This application is based on Japanese Patent Application No. 2008-137731 filed on May 27, 2008 in Japanese Patent Office, the entire content of which is hereby incorporated by reference.
The present invention relates to a sheet ejection device having a shift processing function, an image forming apparatus equipped with such a sheet ejection device, and a post-processing apparatus provided with such a sheet ejection device.
The sheet processing apparatus for processing a great number of sheets is often provided with a sheet ejection device having a function of shifting the position for each number of sheets having been set and loading the sheets on the ejection tray.
The sheet ejection device equipped with the shift function is required to ensure that each of the sheet bundles sorted out by shift processing is aligned to a high precision. For this purpose, development efforts have been made to implement a shift processing mechanism capable of providing a highly advanced aligning function.
The image forming system capable of high-speed processing which includes an image forming apparatus tends to be utilized as a quick printing apparatus. When this image forming system is used as a quick printing apparatus, the image forming system is increasingly required to ensure that the sheets having been subjected to the processing of image formation or the like are ejected while being aligned with high precision.
There has been an increasing demand for the sheet shift ejection as the sheet ejection mode.
For example, the Japanese Unexamined Patent Application Publication No. 2006-206331 proposes a method of installing a shifting mechanism on the ejection tray, whereby sheets are shifted in a highly aligned form and are stacked in position.
Referring to
The aligning members 102a and 102b travel above the sheets stacked on an ejection tray, and determine the position in the direction at right angles to the sheet ejection direction.
The bottom edges of the aligning members 102a and 102b are formed in a gently curved configuration so as to ensure contact with sheets, as illustrated in
This configuration allows a pair of aligning members 102a and 102b to accomplish the function of setting the sheet position and the function of aligning the sheets at the set position alternately.
The shifting mechanism disclosed in the Japanese Unexamined Patent Application Publication No. 2006-206331, however, entails a problem of insufficient aligning precision, as will be described below.
The aforementioned problem will be discussed with reference to
The topmost surface of the sheet on the ejection tray is maintained at a predetermined height indicated by point P0 under the control wherein the ejection tray travels in the vertical direction using the top surface sensor for detecting the topmost surface of the sheet.
At the position wherein the alignment member SB comes in contact with the sheets, however, the height and angle of the topmost surface of the sheet are changed by the curling of sheets.
In
As a result of changes on the sheet topmost surface as shown in
As shown in
Accordingly, when sheets are uncurled and are stacked correctly on the ejection tray, the contact point of the alignment member for regulating the position and the center point of action of the other alignment member for carrying out alignment operation correspond to the same point P1 in the sheet ejection direction W, and sheets are aligned to the state indicated by Sn.
However, if sheets are curled, the contact point of the position regulating alignment member shifts from P1 to P2, as shown in
As a result, the contact point P2 of the alignment member for regulating the position of the sheet is misaligned with the center point of action P1 of the other alignment member for carrying out alignment operation, in the sheet ejection direction W, as shown in
Because of this misalignment, the force of the alignment member for carrying out alignment operation acts as the moment for rotating the sheet, so that sheets are inclined, as indicated by Sm of
Specifically, correct alignment of sheets is not achieved.
An aspect of the present invention is as follows.
1. A sheet ejection device including:
an ejection tray on which a sheet having been ejected is stacked;
a pair of alignment members for aligning the end positions of the sheet in the direction perpendicular to the ejection direction of the sheet ejected on the ejection tray; and
a drive device for setting one of the alignment members at a position so as to come in contact with the top surface of the sheet stacked on the ejection tray and for driving the other alignment member so as to press the edge of the sheet which has been further ejected onto the sheet whose top surface is kept in contact with the one of alignment member,
wherein the one of alignment members comes in contact with the top surface of the sheet stacked on the ejection tray at a plurality of points in the sheet ejection direction.
2. An image forming apparatus provided with the sheet ejection device described in Item 1.
3. A post-processing apparatus provided with the sheet ejection device described in Item 1.
a) and 8(b) are enlarged views of the alignment member at the position indicated by a solid line of
The image forming apparatus A illustrate in
The image formation section 4 contains a photosensitive drum 4A, charging device 4B, development device 4C, transfer device 4D, separation device 4E, cleaning device 4F and others.
The sheet conveyance section includes a sheet feed cassette 5A, first sheet feed section 5B, second sheet feed section 5C, first conveyance section 5D, second conveyance section (automatic duplex copy conveyance section) 5E and sheet ejection section 5F.
A post-processing apparatus FS is connected on the side of the sheet ejection section 5F on the left face of the image forming apparatus A in the diagram.
The image on one side or both sides of the document “d” placed on the document platen of the automatic document feeder DF is read by the optical system of the image reading section 1 and is captured by the CCD image sensor 1A.
The analog signal having been subjected to photoelectric conversion by the CCD image sensor 1A is further subjected to processing such as analog processing, analog-to-digital conversion, shading correction, image compression processing by the image processing section 2, and is stored in the image memory (not illustrated).
In the image writing section 3, the photosensitive drum 4A of the image formation section 4 is radiated with the light emitted from a semiconducting laser, whereby a latent image is formed. Such processing operations as charging, exposure, development, transfer, separation and cleaning are carried out in the image formation section 4. The transfer device 41 allows the image to be transferred onto the sheets S having been fed from the sheet feed cassette BA by the first sheet feed section 5B or having been fed from large capacity sheet feeding unit LT. The sheets S carrying the image undergo the processing of fixing by the fixing device 6, and are conveyed to the post-processing apparatus FS from the sheet ejection section 5F.
The sheets S subjected to the processing of fixing are conveyed to the second conveyance section 5E by a conveyance path switching board 5G, and are further conveyed. An image is formed on the rear faces of the sheets S in the image formation section 4. These sheets S are then rejected from the sheet ejection section 5F.
The large capacity sheet feeding unit LT includes a sheet stacking device 11 and first sheet feed device 12, and are loaded with a great number of sheets S to be conveyed into the image forming apparatus A.
The post-processing apparatus FS applies processing of folding and shifting to the sheets S and additional sheets F, and ejects them to the fixed ejection tray 28 or elevating ejection tray 29.
The post-processing apparatus FS includes a sheet loading section 21, horizontal conveyance section 22, downward conveyance section 23, folding processing section 24, additional sheets conveyance section 25 and upward conveyance section 26.
The sheets S ejected from the image forming apparatus A pass through the horizontal conveyance section 22 and is ejected to the fixed ejection tray 28 through the upward conveyance section 26. Alternatively the sheets S ejected from the image forming apparatus A pass through the horizontal conveyance section 22, and are ejected to the elevating ejection tray 29 or pass through the downward conveyance section 23 to be folded by the folding processing section 24 and are ejected to the elevating ejection tray 29.
The additional sheet feed section 27 accommodates the additional sheets F such as sheets for insertion or sheets for cover sheets. The additional sheets F are added to the recording sheets conveyed from the image forming apparatus A. Then the sheets are ejected to the elevating ejection tray 29 through the conveyance section.
The sheets S are ejected to the fixed ejection tray 28 in the image formation mode for forming an image on a small number of sheets and in the mode wherein processing of folding or shifting is not performed.
The sheets S and additional sheets F are ejected to the elevating ejection tray 29, in the image formation mode for forming an image on a great number of sheets, in the fold processing mode or in the shift ejection mode.
It is well known in the art that the folding processing section 24 has a function of performing various forms of fold processing such as folding into two and various types of folding-in-three. The sheets S and additional sheets F having been subjected to fold processing are conveyed to the upstream side, and are then ejected to the elevating ejection tray 29 by the sheet ejection roller 30 provided on the horizontal conveyance section 22.
The sheet ejection device 100 including the elevating ejection tray 29 has a shift ejection function.
The following describes the sheet ejection device 100 having a shift ejection function:
In the following description, “sheets S” are assumed to include additional sheets F.
The sheet ejection device 100 is designed as a sheet ejection device for the post-processing apparatus FS. However, it can also be used as a sheet ejection device of the image forming apparatus A.
As described above, the sheets S and additional sheets F are ejected to the elevating ejection tray 29 as an ejection tray. In the following description, sheets S and additional sheets F will be collectively called “sheets S”.
As described above, the sheets S ejected from the sheet ejection roller 30 are discharged to the elevating ejection tray 29. The sheets S stacked on the elevating ejection tray 29 are shown in
The top surface of the sheets S is detected by the sensor 105 made up of a photoelectric sensor. The elevating ejection tray 29 performs a vertical travel to ensure that the top surface of the sheets S is kept always at a predetermined height. The vertical movement of the elevating ejection tray 29 is driven by a motor (not illustrated) under the control of the control device.
The elevating ejection tray 29 is provided with a concave portion 29A located immediately below the alignment members 101 and 102.
When the sheets S are stacked on the elevating ejection tray 29, a clearance is formed between the sheets S and elevating ejection tray 29 by the concave portion 29A, as illustrated.
The sheets S can be removed from the elevating ejection tray 29 by inserting the hand of an operator into the clearance formed by the concave portion 29A when the operator takes out the sheets S.
A pair of alignment members 101 and 102 of tabular shape is arranged above the elevating ejection tray 29. These alignment members 101 and 102 serve the function of aligning the end positions in the horizontal direction (hereinafter referred to as “across the width”) at right angles to the direction in which the sheets S are conveyed and ejected, and are so arranged as to be separated from each other across the width and to be opposed to each other.
The alignment members 101 and 102 are arranged rotatably around the rotary axis AX in such a way that they can be touched and detached from the elevating ejection tray 29. The alignment members 101 and 102 are set at the alignment position indicated by a solid line, the first retracted position (101A, 102A) indicated by a dotted line, and the second retracted position (101B, 102B) also indicated by a dotted line.
The alignment members 101 and 102 are driven by the motor 104, and are set at the alignment position, the first retracted position and the second retracted position.
The solid line indicates the alignment position after a great number of sheets have been ejected and stacked on the elevating ejection tray 29 and alignment members 101 and 102 have been shifted across the width of the sheets. One of the alignment members 101 and 102 in this case is mounted on the sheets S by its own weight. Another alignment member is stopped in the state of being kept in contact with the elevating ejection tray 29, or is suspended in the air, according to the thickness of the sheets stacked on the elevating ejection tray 29.
As will be described later, the alignment members 101 and 102 travel across the width of the sheets S. This traveling is driven by the motor 103. The drive force of the motor 103 is conveyed to the alignment members 101 and 102 by the transmission mechanism using a belt and pulley.
The rotating positions of the alignment members 101 and 102, particularly the alignment position and the first and second retracted positions are set according to the signal outputted from the sensor 106 (
As described above, the reference numerals 103 and 104 of the drawing indicate a motor for driving the alignment members 101 and 102, and reference numeral 106 denotes a sensor for detecting the rotary positions of the alignment members 101 and 102.
The reference numeral 111 is a sheet sensor provided on the sheet loading section 21 of
The control device 110 provides shift control according to the detection signal of the sensor 106 and sheet sensor 111.
The following describes the shift control with reference to
In
Bundles SS1 constituting sheets of preset number for one unit of the shift are stacked on the elevating ejection tray 29, as shown in Step SP1.
In SP1, the alignment members 101 and 102 are set at the alignment position as the lower position denoted by a solid line of
Accordingly, when the alignment members 101 and 102 are set at the lower position, they are loaded on the elevating ejection tray 29 by its own weight.
The alignment member 102 on the elevating ejection tray 29 performs a reciprocating motion across the width as shown by the arrow V1, whereby the sheets S are aligned. Sheets are aligned by the travel of the alignment member 102 every time one sheet S is ejected.
When the sheet number of bundle SS1 has reached the preset number by the signal from the sheet sensor 111, both alignment members 101 and 102 are moved in the upward direction, as indicated by arrow V2 in Step SP2. In the process of upward travel indicated by arrow V2, it is not illustrated. Both the alignment members 101 and 102 make a slight travel toward the outside from the centerline across the width to form a clearance with sheets. After that, these alignment members travel upward as indicated by arrow V2.
The traveling distance indicated by arrow V2 is such a distance that the bottom ends of the alignment members 101 and 102 are slightly away from the top surface of the sheet bundle SS1.
In Step SP2, alignment members 101 and 102 are set at the retracted height apart from the top surface of the sheet bundle SS1.
The retracted height of the alignment members 101 and 102 shown in Step SP2 is equivalent to the second retracted position of
The second retracted position shown as 101B and 102B in
Subsequent to upward traveling, the alignment members 101 and 102 shift to the right (across the width) as shown by arrow V3. The traveling distance indicated by arrow V3 corresponds to the amount of sheet shift.
As shown in Step SP3, next the alignment members 101 and 102 travel downward as indicated by arrow V4.
The alignment members 101 and 102 travel downward so that the bottom ends can be slightly lower than the top surface of the sheet bundle SS1. As a result, the alignment member 102 is placed on the sheet bundle SS1, and the bottom end of the alignment member 101 is placed slightly lower than the topmost surface of the sheet bundle SS1.
In Step SP4, the alignment member 101 makes a reciprocating motion across the width as indicated by arrow V1, whereby the sheets are aligned.
Step SP5 is in the same stage as the Step SP2. After the alignment members 101 and 102 have traveled upward as indicated by arrow V2, they perform a horizontal travel to the left as indicated by arrow V5.
The Step SP5 is followed by Step SP6 in which a step has been taken to set the alignment position after the alignment members 101 and 102 have performed a downward shift as indicated by arrow V4.
In the Step SP7 following the Step SP6, the alignment member 102 performs a reciprocating motion as indicated by arrow VI, whereby sheets S are aligned.
Sheet bundles SS1, SS2 and SS3 having been subjected to shift processing are formed in the alignment process of Steps SP1 through SP7.
a) and 8(b) are front views of the alignment member 101, and are enlarged views of the alignment member 101 located at the position indicated by a solid line of
The alignment member 101 includes a first alignment member 1011 supported rotatably around the axis AX, and a second alignment member 1012 supported by the first alignment member.
As shown in the drawing, the second alignment member 1012 is arranged inside the recess portion of the first alignment member 1011, and is slidable with reference to the first alignment member 1011 between the position indicated by 1012A and the position indicated by 1012B.
The first alignment member 1011 is provided with a slit 1013 which is engaged with the pin 1014 arranged on the second alignment member 1012.
Guided by the slit 1013 and pin 1014, the second alignment member 1012 travels in the vertical direction with reference to the first alignment member 1011.
a) shows the state when the alignment member 101 is not in contact with the elevating ejection tray 29 or the top surface of the sheets S loaded on the elevating ejection tray 29. In this case, the second alignment member 1012 is lowered to the bottom position by its own weight.
b) shows the state when the alignment member 101 is loaded on the sheets S which are stacked on the elevating ejection tray 29.
As shown in
Similarly to the alignment member 101, the alignment member 102 also includes the first alignment member and second alignment member of
In Step SP4 of
In Step SP4 of
When the alignment member 102 regulates the position, position regulation is performed at two points in the sheet ejection direction W. To be more specific, the bottom end of the first alignment member regulates the position of the sheets Sup at point Q1 of
The alignment member 101 pushes the sheets S at center point of action P1, whereby the sheets S are aligned. The center point of action P1 is the center position of the pushing force of the alignment member 101.
Even when the sheets S on which the alignment member 102 is loaded are curled and the positions of sheets Sup regulated by the alignment member 102 have shifted to Q1a and Q2a, the positions to be regulated by the alignment member 102 are two points in the sheet ejection direction W. This ensures that the sheets are not rotated under the force of the alignment member 101, as shown in
As shown in
As shown in
As has been described, alignment precision for the first sheet is enhanced. The alignment precision for the succeeding sheets is further improved.
Thus, even when sheets are curled, highprecision regulation of the sheet position is ensured, and the position alignment across the width is achieved, as described above.
In Step SP7 of
As illustrated, the second alignment member 1012 is arranged immediately above the concave portion 29A provided on the elevating ejection tray 29. When the bottom end of the first alignment member 1011 is kept in contact with the elevating ejection tray 29, the bottom end 1012A of the second alignment member 1012 is lowered into the concave portion 29A.
If the sheets S are ejected in this state, the edges of the sheets S is positioned correctly at two points by the first alignment member 1011 in contact with the elevating ejection tray 29 and the second alignment member 1012 having lowered into the concave portion 29A.
Thus, sheets S are positioned and aligned correctly from the first sheet.
The first alignment member 1011 is supported rotatably around the axis AX.
The second alignment member 1012 is also supported rotatably around the axis AX. The first alignment member 1011 and second alignment member 1012 are rotatable independently of each other. The second alignment member 1012 is placed on the first alignment member 1011 by the hook 1015 arranged on the top end of the second alignment member 1012.
Thus, when the first alignment member 1011 goes up to the retracted position, the second alignment member 1012 also goes up in conformity to the movement of the first alignment member 1011.
The first alignment member 1011 placed on the top surface of the sheets S stacked on the elevating ejection tray 29 is brought in contact with the side edge of the sheet to be aligned (sheet indicated by “Sup” in
High-precision alignment of sheets S is ensured by the aforementioned structure.
In the aforementioned embodiment, the alignment member contacts the top surface of the sheets stacked on the ejection tray at two points, and the positions of the sheets S ejected and stacked thereafter are aligned. However, the number of the points of contact with the top surface of the sheets is not restricted to two points. The number of contact points can be three or more. Such a structure is also included in the present invention. To put it more specifically, in addition to the first alignment member 1011 and second alignment member 1012, a third and fourth alignment members can be provided.
Number | Date | Country | Kind |
---|---|---|---|
2008-137731 | May 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5963754 | Itoh et al. | Oct 1999 | A |
6279899 | Coffey et al. | Aug 2001 | B1 |
7451980 | Tamura et al. | Nov 2008 | B2 |
7677557 | Ino | Mar 2010 | B2 |
7766324 | Tamura et al. | Aug 2010 | B2 |
20020158405 | Nagasako et al. | Oct 2002 | A1 |
20030193132 | Robertson et al. | Oct 2003 | A1 |
20070108697 | Tamura et al. | May 2007 | A1 |
20070145675 | Tamura et al. | Jun 2007 | A1 |
20070176357 | Horio et al. | Aug 2007 | A1 |
20080054550 | Hama | Mar 2008 | A1 |
20090289412 | Tanaka et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2001-341927 | Dec 2001 | JP |
2006-206331 | Aug 2006 | JP |
2009102154 | May 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20090295074 A1 | Dec 2009 | US |