The present patent application claims priority from Japanese Patent Application No. 2009-246466, filed on Oct. 27, 2009, in the Japan Patent Office, which is hereby incorporated herein by reference in its entirety.
1. Technical Field
Illustrative embodiments described in this patent specification generally relate to a sheet discharger and an image forming apparatus including the sheet discharger.
2. Description of the Related Art
Related-art image forming apparatuses, such as copiers, printers, facsimile machines, and multifunction devices having two or more of copying, printing, and facsimile functions, typically form a toner image on a recording medium (e.g., a sheet of paper) according to image data using an electrophotographic method. In such a method, for example, a charger charges a surface of an image carrier (e.g., a photoconductor); an irradiating device emits a light beam onto the charged surface of the photoconductor to form an electrostatic latent image on the photoconductor according to the image data; a developing device develops the electrostatic latent image with a developer (e.g., toner) to form a toner image on the photoconductor; a transfer device transfers the toner image formed on the photoconductor onto a sheet; and a fixing device applies heat and pressure to the sheet bearing the toner image to fix the toner image onto the sheet. The sheet bearing the fixed toner image is then discharged from the image forming apparatus by a sheet discharger.
Related-art sheet dischargers often employ a catch system, in which a rear edge of a sheet being discharged from the image forming apparatus is sandwiched by a pair of discharge rollers to hold the sheet while the rest of the sheet hangs exposed from the image forming apparatus.
In such sheet dischargers, the sheet thus sandwiched by the pair of discharge rollers is pulled by a user to be discharged from the image forming apparatus. At this time, the discharge rollers, which are in a stopped state to sandwich the sheet, are rotated by the pulling of the sheet. However, because the pair of discharge rollers is connected to a driving unit such as a motor, a load torque is generated by rotating the pair of discharge rollers in this stopped state. Consequently, a certain amount of force is required for the user to pull the sheet out of the image forming apparatus, causing inconvenience to the user to discharge the sheet from the image forming apparatus.
In addition, the sheet pulled by the user scrapes against the pair of discharge rollers, possibly causing toner or dust attached to the pair of discharge rollers to be further attached to the sheet. Further, an image formed near the rear edge of the sheet may be damaged by such scraping against the pair of discharge rollers.
A lever is sometimes provided to separate the pair of discharge rollers from each other to release the sheet when the sheet is pulled out of the image forming apparatus, thereby solving the above-described problems and inconvenience. However, because the user must operate the lever before pulling the sheet out of the image forming apparatus, an additional operation is imposed on the user to discharge the sheet from the image forming apparatus.
In view of the foregoing, illustrative embodiments described herein provide a sheet discharger from which a sheet to be discharged therefrom is easily pulled out by a user, and an image forming apparatus including the sheet discharger.
At least one embodiment provides a sheet discharger including a pair of rotary bodies to discharge a sheet to a discharge part by rotating while sandwiching the sheet and to hold the sheet, a part of which is discharged and exposed from a discharge exit of the sheet discharger, and a separation unit operatively connected to the pair of rotary bodies, including an operating part provided closer to the discharge exit than the pair of rotary bodies to support the sheet held by the pair of rotary bodies, that separates the pair of rotary bodies from each other by withdrawal of the sheet held by the pair of rotary bodies toward the discharge exit of the sheet discharger.
At least one embodiment provides an image forming apparatus including the sheet discharger described above.
Additional features and advantages of the illustrative embodiments will be more fully apparent from the following detailed description, the accompanying drawings, and the associated claims.
A more complete appreciation of the illustrative embodiments described herein and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict illustrative embodiments and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
In describing illustrative embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
A description is now given of illustrative embodiments of the present invention with reference to drawings, wherein like reference, numerals designate identical or corresponding parts throughout the several views.
An irradiating device 3 that directs light onto the surface of each of the photoconductors 2 is provided above the image forming units 1. The image forming apparatus 100 further includes, in order from the left to the right in
It is to be noted that the sheets of paper herein refer to media onto which images can be transferred to form the images thereon. Examples of the media include, but are not limited to, a transfer sheet or a recording sheet such as a cardboard, a postcard, an envelope, plain paper, or thin paper; enamel paper such as coated paper or art paper; an OHP sheet or an OHP film; and tracing paper.
The fixing device 9 includes a fixing roller 9a having a heat source therein, and a pressing roller 9b pressed against the fixing roller 9a to form a fixing nip therebetween.
The discharge tray 12 is hingedly supported to be rotated around a rotary shaft 13 provided in a main body of the image forming apparatus 100. When the discharge tray 12 is opened from the main body of the image forming apparatus 100 as indicated by dotted lines in
A description is now given of the basic operation of the image forming apparatus 100 with reference to
At the start of image formation, first, the photoconductors 2 of the image forming units 1 are rotated in a counterclockwise direction in
Concurrently with the above-described operation, the sheet feed roller 5 is rotated by a motor, not shown, in a counterclockwise direction in
Thereafter, the magenta toner image, the cyan toner image, and the black toner images are sequentially transferred and superimposed one atop the other on the yellow toner image on the sheet P when the sheet P passes through transfer positions formed between the conveyance belt 8 and each of the photoconductors 2M, 2C, and 2K. As a result, a full-color toner image is formed on the sheet P. After the toner images of the specific color are transferred onto the sheet, residual toner remaining on the surfaces of the photoconductors 2 is removed by the cleaning devices, respectively. Subsequently, the surfaces of the photoconductors 2 are neutralized to initialize a polarity thereon by the neutralizing devices to be ready for the next sequence of image formation.
The sheet P having the full-color toner image thereon is then conveyed to the fixing device 9, and heat and pressure are applied to the sheet P by the fixing roller 9a and the pressing roller 9b to fix the full-color toner image on the sheet P. The sheet P having the fixed full-color image thereon is then discharged by the pair of discharge rollers 11a and 11b onto the discharge tray 12 when the discharge tray 12 is opened from the main body of the image forming apparatus 100. It is to be noted that whether or not the discharge tray 12 is opened from the main body of the image forming apparatus 100 is detected by a detector, not shown.
By contrast, when the discharge tray 12 is closed, rotation of the pair of discharge rollers 11a and 11b is stopped a predetermined period of time after the discharge sensor 10 detects the sheet P. Specifically, rotation of the pair of discharge rollers 11a and 11b is stopped while a rear edge of the sheet P is sandwiched by the pair of discharge rollers 11a and 11b. Accordingly, the sheet P is held by the pair of discharge rollers 11a and 11b while the rest of the sheet P is discharged from the discharge opening 12a of the discharge tray 12 and is exposed from the image forming apparatus 100 as illustrated in
When images are formed on multiple sheets P, a subsequent sheet P is not fed until the previous sheet P sandwiched by the pair of discharge rollers 11a and 11b is pulled out and removed by a user. When the discharge sensor 10 detects removal of the previous sheet P from the pair of discharge rollers 11a and 11b, the subsequent sheet P is then fed from the sheet feed tray 4 by the sheet feed roller 5 to restart image formation. Alternatively, after the previous sheet P is removed from the pair of discharge rollers 11a and 11b by the user, the user may press a switch, not shown, provided to the image forming apparatus 100 to restart feeding of and image formation for the subsequent sheet P.
A description is now given of the sheet feeder 15 according to a first illustrative embodiment.
The sheet feeder 15 includes the pair of discharge rollers 11a and 11b serving as rotary bodies disposed opposite each other. The discharge roller 11a is positioned above the discharge roller 11b, and is hereinafter also referred to as an upper discharge roller 11a for ease of description. For the same reason, the discharge roller 11b positioned below the upper discharge roller 11a is hereinafter also referred to as a lower discharge roller 11b.
The upper discharge roller 11a is formed of a material having a higher surface frictional factor such as rubber, and is connected to a motor, not shown, via a rotary shaft 16. The lower discharge roller 11b is formed of a resin or the like, and is rotatably held by a holding member 17. The holding member 17 is rotatable around a rotary shaft 17a provided parallel to a rotary shaft 18 of the lower discharge roller 11b. The rotary shaft 17a is held and positioned by a bearing or the like, not shown. An end of a compression coil spring 19 serving as a biasing member is fixed to a protrusion 17b provided on a lower surface of the holding member 17 so that the holding member 17 is pushed upward by a biasing force of the compression coil spring 19. It is to be noted that, alternatively, another biasing member such as a tension coil spring or a torsion coil spring may be used to push the holding member 17 upward in place of the compression coil spring 19. The holding member 17 further has an operating part 17c provided closer to a discharge exit of the sheet P, that is, to the right in
The lower discharge roller 11b is pressed against the upper discharge roller 11a by the holding member 17 pushed upward by the compression coil spring 19 as illustrated in
A description is now given of discharge of the sheet P from the sheet discharger 15 with reference to
In order to discharge the sheet P from the sheet discharger 15, first, a part of the sheet P discharged and exposed from the image forming apparatus 100 in the right in
As the holding member 17 rotates around the rotary shaft 17a in a clockwise direction as illustrated in
As described above, the upper and lower discharge rollers 11a and 11b remain separated from each other when the sheet P is removed therefrom. In other words, the sheet P is pulled and discharged from the sheet discharger 15 while being released from the upper and lower discharge rollers 11a and 11b. As a result, a force required for the user to pull the sheet P out of the image forming apparatus 100 can be reduced, thereby facilitating discharge of the sheet P from the image forming apparatus 100.
In the state illustrated in
In the state illustrated in
In other words, relative positions of the rotary shaft 17a, the compression coil spring 19, and the operating part 17c are adjusted to change the amount of force required to press the operating part 17c downward. As a result, the operating part 17c can be pressed downward with a smaller amount of force against the amount of force of the compression coil spring 19 that pushes the holding member 17 upward, thereby reducing the amount of force required for the user to pull the sheet P out of the image forming apparatus 100.
When being pulled out of the image forming apparatus 100, the sheet P remains in contact with the upper discharge roller 11a in a stopped state. As a result, friction is generated between the sheet P and the upper discharge roller 11a. Even when the upper discharge roller 11a is rotated by pulling the sheet P downward, a load torque against the direction of rotation of the upper discharge roller 11a is generated because the upper discharge roller 11a is connected to the motor. In order to reduce generation of the load torque, a one-way clutch 21 is provided to a transmission system that transmits a drive force to the upper discharge roller 11a. Accordingly, even when driving of the upper discharge roller 11a is stopped, the upper discharge roller 11a can be idly rotated as the sheet P is pulled out of the image forming apparatus 100. As a result, resistance caused by friction or load torque generated upon removal of the sheet P from the sheet discharger 15 can be considerably reduced, and the sheet P can be pulled out of the image forming apparatus 100 with a further reduced amount of force.
A description is now given of a second illustrative embodiment of the present disclosure.
As illustrated in
Alternatively, at least a surface of the operating part 17c that contacts the sheet P may be formed of a material having a reduced frictional factor such as a fluorocarbon resin to reduce sliding resistance between the sheet P and the operating part 17c, thereby reducing damage to the sheet P as well as a force required to pull the sheet P out of the image forming apparatus 100.
A description is now given of a third illustrative embodiment of the present disclosure.
A roller member 20 is rotatably provided to the tip portion of the operating part 17c in the sheet discharger 15 according to the third illustrative embodiment. The rest of the configuration of the sheet discharger 15 according to the third illustrative embodiment is the same as that of the sheet discharger 15 according to the first illustrative embodiment, and descriptions thereof are omitted.
As described above, the sheet P can be easily pulled out of the image forming apparatus 100 while the upper and lower discharge rollers 11a and 11b remain separated from each other according to the foregoing illustrative embodiments. As a result, a force required for the user to pull the sheet P out of the image forming apparatus 100 can be reduced, and attachment of foreign substances such as toner or dust adhering to the upper and lower discharge rollers 11a and 11b to the sheet P can be prevented. Further, deterioration of the image formed near the rear edge of the sheet P can be prevented upon discharge of the sheet P from the image forming apparatus 100.
In addition, the upper and lower discharge rollers 11a and 11b can be easily separated from each other by simply pulling downward the sheet P sandwiched by the upper and lower discharge rollers 11a and 11b, and the sheet P can be pulled out of the image forming apparatus 100 while being released from the upper and lower discharge rollers 11a and 11b. In other words, a lever or the like that separates the upper and lower discharge rollers 11a and 11b from each other is not needed in the sheet discharger 15 according to the foregoing illustrative embodiments, thereby simplifying the configuration of the sheet discharger 15. Further, the user does not need to operate the lever or the like to pull the sheet P out of the image forming apparatus 100, thereby providing a user-friendly configuration.
It is to be noted that illustrative embodiments of the present invention are not limited to those described above, and various modifications and improvements are possible without departing from the scope of the present invention. It is therefore to be understood that, within the scope of the associated claims, illustrative embodiments may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of the illustrative embodiments.
For example, although the lower discharge roller 11b is separated from the upper discharge roller 11a by rotating the holding member 17 according to the foregoing illustrative embodiments, alternatively, the upper discharge roller 11a may be separated from the lower discharge roller 11b. Further, although being formed of a resin or the like according to the foregoing illustrative embodiments, alternatively, the lower discharge roller 11b may be formed of a material having a higher surface frictional factor such as rubber in the similar way as the upper discharge roller 11a to achieve the same effects as the foregoing illustrative embodiments.
The sheet discharger 15 according to the foregoing illustrative embodiments is applicable not only to the full-color image forming apparatus 100 but also to a monochrome image forming apparatus, a copier, a printer, a facsimile machine, or a multifunction device having two or more of copying, printing, and facsimile functions.
Number | Date | Country | Kind |
---|---|---|---|
2009-246466 | Oct 2009 | JP | national |