This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2012-146124, filed on Jun. 28, 2012 in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
1. Technical Field
Embodiments of the present invention relate to a sheet conveyor for feeding and conveying a sheet for image forming, and an image forming apparatus such as a printer, facsimile machine, copier, and so forth including the sheet conveyor.
2. Related Art
As one type of a sheet conveyor that loads a stack of sheets of originals or recording media sheets and feeds the stack of sheets one by one toward a subsequent stage, an electrostatic sheet feeder that attracts and separates a sheet electrostatically has been proposed.
One example of such a sheet conveyor includes an attraction/separation unit including a dielectric attraction belt stretched around two rollers, a charger to charge the attraction belt with an AC charge, and a holder to hold the attraction belt and the charger and which rotatably supports the two rollers. The holder is fixed to a rotation shaft provided upstream from the two rollers in a sheet conveyance direction. Further, a mechanism is provided to swing the attraction/separation unit about the rotation shaft so that the attraction belt moves reciprocally between a sheet attraction position and a sheet conveyance position. The sheet attraction position is where the attraction belt contacts an uppermost sheet of a sheet stack that is placed on a bottom plate of a sheet tray to attract the uppermost sheet. The sheet conveyance position is where the attraction belt separates from the sheet stack and conveys the uppermost sheet attracted thereto to a later stage.
Before conveyance of the sheet, the attraction belt held by the holder via the two rollers remains separated from the sheet stack. When separating the uppermost sheet from the sheet stack for transfer, one of the two rollers functions as a driving roller that is rotated by a drive source and that rotates the attraction belt for applying an alternating charge to the attraction belt. After being charged, the attraction belt stops and the mechanism moves the attraction/separation unit toward the sheet stack to the sheet attraction position. In consequence, the attraction belt contacts the uppermost sheet of the sheet stack for attraction.
When the uppermost sheet of the sheet stack contacts the attraction belt, the mechanism moves the attraction/separation unit in a direction to separate from the sheet stack. Consequently, the attraction belt lifts the uppermost sheet attracted thereto, resulting in separation of the uppermost sheet from the rest of the sheet stack. Upon the attraction belt reaching the sheet conveyance position, the driving roller rotates the attraction belt to convey the uppermost sheet onward to a later stage.
The electrostatic attraction force generated between the attraction belt and the uppermost sheet increases as the attraction belt approaches the uppermost sheet. For best results, it is preferable that the attraction belt be pressed against the uppermost sheet with a constant force sufficient to uniformly contact the attraction belt against the uppermost sheet. Accordingly, the sheet conveyor includes a planar pressing member disposed inside the loop formed by the attraction belt and a spring to bias the pressing member to contact against the inner surface of the attraction belt.
However, friction generated between the attraction belt and the pressing member imposes a load on the attraction belt that may cause the attraction belt to slip on the driving roller and result in a sheet conveyance failure.
The present invention provides a novel sheet conveyor including an attraction/separation unit, a support member, a roller drive unit, a charging member, a mechanism, and a pressing member. The attraction/separation unit includes an endless attraction belt disposed facing a top surface of a sheet stack, a first tension roller, and a second tension roller located upstream from the first tension roller in a sheet conveyance direction to stretch the attraction belt taut together with the first tension roller. The attraction belt is wound about the rollers in a loop, rotatably supported by the first tension roller and the second tension roller. The support member supports the attraction/separation unit. The roller drive unit operatively connected to one of the first tension roller and the second tension roller. The charging member uniformly charges a surface of the attraction belt. The mechanism swings the attraction/separation unit to move the attraction belt reciprocally about the support member between a sheet attraction position at which the uppermost sheet of the sheet stack contacts and attracts the attraction belt and a sheet conveyance position at which the uppermost sheet attracted to the attraction belt is conveyed. The sheet conveyance position is located farther from the sheet stack than the sheet attraction position. The pressing member is disposed inside the loop into which the attraction belt is formed to press the attraction belt against the sheet stack at the sheet attraction position. The pressing member separates from the attraction belt at the sheet conveyance position.
Further, the present invention provides a novel image forming apparatus including the above-described sheet conveyor and an image forming device to form an image on a surface of a sheet conveyed from the sheet conveyor.
A more complete appreciation of the invention and many of the advantages thereof will be obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements describes as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for describing particular embodiments and is not intended to be limiting of exemplary embodiments of the present invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Descriptions are given, with reference to the accompanying drawings, of examples, exemplary embodiments, modification of exemplary embodiments, etc., of an image forming apparatus according to exemplary embodiments of the present invention. Elements having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted. Elements that do not demand descriptions may be omitted from the drawings as a matter of convenience. Reference numerals of elements extracted from the patent publications are in parentheses so as to be distinguished from those of exemplary embodiments of the present invention.
The present invention is applicable to any image forming apparatus, and is implemented in the most effective manner in an electrophotographic image forming apparatus.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of the present invention is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes any and all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, preferred embodiments of the present invention are described.
A description is given of a configuration of an electrophotographic image forming apparatus according to an embodiment of the present invention.
As illustrated in
The image forming apparatus 100 illustrated in
The ADF 59 includes a document setting tray 59a on which a stack of original documents is placed. The ADF 59 automatically takes several documents placed on the document setting tray 59a and feeds the document one page at a time onto a contact glass or a platen provided on the document reader 58.
The document reader 58 reads the document conveyed onto the contact glass by the ADF 59.
The image forming device 50 forms an image based on image data of the original image scanned by the document reader 58 and transfer the image data onto a sheet functioning as a recording medium supplied from the sheet feeder 52.
The sheet feeder 52 accommodates a sheet stack 1 having multiple sheets including an uppermost sheet 1a on top thereof and feeds the uppermost sheet 1a to the image forming device 50.
The image forming device 50 includes a photoconductor 61 functioning as an electrostatic image carrier and image forming units and components disposed around the photoconductor 61. The image forming units and components are, for example, a charging device 62, a development device 64, a transfer device 54, and a photoconductor cleaning device 65. The image forming device 50 further includes a non-illustrated optical writing device and a fixing device 55. The optical writing device emits a laser light beam 63 to the photoconductor 61. The fixing device 55 fixes a toner image formed on the surface of a sheet.
In this image forming device 50, as the photoconductor 61 starts rotating, the charging device 62 uniformly charges the surface of the photoconductor 61. Then, the laser light beam 63 generated based on image data input from a personal computer (PC), a word processor and so forth and image data of the original documents read by the document reader 58 is emitted to the photoconductor 61 to form an electrostatic latent image. Thereafter, the development device 64 develops the electrostatic latent image with toner into a toner image on the surface of the photoconductor 61.
By contrast, the sheet feeder 52 separates and conveys the multiple sheets one by one from the sheet stack 1a, and the separated sheet conveyed by a pair of conveyance rollers 9 in a sheet path 51 abuts against a pair of registration rollers 53 to stop. In synchronization with toner image formation of the image forming device 50, the sheet contacting the pair of registration rollers 53 is conveyed to a transfer portion where the photoconductor 61 and the transfer device 54 are disposed facing each other. At the transfer portion, the toner image formed on the photoconductor 61 is transferred onto the sheet fed by the sheet feeder 52. The toner image formed on the sheet is fixed to the sheet in the fixing device 55, and is discharged by a pair of sheet discharging rollers 56 to a sheet discharging tray 57. The photoconductor cleaning device 65 removes residual toner remaining on the surface of the photoconductor 61 after transfer of the toner image to clean the surface of the photoconductor 61 for the subsequent image forming operation.
The sheet feeder 52 includes a sheet tray 11 and a sheet conveyor 200. The sheet tray 11 functions as a sheet container on which a stack of sheets is loaded. The sheet conveyor 200 separates and conveys the uppermost sheet 1a placed on top of the sheet stack 1 including multiple sheets on the sheet tray 11.
As illustrated in
Further, as illustrated in
The sheet detector 40 includes a feeler 44 and a transmission optical sensor 43. The feeler 44 is rotatably supported by a shaft 42 provided in the image forming apparatus 100.
As the supporting member 8 is rotated by a non-illustrated drive motor to lift the bottom plate 7, the sheet stack 1 placed on the bottom plate 7 also elevates to cause the uppermost sheet 1a to contact the feeler 44. At this time, a light receiving portion 43a of the transmission optical sensor 43 receives light from a light emitting portion 43b. As the bottom plate 7 is further lifted, the feeler 44 blocks the light emitted by the light emitting portion 43b and the light receiving portion 43a stops receiving the light. Thus, the transmission optical sensor 43 detects that the uppermost sheet 1a of the sheet stack 1 has reached a predetermined position, resulting to stop rotation of the supporting member 8.
The sheet conveyor 200 includes an attraction/separation unit 110, a mechanism 120 to swing the attraction/separation unit 110, and a driving mechanism 130 to move the attraction belt 2 endlessly. The attraction/separation unit 110 includes an attraction belt 2 that is stretched taut by the downstream tension roller 5 and the upstream tension roller 6, as illustrated in
The attraction belt 2 have a double layer construction that includes a front layer including a polyethylene terephthalate film having a resistivity of about 108 Ω·cm (ohm centimeters) or greater with a thickness of about 50 μm and a conductive layer formed by aluminum evaporation having a resistivity of about 106 Ω·cm or smaller. The attraction belt 2 with a double layer construction enables the conductive layer to function as a grounded opposite polarity. A charging member 3 that serves as a charging unit to apply electrical charge to the attraction belt 2 can be disposed at any position on the front layer of the attraction belt 2. Further, an anti-offset rib 23 is provided on an inner side of both ends of the attraction belt 2 in the lateral direction so that the end surfaces on both sides of the downstream tension roller 5 and the upstream tension roller 6 engage with the rib 23 to prevent the downstream tension roller 5 and the upstream tension roller 6 to offset toward the attraction belt 2.
The downstream tension roller 5 has a surface formed by a conductive rubber layer having a resistivity of about 106 Ω·cm and the upstream tension roller 6 is a metallic roller. Both the downstream tension roller 5 and the upstream tension roller 6 are grounded. The downstream tension roller 5 has a small curvature suitable for separating sheets from the attraction belt 2. Specifically, the smaller diameter of the downstream tension roller 5 produces the greater curvature, and therefore the sheet attracted and conveyed by the attraction belt 2 can enter a conveyance path H formed by a guide member 10 disposed downstream from the downstream tension roller 5 in the sheet conveyance direction.
Further, as illustrated in
As illustrated in
Each of the brackets 12 includes a slot 12a thorough which a shaft 6a of the upstream tension roller 6 runs. Through the slot 12a, the upstream tension roller 6 is movably supported to the brackets 12.
By contrast, the shaft 5a of the downstream tension roller 5 that runs through a non-illustrated opening formed on each bracket 12 so that the downstream tension roller 5 is held in a fixed manner to the brackets 12.
As illustrated in
The slot 12a formed on each bracket 12 is curved along a center of rotation of the downstream tension roller 5 such that a length from the center of rotation of the upstream tension roller 6 to the center of rotation of the downstream tension roller 5 does not change even when the shaft 6a of the upstream tension roller 6 moves in the slot 12a. With this configuration, the tension force of the attraction belt 2 can be maintained upon movement of the upstream tension roller 6 in the slot 12a.
In general, even if the tension force of the attraction belt 2 is 5N or smaller, the downstream tension roller 5 and the upstream tension roller 6 do not slip on the attraction belt 2. Accordingly, the attraction belt 2 is rotated to convey the uppermost sheet 1a attracted to the attraction belt 2.
By contrast, if the sheet has a special feature such as a high adhesion, the downstream tension roller 5 and the upstream tension roller 6 may slip on the attraction belt 2. Therefore, the coefficient of friction of the surfaces of the downstream tension roller 5 and the upstream tension roller 6 to the attraction belt 2 is preferably increased to prevent the tension rollers 5 and 6 from slippage on the attraction belt 2.
A first driven pulley 26a and a second driving pulley 26b are fixed to one end of the bracket supporting shaft 14 that rotatably supports the bracket 12. A second driven pulley 25 is fixed to one end of the downstream tension roller 5. A driven timing belt 28 is wound around the first driven pulley 26a and the second driven pulley 25. Further, a drive motor 24 that functions as a roller drive unit is provided upstream from the bracket supporting shaft 14 in the sheet conveyance direction. A first driving pulley 27 is fixed to a motor shaft 24a of the drive motor 24. A driving timing belt 29 is wound around the first driving pulley 27 and the second driving pulley 26b.
As the drive motor 24 drives, the downstream tension roller 5 rotates via the driving timing belt 29 and the driven timing belt 28. This rotation of the downstream tension roller 5 rotates the attraction belt 2, and the upstream tension roller 6 is rotated due to a friction force exerted on an inner circumferential surface of the attraction belt 2.
Further, in this embodiment, a driving force that is exerted by the drive motor 24 is transmitted to the downstream tension roller 5 via the bracket supporting shaft 14 that supports the brackets 12. As described below, the attraction/separation unit 110 swings about the bracket supporting shaft 14. With this configuration, when the attraction/separation unit 110 swings, the length between the downstream tension roller 5 and the bracket supporting shaft 14 does not change. Therefore, the tension of the driven timing belt 28 is maintained to favorably transmit the driving force to the downstream tension roller 5.
The driving mechanism 130 may be configured to transmit a driving force from the drive motor 24 to the upstream tension roller 6. In this case, the upstream tension roller 6 serves as a driven roller to rotate the attraction belt 2.
Further, as illustrated in
The pinion gears 15 provided to the respective brackets 12 are fixed to the rotary shaft 16 that rotates about the same axis as the pinion gears 15. With this configuration, as the swing motor 30 rotates the rotary shaft 16, the pinion gears 15 are rotated. Accordingly, a single swing motor (i.e., the swing motor 30) can rotate two pinion gears (i.e., the pinion gears 15) provided at both lateral ends of the belt, thereby reducing the number of parts and components and manufacturing the units and devices at lower costs. Further, with a simple configuration, rack and pinion gears provided at both lateral ends of the belt can be synchronized.
The rack gear 13 having a round shape is integrally formed on the bracket 12. Upon rotation of the attraction/separation unit 110, the rack gear 13 swings about the bracket supporting shaft 14. This configuration of the rack gear 13 can maintain meshing of the rack gear 13 with the pinion gear 15 when the attraction/separation unit 110 swings. By comparing with a state in which a rack gear that is formed separate from the bracket 12 is attached to the bracket 12, the rack gear 13 integrally formed on the bracket 12 at a downstream end in the sheet conveyance direction can reduce the number of parts and components, contributing to a simpler configuration. Further, by comparing with the mechanism including the pinion gear mounted on the attraction/separation unit 110, the mechanism 120 including the pinion gear 15 mounted on the image forming apparatus 100 can transmit the driving force to the pinion gear more simply.
With this configuration of the mechanism 120, the swing motor 30 is driven to rotate the pinion gear 15, moving the rack gear 13 to separate from the sheet stack 1. Consequently, each bracket 12 rotates about the bracket supporting shaft 14.
Further, the brackets 12 are connected via a reinforcement member 70, so that the brackets 12 can swing integrally. This configuration prevents the attraction belt 2 supported by the brackets 12 from twisting due to movement of the brackets 12 and the uppermost sheet 1a from separating from the attraction belt 2.
As illustrated in
It is to be noted that the shape of the charging member 3 is not limited to a roller. For example, a blade-type electrode 103 as illustrated in
Next, a description is given of sheet feeding operation using the sheet conveyor 200 according to the present embodiment, with reference to
As illustrated in
As shown in
As illustrated in
After completion of charging to the attraction belt 2, the attraction belt 2 is stopped and the bottom plate 7 that has been located at the lower position of the sheet tray 11 starts to elevate, as illustrated in
As the bottom plate 7 ascends and the attraction/separation unit 110 descends, the uppermost sheet 1a of the sheet stack 1 contacts the upstream tension roller 6 via the attraction belt 2. Then, as the bottom plate 7 further ascends and the attraction/separation unit 110 further descends, the upstream tension roller 6 is lifted by elevation of the sheet stack 1. With this action, the upstream tension roller 6 that has abut against the lower end surface 41a of the slot 12a moves upward along the slot 12a. Along with elevation of the bottom plate 7, the feeler 44 rotates counterclockwise in
Further, upon the attraction/separation unit 110 reaching the sheet attraction position, the swing motor 30 stops its rotation. In a case in which the swing motor 30 is a stepping motor, by controlling the swing motor 30 based on the angle of rotation (the number of pulses), the attraction/separation unit 110 can be stopped at the sheet attraction position accurately. By contrast, in a case in which the swing motor 30 is a DC motor, the control based on the driving period of time can stop the attraction/separation unit 110 at the sheet attraction position accurately.
As illustrated in
After the attraction/separation unit 110 stands by for a predetermined time in the state illustrated in
By contrast, the upstream tension roller 6 remains in contact with the top of the sheet stack 1 along with the aid of gravity and moves relative to the bracket 12 toward the sheet stack 1. Consequently, the attraction belt 2 swings about the upstream tension roller 6 so that the uppermost sheet 1a attracted to the attraction belt 2 curves about the turning point the turning point of the attraction belt 2 on the upstream tension roller 6. As a result, the restoring force acts on the sheet attracted to the attraction belt 2. Accordingly, the uppermost sheet 1a is attracted to the attraction belt 2, and the second sheet 1b is separated from the attraction belt 2 by the restoring force of the sheet.
As the attraction/separation unit 110 further rotates about the bracket supporting shaft 14 counterclockwise in
As illustrated in
The linear velocity of the pair of conveyance rollers 9 is controlled to be same as the linear velocity of the attraction belt 2. In a case in which the pair of conveyance rollers 9 is intermittently driven to adjust the timing, the drive motor 24 is controlled to drive the attraction belt 2 intermittently. Further, the driving mechanism 130 may include an electromagnetic clutch for controlling the drive of the attraction belt 2.
The paper attraction force due to the charge pattern acts on the uppermost sheet 1a but not on the second sheet 1b or the subsequent sheets. The present sheet feeding method does not use any friction force between the pickup unit and the sheet. Accordingly, the contact pressure between the attraction belt 2 and the sheet stack 1 can be reduced, thereby preventing multiple feeding of sheets due to friction.
The attraction belt 2 neither separates the second sheet 1b from the sheet stack 1 to prevent from nor attracts the second sheet 1b before the trailing edge of the uppermost sheet 1a reaches an opposed position to the upstream tension roller 6.
Now, a description is given of the attraction/separation unit 110 according to Embodiment 1, with reference to
Further,
As illustrated in
The pressing member body 35a is contacted against the attraction belt 2 by compression springs 36 functioning as elastic members that are mounted on the compression spring bases 35c are projections. The hole-bearing flanges 35d1 and 35d2, through which the shaft 5a of the downstream tension roller 5 is inserted, are disposed at the downstream side in the sheet conveyance direction of the pressing member body 35a.
The hole-bearing flange 35d1 is detachably attached to the pressing member body 35a and is fixed to the pressing member body 35a with the pair of fixing screws 35e. When assembling the pressing unit 35 to the shaft 5a of the downstream tension roller 5, the detachable hole-bearing flange 35d1 is removed from the pressing member body 35a and the hole-bearing flange 35d2 is used to rotatably support the shaft 5a of the downstream tension roller 5. Then, while receiving the shaft 5a of the downstream tension roller 5, the detachable hole-bearing flange 35d1 is fixed to the pressing member body 35a using the pair of fixing screws 20c.
The compression spring 36 has one end that is engaged with the compression spring base 35c and another, opposite end connected to an upper end surface in the slot 12b of each bracket 12 of the attraction/separation unit 110. As illustrated in
Further, as illustrated in
The pressing unit 35 can provide similar effectiveness with its width designed to be equal to or greater than the width of the sheet stack 1. However, the pressing unit 35 is most effective when covering the entire width of a sheet. Therefore, preferably the width of the pressing unit 35 is equal to or greater than the width of a sheet. Consequently, in the present embodiment, the width of the pressing unit 35 according to the present embodiment is greater than that of the largest sheet that the sheet conveyor 200 can accommodate. In addition, the uppermost sheet 1a is turned over or picked up from the edge thereof, so that air resistance can be prevented and the minimum amount of power may be used for turning or picking up the uppermost sheet 1a by avoiding folding or deforming the sheet.
Preferably, the length of the pressing unit 35 in the sheet conveyance direction is as large as possible. For example, it is preferable that the length be 70% to 80% of the length of the attraction belt 2 stretched flat between the downstream tension roller 5 and the upstream tension roller 6. With this configuration, a greater pressing area of the pressing unit 35 against the attraction belt 2 can be obtained than in the configuration in which the pressing unit 35 is a roller.
Next, a description is given of operations of the attraction/separation unit 110 from sheet attraction to sheet conveyance, with reference to
As illustrated in
As the attraction/separation unit 110 is rotatably lifted from the sheet attraction position to the sheet conveyance position, the shaft 6a of the upstream tension roller 6 and the holder 35b of the pressing unit 35 move downward in the slots 12a. Then, as illustrated in
Further, when the attraction/separation unit 110 is swung toward the sheet conveyance position, the attraction/separation unit 110 is lifted and the pressing unit 35 elevates against the biasing force of the compression spring 36. Further, along with the movement of the pressing unit 35, the shaft 6a of the upstream tension roller 6 moves downward in the slot 12a and contacts the lower end surface 41a to be held there, as illustrated in
In the present embodiment, when the attraction/separation unit 110 moves from the sheet attraction position to the sheet conveyance position, the upstream tension roller 6 moves by less than the pressing unit 35 does. According to the difference between the range of movement of the upstream tension roller 6 and the range of movement of the pressing unit 35, a contact timing of the shaft 6a of the upstream tension roller 6 and the lower end surface 41a of the slot 12a is different from a contact timing of the holder 35b of the pressing unit 35 and the lower end surface 41b of the slot 12b. With this configuration, the pressing unit 35 can evacuate from the inner circumference of the attraction belt 2. Namely, the pressing unit 35 is elevated above the upstream tension roller 6 as the attraction/separation unit 110 moves from the sheet attraction position to the sheet conveyance position, and consequently, the pressing unit 35 separates from the inner circumferential surface of the attraction belt 2.
If the inner circumferential surface of the attraction belt 2 and the pressing unit 35 are in contact with each other when the attraction belt 2 rotates for sheet conveyance, the pressing force applied by the pressing unit 35 from the inner circumferential surface of the attraction belt 2 to the top surface of the sheet stack 1 may cause the pressing member 35 to slide along the inner circumference of the attraction belt 2. At this time, if the friction force exerted between the attraction belt 2 and the pressing unit 35 is greater than the friction force exerted between the attraction belt 2 and the downstream tension roller 5, the friction force between the attraction belt 2 and the pressing unit 35 applies a load to the attraction belt 2 during rotation. The load to the attraction belt 2 may cause the attraction belt 2 to slip on the downstream tension roller 5, resulting in rotation failure of the attraction belt 2.
If the pressing unit 35 includes a material having a relatively small sliding friction, if a contact area of the pressing unit 35 to the attraction belt 2 is reduced, or if the pressure of the pressing unit 35 to the attraction belt 2 is reduced, the configuration may be negatively affected by these limitations. The limitations can make it difficult to maintain the appropriate contact between the attraction belt 2 and the uppermost sheet 1a by pressing the attraction belt 2 by the pressing unit 35.
By contrast, the present embodiment can switch between a state in which the pressing unit 35 contacts the attraction belt 2 and a state in which the pressing unit 35 separates from the attraction belt 2. Namely, the pressing unit 35 contacts and presses the attraction belt 2 when the attraction/separation unit 110 is at the sheet attraction position and the pressing unit 35 separates from the attraction belt 2 when the attraction/separation unit 110 stays at the sheet conveyance position.
As a result, the attraction belt 2 can be rotated while the pressing unit 35 is separated from the attraction belt 2 for conveying the uppermost sheet 1a from the sheet conveyance position. Therefore, the attraction/separation unit 110 is not negatively affected by the friction force exerted between the attraction belt 2 and the pressing unit 35 and the attraction belt 2 does not receive the load for rotation. Consequently, slippage of the attraction belt 2 on the downstream tension roller 5 can be prevented, so that the rotation failure of the attraction belt 2 can be avoided. With this configuration, the area and pressure for the pressing unit 35 to obtain the contact between the attraction belt 2 and the uppermost sheet 1a can be set without having the above-described limitations. Accordingly, while preventing the rotation failure of the attraction belt 2, the contact between the attraction belt 2 and the uppermost sheet 1a can be maintained.
When the attraction/separation unit 110 swings from the sheet attraction position to the sheet conveyance position to pick up and separate the uppermost sheet 1a from the sheet stack 1, the pressing unit 35 may slide along the inner circumferential surface of the attraction belt 2 until the pressing unit 35 separates therefrom. Due to the sliding of the pressing unit 35, torque may be exerted to rotate the attraction belt 2. At this time, if the coefficient of friction of the pressing unit 35 to the inner circumferential surface of the attraction belt 2 is lower than the coefficient of friction of the outer circumferential surface of the downstream tension roller 5 to the inner circumference of the attraction belt 2, the torque thus generated may cause the downstream tension roller 5 to slip on the attraction belt 2, which is likely to slightly rotate the attraction belt 2. Thus, rotation of the attraction belt 2 may disposition the leading edge of the uppermost sheet 1a attracted to the attraction belt 2 from its appropriate position, resulting in a cause of a conveyance failure.
To avoid the possibility of the above-described failure, the present embodiment sets the coefficient of friction of the contact surface of the pressing unit 35 with the inner circumferential surface of the attraction belt 2 greater than the coefficient of friction of the outer circumferential surface of the downstream tension roller 5 with the inner circumferential surface of the attraction belt 2. With this setting, even if torque is generated, the downstream tension roller 5 may not slip on the attraction belt 2, so that the rotation of the attraction belt 2 can be prevented. Therefore, disposition of the leading edge of the uppermost sheet 1a attracted to the attraction belt 2 can be prevented, thereby avoiding the conveyance failure.
Next, a description is given of operations of an attraction/separation unit 110A according to Embodiment 2, with reference to
In Embodiment 2, the basic configuration of the sheet conveyor 200 and how the pressing unit 35 separates from the attraction belt 2 are the same as those of Embodiment 1. However, how the pressing unit 35 in Embodiment 2 is held is different from Embodiment 1. Namely, as illustrated in
Next, a description is given of operations of an attraction/separation unit 110B according to Embodiment 3, with reference to
As illustrated in
It is most suitable for assembly and replacement that the compression springs 36 are disposed on the respective brackets 12 of the attraction/separation unit 110 as described in Embodiments 1 and 2. However, for attraction of a sheet having the width of 297 mm such as A4-landscape size and A3-portrait size, it is preferable to dispose the compression springs 36 to press the sheet at or about both lateral ends thereof. Specifically, the compression springs 36 provided in the housing 20 located at the inner circumferential surface of the attraction belt 2 can obtain a greater effect in adhesion than the compression springs 36 provided on the respective brackets 12 disposed at the respective lateral ends of the attraction/separation unit 110.
With this configuration, variation in a total weight of the housing 20 and units and components held by the housing 20 (hereinafter, referred to as a total weight of the housing) and a total amount of force of the compression spring 36 may cause the following differences.
Namely, if the total weight of the housing is greater than the total amount of force of the compression spring 36, the force of the compression spring 36 is released from the downstream tension roller 5 and the upstream tension roller 6. However, the downstream tension roller 5, the upstream tension roller 6, and the pressing unit 35 contact the top of the uppermost sheet 1a via the attraction belt 2.
By contrast, if the total amount of force of the compression spring 36 is greater than the total weight of the housing, the lower portions of the downstream tension roller 5 and the upstream tension roller 6 are released, and the lower portion of the pressing unit 35 is pressed hard.
The force of the compression spring 36 with respect to the total weight of the housing can be determined based on the positional relation of the attraction belt 2 and the uppermost sheet 1a and a position of the attraction belt 2 to contact the uppermost sheet 1a. In the present embodiment, it is preferable that the total amount of force of the compression spring 36 is designed to be greater than the total weight of the housing.
Since the attraction belt 2 and the uppermost sheet 1a most surely contact just under the compression spring 36, the uppermost sheet 1a can be attracted to the attraction belt 2 reliably. After the uppermost sheet 1a has been attracted to the attraction belt 2, the attraction/separation unit 110 swings to lift and separate the uppermost sheet 1a from the sheet stack 1 by picking up the edge of the uppermost sheet 1a. To prevent failure of picking up the uppermost sheet 1a due to an insufficient attraction force of the attraction belt 2 or attraction of multiple sheets from the sheet stack 1, it is desired to attract the downstream edge of the uppermost sheet 1a reliably.
For this reason, the present embodiment includes the compression spring 36 that is disposed at downstream ends of the uppermost sheet 1a in the sheet conveyance direction. Consequently, the contact of the attraction belt 2 and the uppermost sheet 1a becomes strongest just under the compression spring 36, which is most suitable for obtaining the contact of the attraction belt 2 and the uppermost sheet 1a at downstream ends of the uppermost sheet 1a in the sheet conveyance direction.
Further, if the width of the attraction belt 2 or a length of the attraction belt 2 in the lateral direction perpendicular to the sheet conveyance direction is nearly equal to the width of the sheet stack 1, the width of the attraction belt 2 is about 300 mm in the sheet conveyance direction. In consequence, the pressing unit 35 also becomes long in the lateral direction. Therefore, even if the compression spring 36 presses the pressing unit 35 at the lateral ends thereof, the pressing unit 35 may deform in the lateral direction and therefore the pressure is reduced at the center of the pressing unit 35 in the lateral direction. To avoid this problem, the housing 20 disposed inside the loop of the attraction belt 2 may function as a pedestal of the compression spring 36, and a pressure load is applied to the pressing unit 35 by the compression spring 36, so that the pressing unit 35 can apply the load to the center part or optional part of the attraction belt 2.
Further, as described in Embodiment 1, if the compression springs 36 are attached to the brackets 12 of the attraction/separation unit 110, the attraction/separation unit 110 may need to be moved to the sheet attraction position against the pressing force of the compression spring 36 to the pressing unit 35. If the pressing force is too strong, the torque to rotate the attraction/separation unit 110 increases. Therefore, by disposing the compression springs 36 to the housing 20 rotatably supported by the shaft 5a of the downstream tension roller 5, an increase in torque can be prevented and the load of the housing and the downstream tension roller 5 can be distributed to the surface of the pressing unit 35 to utilize for obtaining the adhesion of the sheet to the attraction belt 2.
Next, a description is given of operations of an attraction/separation unit 110C according to Embodiment 4, with reference to
In the present embodiment, the bracket 12 and the pressing unit 35 are formed as a single integrated unit. With this configuration, the pressing unit 35 is fixed to the bracket 12. Therefore, when the attraction/separation unit 110C descends, it may be difficult to adjust the position of the pressing unit 35 and the sheet stack 1. It is to be noted that the bracket 12 and the pressing unit 35 may be provided separately to fix the pressing unit 35 to the bracket 12. However, even with such a configuration, the adjustment of the relative position of the pressing unit 35 and the sheet stack 1 is difficult.
Therefore, in the present embodiment, a flexible member 38 such as moltoprene sponge is provided at a bottom of the pressing member 35 such that the flexible member 38 faces the sheet stack 1. When the pressing unit 35 presses the attraction belt 2, the flexible member 38 deforms, so that the relative position between the pressing unit 35 and the sheet stack 1 can be appropriately adjusted via the attraction belt 2. The flexible member provided below the pressing unit 35 is not limited to the flexible member 38. For example, a spring and a mold can be integrated as a single flexible member to be provided below the pressing unit 35.
By fixing the pressing unit 35 to the bracket 12 as in the attraction/separation unit 110C, when the upstream tension roller 6 is moved lower than the attraction/separation unit 110C while swinging the attraction/separation unit 110 from the sheet attraction position to the sheet conveyance position, the pressing unit 35 can separate from the attraction belt 2 reliably even with a small angle of movement of the upstream tension roller 6. In addition, since there is no need to open the slot 12b to hold the pressing unit 35 to the bracket 12 and to provide the compression spring 36 to press the pressing unit 35 toward the attraction belt 2, a simpler configuration can be achieved.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements at least one of features of different illustrative and exemplary embodiments herein may be combined with each other at least one of substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2012-146124 | Jun 2012 | JP | national |