Technical Field
The following description relates to aspects of a sheet conveyor and an image reader having the sheet separator.
Related Art
A sheet conveyor has been known that includes a separation roller, a separation pad, a first urging member, and a feed roller.
The separation roller is configured to rotate in contact with one or more sheets fed from upstream in a conveyance direction, and thereby convey the one or more sheets downstream in the conveyance direction. The separation pad is disposed to face the separation roller. The separation pad is configured to separate the one or more sheets on a sheet-by-sheet basis in cooperation with the separation roller. The first urging member is configured to urge the separation pad toward the separation roller. The feed roller is disposed downstream relative to the separation roller in the conveyance direction. The feed roller is configured to feed the one or more sheets separated by the separation roller and the separation pad, downstream in the conveyance direction.
The first urging member is disposed upstream relative to an outer circumferential surface of the feed roller in the conveyance direction.
In the meantime, a sheet conveyor of this kind is highly required to be miniaturized. In this respect, nevertheless, in the known sheet conveyor, the first urging member needs to be sufficiently spaced apart from the feed roller in the conveyance direction, so as not to contact the outer circumferential surface of the feed roller. Therefore, it is difficult to downsize the known sheet conveyor in the conveyance direction.
Aspects of the present disclosure are advantageous to provide one or more improved techniques that make it possible to achieve miniaturization of a sheet conveyor in a conveyance direction.
According to aspects of the present disclosure, a sheet conveyor is provided, which includes a separation roller configured to rotate in contact with one or more sheets fed from upstream relative to the separation roller in a first direction, and convey the one or more sheets downstream in the first direction, a separation pad disposed to face the separation roller, the separation pad being configured to separate the one or more sheets on a sheet-by-sheet basis in cooperation with the separation roller, an urging member configured to urge the separation pad toward the separation roller, and a feed roller unit disposed downstream relative to the separation roller in the first direction, the feed roller being configured to feed the one or more sheets separated by the separation roller and the separation pad, downstream in the first direction, the feed roller unit including a first outer circumferential surface disposed at a first-side end portion of the feed roller unit in a second direction perpendicular to the first direction, a second outer circumferential surface disposed at a second-side end portion, opposite to the first-side end portion, of the feed roller unit in the second direction, the second outer circumferential surface having a diameter identical to a diameter of the first outer circumferential surface, and a concave portion formed between the first outer circumferential surface and the second outer circumferential surface in the second direction, the concave portion being recessed inward in a radial direction of the first outer circumferential surface and the second outer circumferential surface, from the first outer circumferential surface and the second outer circumferential surface, the urging member being disposed upstream relative to the concave portion in the first direction and disposed between the first outer circumferential surface and the second outer circumferential surface in the second direction.
According to aspects of the present disclosure, further provided is an image reader that includes a supply tray configured to support one or more sheets placed thereon, an image reading unit configured to read images of the one or more sheets fed from the supply tray, a separation roller disposed downstream relative to the supply tray in the first direction, the separation roller being configured to rotate in contact with the one or more sheets fed from the supply tray, and convey the one or more sheets downstream in a first direction, a separation pad disposed to face the separation roller, the separation pad being configured to separate the one or more sheets on a sheet-by-sheet basis in cooperation with the separation roller, an urging member configured to urge the separation pad toward the separation roller, and a feed roller unit disposed downstream relative to the separation roller in the first direction, the feed roller being configured to feed the one or more sheets separated by the separation roller and the separation pad, toward the image reading unit, the feed roller unit including a first outer circumferential surface disposed at a first-side end portion of the feed roller unit in a second direction perpendicular to the first direction, a second outer circumferential surface disposed at a second-side end portion, opposite to the first-side end portion, of the feed roller unit in the second direction, the second outer circumferential surface having a diameter identical to a diameter of the first outer circumferential surface, and a concave portion formed between the first outer circumferential surface and the second outer circumferential surface in the second direction, the concave portion being recessed inward in a radial direction of the first outer circumferential surface and the second outer circumferential surface, from the first outer circumferential surface and the second outer circumferential surface, the urging member being disposed upstream relative to the concave portion in the first direction and disposed between the first outer circumferential surface and the second outer circumferential surface in the second direction.
According to aspects of the present disclosure, further provided is sheet conveyor that includes a separation roller configured to rotate in contact with one or more sheets fed from upstream relative to the separation roller in a first direction, and convey the one or more sheets downstream in the first direction, a separation pad disposed to face the separation roller, the separation pad being configured to separate the one or more sheets on a sheet-by-sheet basis in cooperation with the separation roller, an urging member configured to urge the separation pad toward the separation roller, and a feed roller disposed downstream relative to the separation roller in the first direction, the feed roller being configured to feed the one or more sheets separated by the separation roller and the separation pad, downstream in the first direction, the feed roller including a first outer circumferential surface disposed at a first end portion of the feed roller in a second direction perpendicular to the first direction, a second outer circumferential surface disposed at a second end portion, opposite to the first end portion, of the feed roller in the second direction, the second outer circumferential surface having a diameter identical to a diameter of the first outer circumferential surface, and a concave portion disposed between the first outer circumferential surface and the second outer circumferential surface in the second direction, the concave portion having a diameter smaller than the diameter of the first outer circumferential surface and the second outer circumferential surface, the urging member being disposed upstream relative to the concave portion in the first direction and disposed between the first outer circumferential surface and the second outer circumferential surface in the second direction.
It is noted that various connections are set forth between elements in the following description. It is noted that these connections in general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect.
Hereinafter, illustrative embodiments according to aspects of the present disclosure will be described with reference to the accompanying drawings.
(First Illustrative Embodiment)
In an image reader 1 of a first illustrative embodiment, a front-to-rear direction, a left-to-right direction, and a vertical direction of the image reader 1 will be defined as shown in
<Configuration>
As shown in
As shown in
On an upper surface of the main body 8, a first platen glass 81 and a second platen glass 82 are disposed. An upper surface of the first platen glass 81 forms a document supporting surface 81A. The document supporting surface 81A is configured to support from beneath a document to be read, when the reading unit 3 reads an image of the document in a static state. The document to be read may include a paper, a transparency (an OHP sheet), and a book. The second platen glass 82 is disposed on a left side relative to the first platen glass 81. The second platen glass 82 is elongated to extend in the front-to-rear direction. An upper surface of the second platen glass 82 forms a reading surface 82A. The reading surface 82A is configured to guide one or more sheets from beneath when the reading unit 3 reads images of the one or more sheets being conveyed on a sheet-by-sheet basis by the conveyor 4.
As shown in
As shown in
When the reading unit 3 reads an image of a document supported on the document supporting surface 81A, the reading sensor 3S is moved, by the scanning mechanism (not shown), along the left-to-right direction between a position under a left end portion of the document supporting surface 81A and a position under a right end portion of the document supporting surface 81A. Further, when the reading unit 3 reads images of sheets SH being conveyed on a sheet-by-sheet basis by the conveyor 4, the reading sensor 3S is caused, by the scanning mechanism (not shown), to stop in a predetermined reading position under the reading surface 82A.
As shown in
As shown in
On the upper portion of the conveyance path P1 that extends in a substantially horizontal direction, the conveyance direction of the sheets conveyed by the conveyor 4 is the leftward direction. On the downward U-turning portion of the conveyance path P1, the conveyance direction of the sheets changes from the leftward direction to the rightward direction. On the lower portion of the conveyance path P1 that passes over the reading surface 82A and leads to the discharge tray 92, the conveyance direction of the sheets is the rightward direction.
As shown in
As shown in
As shown in
The separation roller 42 is configured to rotate while bringing the outer circumferential surface 42A into contact with a sheet fed from the supply tray 91 (i.e., from upstream relative to the separation roller 42 in the conveyance direction), and convey the sheet leftward (i.e., downstream in the conveyance direction) along the substantially-horizontal upper portion of the conveyance path P1.
In the substantially-horizontal upper portion of the conveyance path P1, the direction leftward from the right, which is the conveyance direction of the sheet, intersects perpendicularly with the axis X42 extending in the front-to-rear direction. In the first illustrative embodiment, a width direction perpendicular to the conveyance direction is the front-to-rear direction. One side in the width direction is the front side of the image reader 1. The other side in the width direction is the rear side of the image reader 1.
By the drive shaft 42S, a holder 42F is swingably supported. The holder 42F protrudes rightward from the drive shaft 42S. The pickup roller 41 is rotatably supported by a right portion of the holder 42F. The holder 42F is provided with a transmission gear group (not shown) configured to transmit a rotational driving force from the drive shaft 42S to the pickup roller 41.
The pickup roller 41 rotates around an axis parallel to the axis X42 of the separation roller 42, provides a conveyance force to a top one of the sheets supported on the supply tray 91, and conveys the top sheet toward the separation roller 42.
As shown in
As shown in
As shown in
As shown in
The base 121 is formed substantially in a rectangular plate shape. On an upper surface of the base 121, a supporting surface 120B is formed. The supporting surface 120B is a bottom surface of a concave portion shallowly recessed from an uppermost surface of the base 121. At a left side of the base 121, a spring receiver 124 is formed. The spring receiver 124 is a small piece that protrudes leftward from a left end portion of the base 121. On a lower surface of the spring receiver 124, a boss is formed to protrude downward.
The front protrusion 122 protrudes rightward from a front right corner portion of the base 121. The rear protrusion 122 protrudes rightward from a rear right corner portion of the base 121. There are two shaft portions 122S (i.e., a front shaft portion 122S and a rear shaft portion 122S) formed at respective right end portions of the protrusions 122. Each shaft portion 122S is a cylindrical shaft body with a swing axis X120 as a central axis. The swing axis X120 extends in the front-to-rear direction. The swing axis X120 is disposed on a right side relative to the outer circumferential surface 42A of the separation roller 42. In other words, the swing axis X120 is positioned upstream relative to the separation roller 42 in the conveyance direction. The front shaft portion 122S and the rear shaft portion 122S protrude in such directions as to become farther away from each other, respectively.
As shown in
As shown in
As shown in
In a plane view as shown in
As shown in
The first urging member 140 is configured to urge the separation pad 100 via the supporter 120 in such a direction that the separation surface 100A of the separation pad 100 approaches the outer circumferential surface 42A of the separation roller 42.
As shown in
When a plurality of mutually overlapping sheets are fed to the separation roller 42 from the pickup roller 41, the separation pad 100 configured as above separates the sheets on a sheet-by-sheet basis in cooperation with the separation roller 42.
As shown in
As shown in
As shown in
The rotational shaft 250 is a cylindrical shaft body extending in the front-to-rear direction. As shown in
As shown in
As shown in
As shown in
An upper end section 241 of the rear-side second urging member 240 contacts the rotational shaft 250 from beneath, although it is not shown in any drawings since the rear-side second urging member 240 is configured in the same manner as the front-side second urging member 240. Further, a lower end section 242, opposite to the upper end section 241, of the rear-side second urging member 240 directly contacts the reinforcing member 95.
Each second urging member 240 is configured to urge the first feed roller 210 and the second feed roller 220 upward via the rotational shaft 250.
Although the following features are not shown in any drawings, the driving feed rollers 43 contain a front-side driving feed roller 43 and a rear-side driving feed roller 43 that correspond to the first feed roller 210 and the second feed roller 220, respectively. As shown in
The first feed roller 210 and the second feed roller 220 nip therebetween each of the sheets separated on a sheet-by-sheet basis by the separation roller 42 and the separation pad 100. Then, the first feed roller 210 and the second feed roller 220 convey each of the separated sheets downstream in the conveyance direction.
In other words, the aforementioned configuration of the feed roller unit 200 may be restated as follows. As shown in
The following description will provide a specific explanation about relative positional relationships between the first urging member 140 and elements included in the feed roller unit 200 (such as the first outer circumferential surface 210A, the second outer circumferential surface 220A, and the concave portion 200C). As shown in
As shown in
As shown in
As shown in
The conveyor 4 includes a large-diameter conveyance roller 44A and a curved guide surface 44G at the downward U-turning portion of the conveyance path P1. An outer circumferential surface of the conveyance roller 44A forms an inner guide surface of the downward U-turning portion of the conveyance path P1. The curved guide surface 44G is disposed a predetermined distance apart from the conveyance roller 44A. The curved guide surface 44G forms an outer guide surface of the downward U-turning portion of the conveyance path P1. The conveyance roller 44A is configured to convey one or more sheets to the reading surface 82A in cooperation with pinch rollers 44P and 44Q.
The conveyor 4 includes a pressing member 49 in a position to face the reading surface 82A from above. The pressing member 49 is configured to press, from above, a sheet being conveyed by the conveyance roller 44A and bring the sheet into contact with the reading surface 82A.
The conveyor 4 includes a discharge roller 48 and a pinch roller 48P disposed in respective positions along the obliquely-ascending portion of the conveyance path P1, on a right side relative to the pressing member 49. The discharge roller 48 and the pinch roller 48P face the discharge tray 92. The discharge roller 48 and the pinch roller 48P are configured to discharge onto the discharge tray 92 a sheet having passed over the reading surface 82A.
In the image reader 1, when the reading unit 3 reads an image of a document supported on the document supporting surface 81A, the scanning mechanism (not shown) of the reading unit 3 operates and moves the reading sensor 3S along the left-to-right direction between a position under a left end portion of the document supporting surface 81A and a position under a right end portion of the document supporting surface 81A. Thereby, the reading sensor 3S reads the image of the document supported on the document supporting surface 81A. Thereafter, the scanning mechanism (not shown) moves the reading sensor 3S, which has completed the image reading operation, back to an original position at a left end portion from a right end portion inside the reading unit 3.
Further, in the image reader 1, when the reading unit 3 reads images of sheets placed on the supply tray 91, the scanning mechanism (not shown) of the reading unit 3 operates and stops the reading sensor 3S in a fixed reading position under the reading surface 82A. Then, when the conveyor 4 sequentially conveys the sheets on the supply tray 91 along the conveyance path P1, the sheets pass over the reading sensor 3S staying in the predetermined reading position while contacting the reading surface 82A. Thereby, the reading sensor 3S reads the images of the sheets passing over the reading sensor 3S. When the reading unit 3 reads images of both sides of each sheet, the reading sensor 3T, which is disposed in a position along the conveyance path P1 between the feed roller unit 200 (the driving feed rollers 43) and the conveyance roller 44A inside the opening-closing member 9, reads an image of a side opposite to a side to be read by the reading sensor 3S. The sheets of which the images have been read are discharged onto the discharge tray 92 by the discharge roller 48 and the pinch roller 48P.
<Operations and Advantageous Effects>
As shown in
Further, the first urging member 140 is disposed between the first outer circumferential surface 210A of the first feed roller 210 and the second outer circumferential surface 220A of the second feed roller 220. Therefore, the first urging member 140 does not contact the first outer circumferential surface 210A and the second outer circumferential surface 220A or encumber sheet feeding by the first feed roller 210 and the second feed roller 220.
Accordingly, according to the first illustrative embodiment, it is possible to achieve miniaturization of the image reader 1 in the conveyance direction.
Further, according to the image reader 1, it is possible to easily assemble the feed roller unit 200 having the concave portion 200 by putting the simple rotational shaft 250, the first feed roller 210, and the second feed roller 220 together.
Further, in the image reader 1, as shown in
Further, in the image reader 1, as shown in
Further, in the image reader 1, sheets separated on a sheet-by-sheet basis by the separation roller 42 and the separation pad 100 are securely conveyed by the feed roller unit 200, to the reading sensors 3S and 3T of the reading unit 3. Therefore, it is possible to provide a stably high level of image quality of images read by the reading unit 3.
(Second Embodiment)
As shown in
As shown in
The concave portion 200D contains the gap 51. More specifically, the concave portion 200D is formed by the first end surface 211 of the first feed roller 210, the second end surface 222 of the second feed roller 220, an outer circumferential surface 251A of the rotational shaft 251 between the first feed roller 210 and the second feed roller 220, an outer circumferential surface 252A of the rotational shaft 252 between the first feed roller 210 and the second feed roller 220, and the gap 51.
In a front view as shown in
According to the image reader configured as above in the second illustrative embodiment, it is possible to place the first urging member 140 closer to the feed roller unit 200 in the left-to-right direction. Thus, it is possible to achieve further miniaturization of the image reader in the conveyance direction.
Hereinabove, the illustrative embodiments according to aspects of the present disclosure have been described. The present disclosure can be practiced by employing conventional materials, methodology and equipment. Accordingly, the details of such materials, equipment and methodology are not set forth herein in detail. In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present disclosure. However, it should be recognized that the present disclosure can be practiced without reapportioning to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present disclosure.
Only exemplary illustrative embodiments of the present disclosure and but a few examples of their versatility are shown and described in the present disclosure. It is to be understood that the present disclosure is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. For instance, according to aspects of the present disclosure, the following modifications are possible.
(Modifications)
In the aforementioned first illustrative embodiment, the first feed roller 210 and the second feed roller 220 of the feed roller unit 200 are driven to rotate in accordance with rotation of the driving feed rollers 43. Nevertheless, the first feed roller 210 and the second feed roller 220 may be driving rollers.
In the aforementioned first illustrative embodiment, the rotational shaft 250 is not configured to rotate, but the first feed roller 210 and the second feed roller 220 are rotatable around the rotational shaft 250. Nevertheless, the first feed roller 210 and the second feed roller 220 may be fixedly attached to the rotational shaft 250, and may be configured to rotate integrally with the rotational shaft 250.
Number | Date | Country | Kind |
---|---|---|---|
2013-270688 | Dec 2013 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 14/583,294, filed Dec. 26, 2014, and further claims priority under 35 U.S.C. §119 from Japanese Patent Application No. 2013-270688 filed on Dec. 27, 2013. The entire subject matter of bother applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5163668 | Winship | Nov 1992 | A |
5863036 | Tanaka | Jan 1999 | A |
5938188 | Nagahara | Aug 1999 | A |
6152442 | Nishinohara et al. | Nov 2000 | A |
8333373 | Okuchi | Dec 2012 | B2 |
20020096819 | Fukasawa | Jul 2002 | A1 |
20030155702 | Togashi | Aug 2003 | A1 |
20060180987 | Hattori | Aug 2006 | A1 |
20060180989 | Seike | Aug 2006 | A1 |
20110074087 | Akimatsu | Mar 2011 | A1 |
20120049438 | Akimatsu | Mar 2012 | A1 |
20120228823 | Miyakoshi | Sep 2012 | A1 |
20130142561 | Kim | Jun 2013 | A1 |
20130175140 | Hiyama | Jul 2013 | A1 |
20140049000 | Kimura | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
11-100141 | Apr 1999 | JP |
2011-073814 | Apr 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20160304302 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14583294 | Dec 2014 | US |
Child | 15195230 | US |