S.
At this time, the guide member 32′ does not nip the sheet S and the sheet conveying speed of the guide 30′ is faster than the sheet conveying speed of the sheet conveying unit 20. Therefore, even if the weight of the sheet S and the frictional force between the sheet S and the guide member 32′ are taken into consideration, the sheet S gradually comes out from the guide member 32′. However, in the present embodiment, the length in the sheet conveying direction X of the guide member 32′ is set sufficiently long. Further, the timing of the operation of the guide member 32′ is controlled, and therefore the amount of insertion of the leading end of the sheet S to the guide member 32′ is controlled. Consequently, the sufficient amount of insertion of the leading end of the sheet S to the guide member 32′ is obtained. Thus, even though the amount of insertion of the sheet S to the guide member 32′ gradually decreases due to the above-described speed difference, the length of the guide member 32′ and the amount of insertion of the sheet S are set to maintain the state in which the leading end of the sheet S remains in the guide member 32′, up to the position from which the sheet S is separated.
When the predetermined time has elapsed since complete insertion of the sheet S into the guide member 32′, in step S7′, second acceleration of the sheet conveying speed of the guide 30′ is performed. Due to the second acceleration, the sheet conveyance speed of the guide 30′ becomes further faster than the sheet conveying speed of the sheet conveying unit 20, and the sheet S is separated from the guide member 32′.
Thus, the sheet S that has been inserted into the guide 30′ is separated from the guide 30′ according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the guide 30′, generated by the second acceleration. After having been separated from the guide 30′ and having come out from the sheet conveying unit 20, the sheet S falls onto the tray 10 to be stacked on the tray 10.
In step S8′, a predetermined time according to the sheet length data that has been previously obtained is counted.
When the predetermined time has elapsed, the guide 30′ starts to gradually decelerate in step S9′ and stops in step S10′.
Accordingly, the sheet S is inserted into and separated from the guide member 32′ according to the difference of the sheet conveying speed of the sheet conveying unit 20 and the sheet conveying speed of the guide 30′. Consequently, the sheet S is stacked on the tray 10 without providing (installing) an opening and closing mechanism to open and close the guide member 32′.
In the present embodiment, when the sheet S is conveyed by the sheet conveying unit 20 and the guide 30′, the sheet conveying speed of the guide 30′ is faster than the sheet conveying speed of the sheet conveying unit 20. However, the sheet conveying speed of the guide 30′ may be equal to the sheet conveying speed of the sheet conveying unit 20.
The above-described embodiments are illustrative and do not limit this disclosure. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure.
For example, this disclosure may be applied to not only an inkjet image forming apparatus but also an image forming apparatus that forms an image with toner. The image forming apparatus may be a single apparatus such as a copier, a printer, a facsimile machine, a plotter, or may be a multifunctional machine having at least two functions of the copier, printer, facsimile machine, and plotter.
The effects described in the embodiments of this disclosure are listed as most preferable effects derived from this disclosure, and therefore are not intended to limit to the embodiments of this disclosure.
The embodiments described above are presented as an example to implement this disclosure. The embodiments described above are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, or changes can be made without departing from the gist of the invention. These embodiments and their variations are included in the scope and gist of the invention, and are included in the scope of the invention recited in the claims and its equivalent.
Each of the functions of the described embodiments may be implemented by one or more processing circuits or circuitry. Processing circuitry includes a programmed processor, as a processor includes circuitry. A processing circuit also includes devices such as an application specific integrated circuit (ASIC), digital signal processor (DSP), field programmable gate array (FPGA), and conventional circuit components arranged to perform the recited functions.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-204141 | Oct 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2753798 | Babst | Jul 1956 | A |
4647032 | Oba | Mar 1987 | A |
4830355 | Jeschke | May 1989 | A |
5123807 | Nakaoda | Jun 1992 | A |
5226641 | Schieleit | Jul 1993 | A |
6394448 | Suzuki | May 2002 | B2 |
6527501 | Wolf | Mar 2003 | B2 |
7487968 | Landwehr | Feb 2009 | B2 |
7954816 | Freitag | Jun 2011 | B2 |
8220618 | Bijl | Jul 2012 | B2 |
8939447 | Remijnse | Jan 2015 | B2 |
9010753 | Shibasaki | Apr 2015 | B2 |
9840389 | Lewalski | Dec 2017 | B2 |
20080061498 | Suzuki | Mar 2008 | A1 |
20090250862 | Oosterhoff | Oct 2009 | A1 |
20100270125 | Bijl | Oct 2010 | A1 |
20140203500 | Yanagida | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2001-163497 | Jun 2001 | JP |
2005-089009 | Apr 2005 | JP |
2008-63094 | Mar 2008 | JP |
2010-168218 | Aug 2010 | JP |
2014-162601 | Sep 2014 | JP |
Entry |
---|
Japanese communication with the dispatch No. 165295 issued by the Japan Patent Office dated Apr. 12, 2022 for Japanese Patent Application No. 2018-204141. |
Number | Date | Country | |
---|---|---|---|
20200130978 A1 | Apr 2020 | US |