Referring now to the figures of the drawings in detail and first, particularly, to
The varnishing unit 9a is followed by a drying tower 10a. The second side of the passing sheet is dried in the region of a cylinder 110 by hot air and IR light in the drying tower.
Downstream of the drying tower 10a, as viewed in the direction of sheet travel, there is a second reversing device 14 that is of substantially identical construction to the first reversing device 4. The reversing device 14 likewise includes three drums 14a, b, and c. In this case, the reversing drum 14c is supported in side walls 119b of a second varnishing unit 9b following the reversing device 14 and transfers the sheet to an impression cylinder 109b of the varnishing unit 9b. The varnishing unit 9b is of the same type as the varnishing unit 9a and is likewise used to coat the entire surface of the first side of the sheet with an aqueous dispersion varnish.
The varnishing unit 9b is followed by a delivery 5 of the printing press. The delivery 5 includes revolving gripper bars driven by a chain conveyor 15. These gripper bars 16 take over the sheets that have been varnished in the unit 9b and guide them through dryer sections 11a, b, c and d, where the first side of the sheets is likewise dried by IR light and/or hot air to harden the dispersion varnish. The sheets, which have been varnished on both sides in this way, are then deposited on a sheet pile 6 in the delivery 5.
While the sheets are transported through the printing units 7a-d and 8a-d, the printed sheets do not come into contact with varnish. Surfaces of sheet-guiding impression cylinders 108a-d in the printing units 8a-d and guide plates of the transfer devices disposed between the printing units 8a-d may thus be coated with ink-repellent layers that are adapted to or optimized in terms of the properties of the oil-based offset inks. The viscous dispersion varnish that causes soiling is not introduced until the end of the press, when the process of printing with offset printing ink is completed. Thus, compared to configurations wherein the varnishing unit is located upstream of the first reversing device 4, the useful life of the cylinder jackets and the intervals between cleaning operations can be increased to a considerable extent.
The reversing device 4 is convertible, i.e. it can be switched between straight or front-side printing mode and perfecting mode as described e. g. in German Published Patent Application DE 41 31 273 A1. The same applies to the reversing device 14. Due to this variability, the printing press 1 can print a wide variety of different jobs. If both reversing devices 4 and 14 are switched to straight printing, a number of special or spot colors can be printed on the first side of the sheets in the printing units 8 of the perfecting module. The printing unit 8d can additionally apply a transparent, oil-based dull varnish onto certain areas in the printed image, which will then be coated with two layers of a high-gloss dispersion varnish on top of each other in the varnishing units 9a and 9b. In this manner, high-quality paper board containers printed on one side may be produced, for example for packaging.
Once it has been switched to the straight printing mode, in particular the convertible reversing unit 14 disposed between the two varnishing units 9a and 9b also offers the possibility of applying a dispersion varnish as a primer in the first varnishing unit 9a to cover or “seal off” the offset inks underneath to avoid direct contact and thus chemical reactions between the offset inks and the high-gloss UV varnishes that will be printed in the second varnishing unit.
Another possibility is the application of gold varnish, for example in the first varnishing unit 9a, and the subsequent coating of the entire surface of the printed sheet with a protective varnish in the second varnishing unit 9b.
Once switched to the straight printing mode, it is additionally possible to apply a clear varnish to the printed sheet in the first varnishing unit 9a and to subsequently dry the clear varnish before metallic varnishes are applied in the second varnishing unit 9b. This may be done to prevent the offset inks printed on the sheet from marking the varnishing plate in the varnishing unit.
In the exemplary embodiment shown in
Since the separate drying tower is dispensed with, the press is shorter and requires less floor space than the press described with reference to the exemplary embodiment shown in
In the exemplary embodiment of
When the reversing device 14 of this machine is converted from the perfecting mode to the straight printing mode, either the front side or the back side, depending on the setting of the first reversing device 4, may be printed with four different layers of varnish on top of each other. Thus, highly specialized high-quality printed products can be produced, for example by printing a dispersion varnish in the first varnishing unit to cover and seal off the entire surface of the sheet that has been printed with offset ink, then gold varnish onto the dispersion varnish, and subsequently, in the third varnishing unit, a dull varnish to create a dull finish. The dull varnish, like the gold varnish, may only be applied to certain areas of the image (spot varnishing). In the fourth varnishing unit, the entire sheet is subsequently coated with a high-gloss UV varnish.
In the exemplary embodiment illustrated in
The drum 124a is then followed by a storage drum 24b and a reversing drum 24c of the reversing device 24, which is followed by a second varnishing unit 39b of the fountain-roller type having side walls 139b supporting the reversing drum 24c. A varnish applicator cylinder 49b of the latter varnishing unit now varnishes the first side of the sheets. This varnishing unit 39b is then followed by the delivery 5, having gripper bars which take over the sheets that have now been varnished on both sides. The dryer modules 21a-h in the delivery 5 act on both sides of the sheets to dry the first side and to expel any residual wetness in the layer of varnish of the second side of the sheet.
The machine described in terms of this exemplary embodiment requires less floor space because the number of sheet-guiding cylinders can be reduced since the sheets are dried from inside the cylinder 124a.
In addition to the exemplary embodiments described herein, further modifications and variations are possible. Depending on the type of varnish that is used, it is possible to use a varnishing unit with a fountain roller instead of a varnishing unit with a chambered doctor blade. Moreover, it is of course possible to provide additional printing units for printing, for example, two spot or special colors on each side of the sheets rather than to have only four printing units for the four process colors both in the straight printing portion and in the perfecting portion of the press.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 033 104.4 | Jul 2006 | DE | national |