This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2010-268563, filed on Dec. 1, 2010, in the Japanese Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
This disclosure relates to a sheet cutting device and an image forming apparatus including the sheet cutting device, and more specifically to a sheet cutting device to cut a rolled sheet to a desired length and an image forming apparatus, such as a printer, a copier, and a facsimile machine, including the sheet cutting device.
Image forming apparatuses are used as printers, facsimile machines, copiers, plotters, or multi-functional devices having two or more of the foregoing capabilities. As a conventional type of image forming apparatus, an image forming apparatus is known that feeds a long-size rolled sheet (hereinafter, rolled sheet) in a certain feed direction (hereinafter, sheet feed direction) to form an image on the rolled sheet.
The image forming apparatus typically has a sheet cutting device to cut the rolled sheet to a desired length by moving a cutter in a direction perpendicular to the sheet feed direction (hereinafter, width direction). The cutter used in the sheet cutting device may be, for example, a pair of circular blades to cut sheets of different thicknesses or materials. In particular, recently, such cutters are widely used in inkjet-type image forming apparatuses capable of forming images on sheets of different thicknesses or materials.
Such a conventional sheet cutting device having the pair of circular blades as the cutter needs to return a cutter holder holding the cutter to an initial position (home position) in preparation for the next sheet cutting. At this time, if a forward path along which the cutter moves to cut the sheet is identical to a backward path along which the cutter moves to return to the home position, the cutter contacts the already-cut sheet on the backward path, thus hampering movement of the cutter holder (so-called “cut jam”) or causing other failure.
To prevent such a cut jam or other failure, for example, JP-2009-214200-A proposes a sheet cutting device in which the backward path of the cutter formed with the pair of circular blades differs from the forward path of the cutter. Relative to the forward path, the backward path is arranged at a downstream side in the sheet feed direction in which the sheet is fed along a sheet feed path and at a position away from a leading edge of a subsequent divided sheet upstream from the cutter in the sheet feed direction. Specifically, after the cutter finishes the cutting operation, the cutter holder is tilted toward the downstream side in the sheet feed direction around a guide member for guiding the movement of the cutter holder. Thus, the position of the cutter moving along the backward path in the sheet feed direction is shifted to the downstream side in the sheet feed direction relative to the position of the cutter moving along the forward path.
Such a configuration can prevent the cutter from contacting the already-cut sheet on the backward path, thus preventing a cut jam.
However, the sheet cutting device tilts the cutter holder toward the downstream side in the sheet feed direction to differentiate the forward path from the backward path of the cutter. As a result, the sheet cutting device requires space for the cutter holder to pivot at the downstream side in the sheet feed direction, thus increasing the size of an apparatus main unit including the sheet cutting device.
As described above, in the sheet cutting device, the forward path of the cutter differs from the backward path, thus preventing the cutter from contacting the already-cut sheet. However, the cutter holder still remains on the sheet feed path after cutting operation. As a result, a subsequent sheet cannot be fed from the rolled sheet until the cutter and the cutter holder return to the home position, thus hampering gains in productivity.
In an aspect of this disclosure, there is provided an improved sheet cutting device including a cutter, a cutter holder, and a guide member. The cutter includes opposed blades opposing each other with a sheet interposed therebetween to cut the sheet to a desired length. The sheet is fed along a sheet feed path to the sheet cutting device. The cutter holder holds the cutter and is reciprocally movable in a width direction of the sheet perpendicular to a sheet feed direction in which the sheet is fed along the sheet feed path to the sheet cutting device. The guide member includes a first path to guide the cutter holder in the width direction of the sheet to cut the sheet with the cutter and a second path to guide the cutter holder in the width direction of the sheet after the sheet is cut with the cutter. The second path is disposed away from the first path in a thickness direction of the sheet perpendicular to both the sheet feed direction and the width direction of the sheet. When the cutter holder moves along the second path, the cutter holder is retracted away from the sheet feed path in the thickness direction of the sheet.
In another aspect of this disclosure, there is provided an improved image forming apparatus including an image forming device to form an image on a sheet, a sheet feed device to feed the sheet along a sheet feed path, and a sheet cutting device to cut the sheet fed along the sheet feed path. The sheet cutting device includes a cutter, a cutter holder, and a guide member. The cutter includes opposed blades opposing each other with the sheet interposed therebetween to cut the sheet to a desired length. The cutter holder holds the cutter and is reciprocally movable in a width direction of the sheet perpendicular to a sheet feed direction in which the sheet is fed along the sheet feed path to the sheet cutting device. The guide member includes a first path to guide the cutter holder in the width direction of the sheet to cut the sheet with the cutter and a second path to guide the cutter holder in the width direction of the sheet after the sheet is cut with the cutter. The second path is disposed away from the first path in a thickness direction of the sheet perpendicular to both the sheet feed direction and the width direction of the sheet. When the cutter holder moves along the second path, the cutter holder is retracted away from the sheet feed path in the thickness direction of the sheet.
The aforementioned and other aspects, features, and advantages of the present disclosure would be better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict exemplary embodiments of the present disclosure and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
In describing embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve similar results.
Although the exemplary embodiments are described with technical limitations with reference to the attached drawings, such description is not intended to limit the scope of the invention and all of the components or elements described in the exemplary embodiments of this disclosure are not necessarily indispensable to the present invention.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, exemplary embodiments of the present disclosure are described below.
In
The inkjet recording apparatus 1 includes an image forming section 2 serving as an image forming device, a sheet feed section 3 serving as a sheet feed device, a rolled sheet storage section 4, and a sheet cutting device 5. The image forming section 2, the sheet feed section 3, the rolled sheet storage section 4, and the sheet cutting device 5 are disposed within an apparatus main unit 1a.
In the image forming section 2, a guide rod 13 and a guide rail 14 are extended between side plates, and a carriage 15 is supported by the guide rod 13 and the guide rail 14 so as to be slidable in a direction indicated by an arrow A.
The carriage 15 holds liquid ejection heads (recording heads) 16 to eject ink droplets of, e.g., black (K), yellow (Y), magenta (M), and cyan (C). Sub tanks 17 are integrally provided with the corresponding recording heads 16 to supply color inks to the recording heads 16.
A main scanning mechanism 10 moves the carriage 15 for scanning in a main scanning direction, that is, the sheet width direction indicated by the arrow A. The main scanning mechanism 10 includes a driving motor 21 disposed at a first end in the sheet width direction, a driving pulley 22 rotated by the driving motor 21, a driven pulley 23 disposed at a second end opposite the first end in the sheet width direction, and a belt member 24 looped around the driving pulley 22 and the driven pulley 23. A tension spring tensions the driven pulley 23 outward, that is, away from the driving pulley 22. A portion of the belt member 24 is fixed to and held by a belt fixing portion at a rear side of the carriage 15 to draw the carriage 15 in the sheet width direction.
To detect a main scanning position of the carriage 15 in the main scanning direction, an encoder sheet is disposed along the sheet width direction in which the carriage 15 moves. An encoder sensor disposed at the carriage 15 reads the encoder sheet to detect the main scanning position of the carriage 15.
In a recording area of a main scanning region of the carriage 15, the rolled sheet 30 is intermittently fed by the sheet feed section 3 in a direction perpendicular to the sheet width direction, that is, the sheet feed direction indicated by an arrow B in
Outside a range of movement of the carriage 15 in the sheet width direction or at a first end side of the main scanning region of the carriage 15, main cartridges 18 are removably mounted to the apparatus main unit la to store the respective color inks to be supplied to the sub tanks 17 of the recording heads 16. At a second end side of the main scanning region opposite the first end side, a maintenance unit 19 is disposed to maintain and recover desirable conditions of the recording heads 16.
The rolled sheet storage section 4 serves as a sheet feed unit into which the rolled sheet 30 serving as a sheet material for image recording is set. As the rolled sheet 30, rolled sheets of different widths can be set to the rolled sheet storage section 4. The rolled sheet 30 includes a sheet shaft, and flanges 31 are mounted at opposite ends of the sheet shaft. By mounting the flanges 31 to flange bearings 32 of the rolled sheet storage section 4, the rolled sheet 30 is stored in the rolled sheet storage section 4. The flange bearings 32 include support rollers to rotate the flanges 31 while contacting the outer circumference of the flanges 31 to feed the rolled sheet 30 to the sheet feed path.
As illustrated in
After the rolled sheet 30 is fed from the rolled sheet storage section 4, the sheet feed section 3 feeds the rolled sheet 30 forward (toward the left side in
After image formation, the sheet cutting device 5 cuts the rolled sheet 30 to a desired length, and the cut sheet is discharged to a sheet output tray at the front side of the apparatus main unit 1a.
Next, the sheet cutting device 5 in this exemplary embodiment is described with reference to
The cutter 50 is formed with circular blades 50a and 50b. The circular blades 50a and 50b are disposed opposing each other and rotatably held by the cutter holder 51. The circular blades 50a and 50b rotate with movement of the cutter holder 51 in the sheet width direction indicated by the arrow A in
The cutter holder 51 is reciprocally movable back and forth in the sheet width direction. When the cutter holder 51 moves along a forward path (indicated by an arrow FWD in
The cutter holder 51 has a driving roller 51a and a driven roller 51b, and holds the cutter 50 inside. The driving roller 51a is connected to a wire 55 extended between a pair of pulleys 54 at opposite ends of the apparatus main unit 1a in the sheet width direction. The wire 55 circulates in the sheet width direction via the pair of pulleys 54 rotated by a driving motor. As a result, the driving roller 51a is rotationally moved on an upper guide rail 61 in accordance with the circulation of the wire 55. The cutter holder 51 is movable in the sheet width direction in accordance with the movement of the driving roller 51a. The driven roller 51b is rotatably disposed away from the driving roller 51a in the sheet width direction. The driven roller 51b moves on the upper guide rail 61 along the forward path of the cutter holder 51 and on a lower guide rail 62 along the backward path. In other words, during the movement of the cutter holder 51, the driven roller 51b functions as a positioning member to position the cutter holder 51 with respect to the upper guide rail 61 and the lower guide rail 62. The positioning member of the cutter holder 51 is not limited to the driven roller 51b but may be, for example, a circular-arc protrusion. In this exemplary embodiment, the driven roller 51b serves as a positioning portion of the cutter holder.
On switching between the forward path and the backward path, the cutter holder 51 pivots in the vertical direction around the driving roller 51a. Thus, the cutter holder 51 switches between a first position with which the cutter holder 51 cuts the rolled sheet 30 along the forward path and a second position with which the cutter holder 51 is retracted from the sheet feed path.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
At a first end side of the driven-roller guide area 61b in the sheet width direction, a first connection path 61c is formed to switch the path of the cutter holder 51 from the forward path to the backward path. As illustrated in
As illustrated in
The moving mechanism 70 includes a second connection path 61e to connect the backward path on the lower guide rail 62 to the forward path on the upper guide rail 61, and a switching hook 71 disposed adjacent to the second connection path 61e at the upper guide rail 61.
The second connection path 61e is formed by cutting out a predetermined portion of the upper guide rail 61 at the second end side in the sheet width direction (see
The switching hook 71 pivots between the backward path and the second connection path 61e and is constantly urged downward by an urging member, e.g., a coil spring, so that a tip of the switching hook 71 contacts the lower guide rail 62. As a result, as illustrated in
The lower guide rail 62 guides the driven roller 51b of the cutter holder 51 moving along the backward path.
Next, operation of the sheet cutting device 5 is described with reference to
As illustrated in
Next, as illustrated in
Then, based on a position detected by a detector at the first end side in the sheet width direction, the wire 55 (see
Next, as illustrated in
Thus, the reciprocal movement of the cutter holder 51 in the sheet width direction is finished. If the rolled sheet 30 is subsequently fed, the above-described reciprocal movement is repeated.
As described above, in the sheet cutting device according to this exemplary embodiment, when the cutter holder 51 moves along the backward path after the rolled sheet 30 is cut, the cutter holder 51 is retracted downward in the vertical direction from the sheet feed path so as to move away from the sheet feed path. Such a configuration prevents the cutter holder 51 moving along the backward path from getting across the sheet feed path in the sheet width direction, thus preventing the cutter holder 51 moving along the backward path from blocking the sheet feed path. As a result, even when the cutter holder 51 moves along the backward path, a subsequent rolled sheet 30 can be fed, thus enhancing the productivity. Additionally, the cutter holder 51 moving along the backward path is completely retracted from the sheet feed path. Such a configuration prevents the cutter 50 from contacting an already-cut sheet of the rolled sheet 30, thus securely preventing a cut jam or other failure.
In the sheet cutting device according to this exemplary embodiment, the cutter holder 51 is retracted downward in the vertical direction. Such a configuration can reduce, in particular, the width of the apparatus main unit 1a in the sheet feed direction as compared to a conventional sheet cutting device that tilts a cutter holder toward a downstream side in a sheet feed direction, thus reducing the size of the apparatus main unit 1a.
In the sheet cutting device according to this exemplary embodiment, on switching from the forward path to the backward path, the driven roller 51b moves from the upper guide rail 61 to the lower guide rail 62 to pivot in the vertical direction around the driving roller 51a. As a result, after the rolled sheet 30 is cut, the cutter holder 51 can be retracted in the vertical direction relative to the sheet feed path. Thus, the cutter holder 51 can move along the backward path in a state in which the cutter holder 51 is retracted relative to the sheet feed path.
In this exemplary embodiment, the sheet cutting device includes the moving mechanism 70 to move the driven roller 51b from the lower guide rail 62 to the upper guide rail 61 when the cutter holder 51 moves to the second end in the sheet width direction via the backward path. Thus, the moving path of the cutter holder 51 can be switched from the backward path to the forward path by the moving mechanism 70.
In the sheet cutting device according to this exemplary embodiment, the moving mechanism 70 is simply formed with the second connection path 61e and the switching hook 71. Thus, the cutter holder 51 can return from the backward path to the forward path without using a complex mechanism.
In this exemplary embodiment, the sheet cutting device employs the rotationally driven roller 51b as a positioning member to position the cutter holder 51, thus allowing smooth movement of the cutter holder 51 in the sheet width direction.
In the sheet cutting device according to this exemplary embodiment, the cutter holder 51 has the slanted face 51c slanted at a predetermined angle. Such a configuration can reduce the pivot amount of the cutter holder 51 on switching between the forward path and the backward path, thus reducing the size of the apparatus main unit 1a.
In the sheet cutting device according to this exemplary embodiment, the upper guide rail 61 and the lower guide rail 62 are formed as a single member, thus reducing the cost of components.
In this exemplary embodiment, as illustrated in
In this exemplary embodiment, the cutter holder 51 has the driving roller 51a at the first end side in the sheet width direction and the driven roller 51b at the second end side in the sheet width direction. However, the configuration of the cutter holder 51 is not limited to such a configuration, and for example, the positions of the driving roller 51a and the driven roller 51b are interchangeable. In such a case, the cutter holder 51 pivots in a direction opposite the pivot direction of the above-described exemplary embodiment. Accordingly, the arrangement of the slanted face 51c is modified according to the pivot direction.
In this exemplary embodiment, the cutter holder 51 is retracted downward in the vertical direction. Alternatively, for example, in a case in which the sheet cutting device 5 is not horizontally disposed relative to the apparatus main unit 1a, the cutter holder 51 may be retracted in the thickness direction of the rolled sheet 30 in accordance with the inclination of the sheet cutting device 5. Furthermore, as illustrated in
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the present disclosure may be practiced otherwise than as specifically described herein. With some embodiments having thus been described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the scope of the present disclosure and appended claims, and all such modifications are intended to be included within the scope of the present disclosure and appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-268563 | Dec 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030146964 | Fujiwara | Aug 2003 | A1 |
20110063644 | Niihara et al. | Mar 2011 | A1 |
20110064497 | Niihara et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
9-29685 | Feb 1997 | JP |
2000-272117 | Oct 2000 | JP |
2009-214200 | Sep 2009 | JP |
Entry |
---|
U.S. Appl. No. 13/293,517 of Masato Ogawa et al., filed Nov. 10, 2011. |
U.S. Appl. No. 13/307,157 of Yuichiro Maeyama et al., filed Nov. 30, 2011. |
Japanese official action dated Oct. 21, 2014 in corresponding Japanese patent application No. 2010-268563. |
Number | Date | Country | |
---|---|---|---|
20120140011 A1 | Jun 2012 | US |