1. Field of the Invention
The present invention relates to a sheet ejecting device, and more particularly to a sheet ejecting device that is suited to be employed in an image forming apparatus such as an electrophotographic copying machine or a printer, or in an after-processing device such as a finisher connected to the image forming apparatus.
2. Description of Related Art
When a printed sheet is ejected from an image forming apparatus onto a sheet tray through a pair of ejection rollers, if the sheet is soft, trouble will occur. Specifically, the leading part of the soft sheet bends downward, and the sheet interferes with sheets already ejected and stacked on the tray. Thereby, the sheets stacked on the tray will be out of alignment.
In order to avoid this trouble, as disclosed by JP58-38641A and JP2005-263418A, conventionally, a currently ejected sheet is curved in a direction perpendicular to the sheet ejecting direction by use of a spring, an elastic member, a roller or the like so that the leading edge of the currently ejected sheet will be in contact with a stack of sheets on the tray at a point farther from the pair of ejection rollers. Thereby, the leading part of the currently ejected sheet is prevented from interfering with the stack of sheets on the tray and from pushing the stack of sheets on the tray out of alignment. However, since the currently ejected sheet is curved and strengthened evenly from the leading edge to the trailing edge, the sheet may jump out of the pair of ejection rollers with great force, and consequently, the sheet may push the stack of sheets on the tray out of alignment.
a shows a case of ejecting a sheet S onto a sheet tray 110 via a pair of ejection rollers 101 while not strengthening the sheet S. If the sheet S is very soft, the leading part of the sheet S bends downward after coming out of the ejection rollers 101 and interferes with a stack of sheets S′ at a position near the ejection rollers 101, and the stack of sheets S′ is pushed.
As
d shows a case of ejecting a sheet S2 of a relatively small size while strengthening the sheet S2. In this case, the leading edge of the strengthened sheet S2 comes into contact with the stack of sheets S′, and while the sheet S2 keeps strong, the trailing edge of the sheet S2 comes out of the ejection rollers 101. Therefore, the sheet S2 is tense between the ejection rollers 101 and the stack of sheets S′, and the sheet S2 comes out of the ejection rollers 101 with great force. Thereby, the sheet S2 cannot be in alignment with the stack of sheets S′.
An object of the present invention is to provide a sheet ejecting device for ejecting a sheet onto a tray while strengthening the sheet so that the sheet can be ejected in alignment with a stack of sheets on the tray without pushing the stack of sheets out of alignment.
In order to achieve the object, according to a first aspect of the present invention, a sheet ejecting device for ejecting printed sheets one by one comprises: a pair of ejection rollers for ejecting a sheet; a strengthener, arranged to be capable of advancing into and retreating from a sheet ejection route, for strengthening a sheet; a driver for moving the strengthener to advance into and retreat from the sheet ejection route; a sensor for detecting a currently ejected sheet; and a controller for controlling the driver based on a signal sent from the sensor so that the strengthener can operate to strengthen a predetermined part of a sheet.
In the sheet ejecting device, the strengthener is moved to advance into and retreat from the sheet ejection route so that only a necessary part of a sheet can be strengthened. Therefore, there is no possibility that the leading part of a currently ejected sheet may bend downward and push a stack of sheets on the tray out of alignment. Further, even if the currently ejected sheet is of a small size, there is no possibility that the sheet may jump out of the ejection rollers with great force, and the sheet can be ejected onto the tray in alignment with the stack of sheets.
According to a second aspect of the present invention, a sheet ejecting device for ejecting printed sheets one by one comprises: a pair of ejection rollers; a strengthener, located in a sheet ejection route, for providing a force for a sheet; a bender, arranged to be capable of advancing into and retreating from the sheet ejection route, for canceling out the force provided for the sheet by the strengthener; a driver for moving the bender to advance into and retreat from the sheet ejection route; a sensor for detecting a currently ejected sheet; and a controller for controlling the driver based on a signal sent from the sensor so that the bender can cancel out the force provided for the sheet by the strengthener.
In the sheet ejecting device, the currently ejected sheet is provided with a force by the strengthener, and there is no possibility that the leading part of the sheet may downward and push a stack of sheets on the tray out of alignment. Further, the bender is driven at a good time to cancel out the force provided for the sheet by the strengthener. Thereby, even if the sheet is of a small size, there is no possibility that the sheet may jump out of the ejection rollers with great force, and the sheet can be ejected onto the tray in alignment with the stack of sheets.
This and other objects and features of the present invention will be apparent from the following description with reference to the accompanying drawings, in which:
a-17d are illustrations of sheet ejection performed by a conventional sheet ejecting device.
Sheet ejecting devices according to preferred embodiments of the present invention are hereinafter described with reference to the drawings. In the following embodiments, the same members and parts are provided with the same reference symbols, and repetitious descriptions are omitted.
As
The strengthener 15 comprises a plurality of levers (five levers, in the first embodiment), and the plural levers are aligned in a position immediately downstream from the ejection rollers 11, in a direction perpendicular to a sheet ejecting direction “A”. Each of the levers 15 is pivoted on a pin 15a, and a driver section 15′, which is composed of a motor, a solenoid, etc., drives the levers 15 to move between a position shown by the solid line in
A printed sheet S is fed from the direction indicated by an arrow “A” into a nip portion of the ejection rollers 11 and is ejected onto the tray 20 by the rotation of the ejection rollers 11. In this moment, the strengthening levers 15 advance into the sheet ejection route to curve the sheet S in a direction perpendicular to the ejecting direction “A” such that the curvature extends in the ejecting direction “A”, and the curved and strengthened sheet S is ejected onto the tray 20.
More specifically, first, the leading edge of the sheet S is detected by the sensor 19. Then, before the leading edge of the sheet S reaches the strengthener 15, the levers 15 advance into the sheet ejection route. Thereby, the strengthening of the sheet S starts with the leading edge of the sheet S. The strengthened sheet S comes into contact with a stack of sheets S′ on the tray 20 at a point farther from the ejection rollers 11 than a point at which a non-strengthened sheet comes into contact with the stack of sheets S′ on the tray 20. Therefore, there is no possibility that the sheet S will push the stack of sheets S′ out of alignment.
When (or a specified time after) the trailing edge of the sheet S is detected by the sensor 19 or a specified time after the leading edge of the sheet S is detected by the sensor 19, the strengthening levers 15 retreat upward from the sheet ejection route and stop strengthening the sheet S. In other words, at a time after the leading edge of the sheet S comes into contact with the stack of sheets S′ and before the sheet S passes through the nip portion of the ejection rollers 11, the levers 15 retreat from the sheet ejection route. Thereafter, the sheet S is not strengthened. Thus, when the sheet S passes through the ejection rollers 11, the sheet S is no longer strengthened, and there is no possibility that the sheet S may jump out of the ejection rollers 11 with great force. Consequently, the sheet S can be ejected in alignment with the stack of sheets S′ on the tray 20.
A second embodiment of the present invention, which is shown by
The strengthener 16 comprises a plurality of plates (five plates, in the second embodiment), and the plural plates are aligned in a position immediately upstream from the ejection rollers 11, in the direction perpendicular to the sheet ejecting direction “A”. Each of the strengthening plates 16 is movable up and down, and the driver section 16′, which is composed of a motor, solenoid, etc., moves the plates 16 between a position shown by the solid line in
Like in the first embodiment, a printed sheet S is detected by the sensor 19, strengthened by the strengthener 16 and ejected onto the tray 20. The strengthened sheet S comes into contact with a stack of sheets S′ on the tray 20 at a point farther from the ejection rollers 11 than a point at which a non-strengthened sheet comes into contact with the stack of sheets S′ on the tray 20. Therefore, there is no possibility that the sheet S will push the stack of sheets S′ out of alignment.
When (or a specified time after) the trailing edge of the sheet S is detected by the sensor 19 or a specified time after the leading edge of the sheet S is detected by the sensor 19, the strengthening plates 16 retreat upward from the sheet ejection route and stop strengthening the sheet S. In other words, at a time after the leading edge of the sheet S comes into contact with the stack of sheets S′ and before the sheet S passes through the nip portion of the ejection rollers 11, the plates 16 retreat from the sheet ejection route. Thereafter, the sheet S is not strengthened. Thus, when the sheet S passes through the ejection rollers 11, the sheet S is no longer strengthened, and there is no possibility that the sheet S may jump out of the ejection rollers 11 with great force. Consequently, the sheet S can be ejected in alignment with the stack of sheets S′ on the tray 20.
The strengthener comprises levers (in the first embodiment) or plates (in the second embodiment) made of metal, resin or an elastic material, and the levers or the plates are capable of advancing into and retreating from the sheet ejection route. As shown in
When the strengthener comprises a plurality of levers 15 or a plurality of plates 16, the plural levers or plates may be selectively driven in accordance with the size of the sheet. For example, when an A4-sized sheet is ejected with its shorter sides parallel to the sheet ejecting direction (hereinafter referred to as A4-lateral sheet ejection), all the levers 15 or all the plates 16 are driven. On the other hand, when an A4-sized sheet is ejected with its longer sides parallel to the sheet ejecting direction (hereinafter referred to as A4-vertical sheet ejection), the sheet does not pass both sides of the sheet ejection route, and it is not necessary to drive the levers 15 or the plates 16 located on both sides of the sheet ejection route.
Further, the amount by which the levers 15 and the plates 16 advance into the sheet ejection route may be variable. The levers 15 or the plates 16 provide a sheet with a force in proportion to the advancing amount, and by varying the advancing amount of the levers 15 or the plates 16, it is possible to provide a sheet with a variable force.
Referring to
In the second basic sequence shown by
In the first and the second embodiments, for example, the time T3 to move the strengthener 15 or 16 to retreat from the sheet ejection route in the second basic sequence may be changed in accordance with the size of the sheet S (the dimension of the sheet S in the sheet ejecting direction “A”), the kind of the sheet S, the environmental conditions, etc. Referring to
If the distance L4 is 60 mm and if the speed of conveying the sheet S is 300 mm/s, the time T3 shall be within a range as shown by Table 1 below. In table 1, “A4-vertical” means the case of ejecting an A4-sized sheet with its longer sides parallel to the sheet ejecting direction, and “A4-lateral” means the case of ejecting an A4-sized sheet with its shorter sides parallel to the sheet ejecting direction.
When the sheet S is ejected via the ejection rollers 11, the sheet S bends downward by its own weight. The degree of the bend-down (the strength) of the sheet S depends on the kind of the sheet S (the weight per square meter, that is, whether to be thin paper, ordinary paper or thick paper, and whether to be recycled paper) and the environmental conditions (temperature and humidity). Therefore, it is preferred that the time T3 is determined based on the kind of the sheet S and the environmental conditions.
Table 2 below shows an exemplary setting of the time T3 in accordance with whether the sheet S is thin paper, ordinary paper or thick paper. Here, thin paper is paper with a weight per square meter smaller than 60 g/m2. Ordinary paper is paper with a weight per square meter within a range from 60 g/m2 to 90 g/m2. Thick paper is paper with a weight per square meter greater than 90 g/m2.
Further, recycled paper is relatively soft, and the time T3 in the case of ejecting a sheet of recycled paper may be set longer than the time T3 in the case of ejecting a sheet of non-recycled paper with the same weight per square meter. Table 3 shows an exemplary setting of the time T3 in accordance with whether the sheet S is recycled paper.
Furthermore, it is preferred that the time T3 is set longer as the temperature and the humidity become higher. Table 4 shows an exemplary setting of the time T3 in accordance with whether the sheet ejecting device is under high temperature and high humidity, under ordinary temperature and ordinary humidity, or low temperature and low humidity.
Referring to
As
In the third embodiment, the strengthener 16 that is fixed in the sheet ejection route curves the sheet S in the direction perpendicular to the sheet ejecting direction “A” with the curvature extending in the sheet ejecting direction “A”, such that the sheet S is strengthened from the leading edge to the trailing edge. The strengthened sheet S comes into contact with a stack of sheets S′ on the tray 20 at a point farther from the ejection rollers 11 than a point at which a non-strengthened sheet comes into contact with the stack of sheets S′ on the tray 20. Therefore, there is no possibility that the sheet S will push the stack of sheets S′ out of alignment.
At a time after the leading edge of the sheet S comes into contact with the stack of sheets S′ and before the trailing edge of the sheet S passes through the ejection rollers 11, the bender 17 is driven to advance into the sheet ejection route so as to cancel out the force provided for the sheet S by the strengthener 16. Therefore, when the sheet S passes through the ejection rollers 11, the sheet S is no longer strengthened, and there is no possibility that the sheet S may jump out of the ejection rollers 11 with great force. Consequently, the sheets S′ can be kept in alignment on the tray 20.
In the third embodiment, as the bender 17, a plurality of levers are aligned in the direction perpendicular to the sheet ejecting direction “A”, and the levers are selectively driven in accordance with the size of the sheet S. However, the bender 17 may have only one lever located in the center with respect to the direction perpendicular to the sheet ejecting direction “A”.
In the second base sequence shown by
In the third embodiment, in the case in which the bender 17 is operated in accordance with the second base sequence shown by
If the distance L4 is 60 mm and if the speed of conveying the sheet S is 300 mm/s, the time T1′ shall be within a range as shown by Table 5 below.
When the sheet S is ejected via the ejection rollers 11, the sheet S bends downward by its own weight. The degree of the bend-down (the strength) of the sheet S depends on the kind of the sheet S (the weight per square meter, that is, whether to be thin paper, ordinary paper or thick paper, and whether to be recycled paper) and the environmental conditions (temperature and humidity). Therefore, it is preferred that the time T1′ is determined based on the kind of the sheet S and the environmental conditions.
Table 6 below shows an exemplary setting of the time T1′ in accordance with whether the sheet S is thin paper, ordinary paper or thick paper. Here, thin paper is paper with a weight per square meter smaller than 60 g/m2. Ordinary paper is a paper with a weight per square meter within a range from 60 g/m2 to 90 g/m2. Thick paper is paper with a weight per square meter greater than 90 g/m2.
Further, recycled paper is relatively soft, and the time T1′ in the case of ejecting a sheet of recycled paper may be set longer than the time T1′ in the case of ejecting a sheet of non-recycled paper with the same weight per square meter. Table 8 shows an exemplary setting of the time T1′ in accordance with whether the sheet S is recycled paper.
Furthermore, it is preferred that the time T1′ is set longer as the temperature and the humidity become higher. Table 8 shows an exemplary setting of the time T1′ in accordance with whether the sheet ejecting device is under high temperature and high humidity, under ordinary temperature and ordinary humidity, or low temperature and low humidity.
Further, there may be a case in which the bender 17 is not operated depending on the size, the kind and the material of the sheet S and/or the environmental conditions.
Referring to
The detailed constructions of the tray 20, the ejection rollers 11, the strengtheners 15, 16 and the bender 17 may be arbitrarily designed.
Although the present invention has been described in connection with the preferred embodiments above, various changes and modifications are possible to those who are skilled in the art. Such changes and modifications are to be understood as being within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2008-033681 | Feb 2008 | JP | national |
This application is a divisional of U.S. application Ser. No. 12/370,776 filed on Feb. 13, 2009 which claims the benefit of Japanese Application No. 2008-033681 filed on Feb. 14, 2008, the entire contents of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5110104 | Wakao et al. | May 1992 | A |
6220592 | Watanabe et al. | Apr 2001 | B1 |
7434802 | Yamamoto | Oct 2008 | B2 |
20050206069 | Yamamoto | Sep 2005 | A1 |
20070069453 | Thomas et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
58-38641 | Sep 1956 | JP |
09-227007 | Sep 1997 | JP |
2002-167102 | Jun 2002 | JP |
2002167102 | Jun 2002 | JP |
2002-274734 | Sep 2002 | JP |
2005-263418 | Sep 2005 | JP |
2006-062855 | Mar 2006 | JP |
2006-103869 | Apr 2006 | JP |
2007-176689 | Jul 2007 | JP |
2008-019080 | Jan 2008 | JP |
2008-156012 | Jul 2008 | JP |
Entry |
---|
Notification of Reasons for Refusal issued in the corresponding Japanese Patent Application No. 2008-033681 dated Mar. 2, 2010, and an English Translation thereof. |
Number | Date | Country | |
---|---|---|---|
20120108411 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12370776 | Feb 2009 | US |
Child | 13343027 | US |