This patent application is based on and claims priority pursuant to 35 U.S.C. §119(a) to Japanese Patent Application No. 2013-222213, filed on Oct. 25, 2013 in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
1. Technical Field
This disclosure relates to a sheet feeder and an electrophotographic image forming apparatus incorporating the sheet feeder.
2. Related Art
Known image forming apparatuses include copiers, printers, facsimile machines, offset printers, or multifunction peripheral printers having at least two of copying, printing, facsimile, offset printing functions, and the like. Such image forming apparatuses include a sheet feeder in which a sheet conveying member separates a sheet in a sheet stack, i.e., a stack of sheets loaded in a sheet container such as a sheet tray and holds the separated sheet before conveying the sheet to image forming devices disposed downstream from the sheet container in a sheet feeding direction.
As an example of the sheet conveying member, an endless dielectric belt is used to hold an uppermost sheet placed on a sheet tray onto a belt surface by an electrostatic force so as to rotate to convey the uppermost sheet to an extreme downstream device of the downstream image forming devices.
At least one aspect of this disclosure provides a sheet feeder including a sheet container, a sheet conveying member disposed facing a sheet stack that includes multiple sheet members loaded on the sheet container to separate an uppermost sheet member placed on the sheet stack from the other sheet members and to convey the uppermost sheet member, and a pressing member switchable between a pressing position to press the sheet stack from above and a retracted position to separate from the sheet stack.
Further, at least one aspect of this disclosure provides an image forming apparatus including the above-described sheet feeder and an image forming part to form an image on the sheet member. The image forming apparatus corresponds to one of a copier, a facsimile machine, a printer, an offset printing machine, or a multifunctional machine having at least two functions of the copier, the facsimile machine, the printer, and the offset printing machine.
A more complete appreciation of the disclosure and many of the advantages thereof will be obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements describes as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
The terminology used herein is for describing particular embodiments and examples and is not intended to be limiting of exemplary embodiments of this disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Descriptions are given, with reference to the accompanying drawings, of examples, exemplary embodiments, modification of exemplary embodiments, etc., of an image forming apparatus according to exemplary embodiments of this disclosure. Elements having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted. Elements that do not demand descriptions may be omitted from the drawings as a matter of convenience. Reference numerals of elements extracted from the patent publications are in parentheses so as to be distinguished from those of exemplary embodiments of this disclosure.
This disclosure is applicable to any image forming apparatus, and is implemented in the most effective manner in an electrophotographic image forming apparatus.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this disclosure is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes any and all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, preferred embodiments of this disclosure are described.
Now, a description is given of an image forming apparatus 1 according to an example of this disclosure.
The image forming apparatus 1 may be a copier, a facsimile machine, a printer, a plotter, a multifunction peripheral or a multifunction printer (MFP) having at least one of copying, printing, scanning, facsimile, and plotter functions, or the like. According to the present example, the image forming apparatus 1 is an electrophotographic image forming apparatus that forms color and monochrome toner images on a sheet or sheets by electrophotography.
More specifically, the image forming apparatus 1 functions as a printer. However, the image forming apparatus 1 can expand its function as a copier by adding a scanner as an option disposed on top of an apparatus body of the image forming apparatus 1. The image forming apparatus 1 can further obtain functions as a facsimile machine by adding an optional facsimile substrate in the apparatus body of the image forming apparatus 1.
Further, it is to be noted in the following examples that the term “sheet” is not limited to indicate a paper material but also includes OHP (overhead projector) transparencies, OHP film sheets, coated sheet, thick paper such as post card, thread, fiber, fabric, leather, metal, plastic, glass, wood, and/or ceramic by attracting developer or ink thereto, and is used as a general term of a recorded medium, recording medium, recording sheet, and recording material to which the developer or ink is attracted. In examples of this disclosure, the term “sheet” is also referred to as “sheet member”.
A description is given of a configuration of the image forming apparatus 1 according to an example of this disclosure, with reference to
It is to be noted that units and parts used in the image forming apparatus 1 in
As illustrated in
The exposure device 2 is disposed in an upper part of the image forming apparatus 1 and includes a light source to emit laser light beams and various optical components. Specifically, when obtaining image data from an image reading device such as a scanner, the exposure device 2 emits laser light beams having respective color separation elements of color images formed based on the image data to respective photoconductor drums 32Y, 32C, 32M, and 32K disposed in the image forming part 3, so as to irradiate respective surfaces of the photoconductor drums 32Y, 32C, 32M, and 32K.
The image forming part 3 is disposed below the exposure device 2 and includes multiple process units 31Y, 31C, 31M, and 31K. The multiple process units 31Y, 31C, 31M, and 31K function as image forming units and are detachably attached to the image forming apparatus 1.
Each of the multiple process units 31Y, 31C, 31M, and 31K includes a photoconductor drum 32 (i.e., photoconductor drums 32Y, 32C, 32M, and 32K), a charging roller 33 (i.e., charging rollers 33Y, 33C, 33M, and 33K), a developing device 34 (i.e., developing devices 34Y, 34C, 34M, and 34K), and a photoconductor cleaning blade 35 (i.e., photoconductor cleaning blades 35Y, 35C, 35M, and 35K). The photoconductor drum 32 carries toner that functions as developer on a surface thereof. The charging roller 33 functions as a charger to uniformly charge the surface of the photoconductor drum 32. The developing device 34 supplies the toner to the surface of the photoconductor drum 32. The photoconductor cleaning blade 35 cleans the surface of the photoconductor drum 32.
It is to be noted that the multiple process units 31Y, 31C, 31M, and 31K of the image forming apparatus 1 according to this example form yellow (Y), cyan (C), magenta (M), and black (K) toner images, respectively, which correspond to respective color separation elements of color images. Except for the different colors of toners, the multiple process units 31Y, 31C, 31M, and 31K have configurations identical to each other. Therefore, hereinafter, the units and parts included in the image forming apparatus 1 are often referred to in a singular unit without suffix indicating toner colors. For example, the multiple process units 31Y, 31C, 31M, and 31K is also referred to as “the process unit 31”.
The transfer part 4 is disposed immediately below the image forming part 3. The transfer part 4 includes a drive roller 41, a driven roller 42, an intermediate transfer belt 43, a cleaning blade 44, and a primary transfer roller 45 (i.e., primary transfer rollers 45Y, 45C, 45M, and 45K). The intermediate transfer belt 43 is an endless belt that is wound around the drive roller 41 and the driven roller 42 to rotate. The cleaning blade 44 cleans an outer circumferential surface of the intermediate transfer belt 43. The primary transfer roller 45 is disposed facing the photoconductor drum 32 of the process unit 31 with the intermediate transfer belt 43 interposed therebetween. Each of the primary transfer rollers 45Y, 45C, 45M, and 45K presses an inner circumferential surface of the intermediate transfer belt 43. By so doing, a primary transfer nip region (i.e., primary transfer nip regions) is formed at a contact area of a pressed part of the intermediate transfer belt 43 and the photoconductor drum 32.
The image forming apparatus 1 further includes a secondary transfer roller 46 and a waste toner box 47.
The secondary transfer roller 46 is disposed facing the drive roller 41 with the intermediate transfer belt 43 interposed therebetween. The secondary transfer roller 46 presses an outer circumferential surface of the intermediate transfer belt 43. By so doing, a secondary transfer nip region is formed at a contact area of a pressed part of the intermediate transfer belt 43 and the secondary transfer roller 46.
The waste toner box 47 is disposed below the intermediate transfer belt 43 via a waste toner transport hose. The waste toner box 47 stores waste toner collected by the cleaning blade 44 when cleaning the surface of the intermediate transfer belt 43.
The sheet feeding device 5 functions as a sheet feeder. The sheet feeding device 5 is disposed at a lower part of the image forming apparatus 1 and includes a sheet tray 51 and an attraction belt 52. The sheet tray 51 functions as a sheet container to accommodate a sheet stack PA of sheet members including a sheet member P (for example, an uppermost sheet P1 and a subsequent sheet P2) as a sheet member. The attraction belt 52 functions as a sheet conveying member to convey the sheet member P from the sheet tray 51. Any sheet member of the sheet stack PA can be the sheet member P and a sheet member placed on top of the sheet stack PA is referred to as the uppermost sheet P1 and a sheet member immediately under the uppermost sheet P1 is referred to as the subsequent sheet P2.
The sheet conveyance path 6 is a sheet conveying path to convey the sheet member P fed from the sheet feeding device 5. Multiple sheet conveying roller pairs including a registration roller pair 61 are disposed along the sheet conveyance path 6 to the sheet discharging part 8.
The fixing device 7 includes a heater 71, a fixing roller 72, and a pressure roller 73. The fixing roller 72 is heated by the heater 71. The pressure roller 73 presses the fixing roller 72.
The sheet discharging part 8 is provided at an extreme downstream side of the sheet conveyance path 6 of the image forming apparatus 1. The sheet discharging part 8 includes a sheet discharging roller pair 81 and a sheet discharging tray 82. The sheet discharging roller pair 81 includes two rollers to discharge the sheet member P to an outside of the image forming apparatus 1. The sheet discharging tray 82 stocks the sheet member P discharged by the sheet discharging roller pair 81.
Now, a description is given of basic image forming operations of the image forming apparatus 1 with reference to
When the image forming operations start in the image forming apparatus 1, respective electrostatic latent images are formed on the respective surfaces of the photoconductor drums 32Y, 32C, 32M, and 32K of the multiple process units 31Y, 31C, 31M, and 31K. The exposure device 2 emits image data of respective single color images of a desired full-color image separated to yellow, cyan, magenta, and black. The developing devices 34 Y, 34C, 34M, and 34K supply the toner to the respective electrostatic latent images formed on the photoconductor drums 32Y, 32C, 32M, and 32K, so as to develop the respective electrostatic latent images into visible toner images.
Then, the drive roller 41 of the transfer part 4 rotates counterclockwise in
By contrast, when the image forming operations start, the sheet member P that is accommodated in the sheet tray 51 of the sheet feeding device 5 at the lower part of the image forming apparatus 1 is attracted from the sheet tray 51 to the attraction belt 52 by the attraction belt 52 and fed to the sheet conveyance path 6. The registration roller pair 61 adjusts a timing of conveyance of the sheet member P traveling in the sheet conveyance path 6 toward the secondary transfer nip region formed between the secondary transfer roller 46 and the drive roller 41 that is disposed facing the secondary transfer roller 46. At this time, the transfer voltage having the opposite polarity to the toner charge polarity is applied to the secondary transfer roller 46. By so doing, an electric field in the transfer nip region is formed in the secondary transfer nip region. Then, due to the electric field in formed the secondary transfer nip region, the full-color toner image formed on the surface of the intermediate transfer belt 43 is transferred onto the sheet member P.
The sheet member P with the full-color toner image thereon is conveyed to the fixing device 7. In the fixing device 7, the fixing roller 72 that is heated by the heater 71 and the pressure roller 73 apply heat and pressure to the sheet member P, so that the full-color toner image is fixed to the sheet member P. Then, the sheet member P having the fixed full-color toner image is separated from the fixing roller 72 and is further conveyed by the multiple sheet conveying roller pairs. In the sheet discharging part 8, the sheet member P is discharged to the sheet discharging tray 82 by the sheet discharging roller pair 81.
Residual toner remaining on the surface of the intermediate transfer belt 43 after completion of second transfer of the full-color toner image is removed by the cleaning blade 44 and the like. The removed residual toner is conveyed to the waste toner box 47 by a screw and the waste toner transport hose.
The above-described image forming operations are performed when a full-color image is formed on the sheet member P. However, the image forming operations performed by the image forming apparatus 1 are not limited thereto. For example, any one of the multiple process units 31Y, 31C, 31M, and 31K is used to form a monochrome image or any two or three of the multiple process units 31Y, 31C, 31M, and 31K are used to form a two-color image or a three-color image.
A comparative example of a sheet conveying device shows in
As illustrated in
After the uppermost sheet 201a is fed to the downstream image forming devices, the attraction belt 204 moves from a rising position illustrated in
According to this configuration, an appropriate positional relation of the attraction belt 204 and the sheet stack 201 is defined. With the attraction belt 204 reciprocating the lowering position and the rising position, sheet members of the sheet stack 201 can be fed one by one to the downstream image forming devices.
In this configuration, the sheet stack 201 and the attraction belt 204 are arranged to contact each other in respective appropriate manners. However, if the uppermost sheet 201a of the sheet stack 201 has waves or a leading edge of the uppermost sheet 201a is curled, various inconveniences occur. Specifically, the uppermost sheet 201a does not attach to the attraction belt 204, multi-feeding occurs when the uppermost sheet 201a and a subsequent sheet that is placed immediately below the uppermost sheet 201a are not separated, and/or the sheet of the sheet stack 201 is not attracted on the surface of the attraction belt 204. As a result, the sheet is jammed at a sheet conveying part on the downstream side.
Now, a description is given of the sheet feeding device 5 with reference to
The sheet tray 51 accommodates the sheet stack PA of sheet members including the sheet member P. The sheet tray 51 includes a base 100, elevation arms 101, and a bottom plate 102, and the like. The bottom plate 102 is disposed above the base 100 with the elevation arms 101 arranged therebetween. The sheet stack PA is loaded on the bottom plate 102. With the elevation arms 101 extended and retracted, the sheet stack PA placed on the bottom plate 102 is elevated and lowered in a vertical direction as illustrated in
Swing members 103 are disposed above the sheet stack PA in the sheet feeding device 5 of
The slot 103a is formed on each swing member 103. The shaft 106a of the sheet feeding drive roller 106 is inserted into the slot 103a, by which the shaft 106a is rotatably supported to the swing members 103 to move along the slots 103a. By contrast, the shaft 107a of the sheet feeding driven roller 107 is inserted into a different slot formed on each swing member 103, by which the shaft 107a is fixedly held.
The attraction/separation unit 130 illustrated in
The attraction belt 52 is an endless belt having a dielectric body and is wound around and stretched by the sheet feeding drive roller 106 and the sheet feeding driven roller 107. Upon issuance of a sheet feeding signal from the image forming apparatus 1, a drive unit applies a driving force to the sheet feeding drive roller 106 to rotate. As the sheet feeding drive roller 106 rotates, the attraction belt 52 receives the driving force so as to start its rotation. The sheet feeding driven roller 107 receives the driving force from the sheet feeding drive roller 106 via the attraction belt 52, so as to rotate with the sheet feeding drive roller 106.
The belt charging roller 120 contacts the attraction belt 52. The belt charging roller 120 is connected to an alternating-current power supply 108 as illustrated in
The attraction belt 52 has a multilayer construction that includes a front surface layer and a back surface layer. The front surface layer of the attraction belt 52 is a polyethylene terephthalate film having a thickness of about 50 μm and has a resistivity of 108 Ω·cm minimum. The back surface layer of the attraction belt 52 is made of aluminum-deposited dielectric material having a resistivity of 106 Ω·cm maximum. With the above-described multilayer construction of the attraction belt 52, the dielectric layer (i.e., the back layer) of the attraction belt 52 can be used as a grounded opposite electrode, and the belt charging roller 120 to apply electrical charge to the attraction belt 52 can be disposed at any position that contacts the front surface layer of the attraction belt 52. The sheet feeding driven roller 107 has a conductive rubber layer as a front surface layer having a resistivity of about 106 Ω·cm. The sheet feeding drive roller 106 is a metallic roller.
In the above description with reference to
In
After the uppermost sheet P1 is attracted to the attraction/separation unit 130, the drive gear 111 transmits a driving force to the swing member 103, so that each swing member 103 rotates about the swing supporting point 104. The attraction/separation unit 130 is fixed to the swing members 103 and swings along with rotation of the swing members 103.
As illustrated in
After the attraction/separation unit 130 has separated from the sheet stack PA, the sheet feeding drive roller 106 transmits a driving force to the attraction belt 52, so that the attraction belt 52 starts rotating. With this rotation of the attraction belt 52, the uppermost sheet P1 is conveyed in a sheet feeding direction to the registration roller pair 61 that is disposed downstream from the attraction belt 52 and to the further downstream image forming devices.
After feeding the attracted sheet member P, i.e., the uppermost sheet P1 to the downstream image forming device, the attraction/separation unit 130 returns to the sheet attraction position again as the swing member 103 rotates, and attracts a subsequent sheet member P, i.e., the subsequent sheet P2 from the sheet stack PA. Thus, the attraction/separation unit 130 is switchable between the sheet attraction position and the sheet feeding position along with rotation of the swing members 103.
The sheet feeding driven roller 107 has a small diameter to be suitable for separating the sheet member P from the attraction belt 52 due to curvature. Specifically, by reducing the diameter of the sheet feeding driven roller 107 to increase the curvature, the sheet member P that is attracted and conveyed by the attraction belt 52 separates from the sheet feeding driven roller 107 to be conveyed to the guide plates 105 that are disposed downstream from the sheet feeding driven roller 107 in the sheet feeding direction.
A description is given of a configuration of the sheet feeding device 5 according to an example of this disclosure with reference to
As previously described, the sheet feeding drive roller 106 includes the shaft 106a and the sheet feeding driven roller 107 includes the shaft 107a. A housing 122 supports both axial ends of the shaft 106a of the sheet feeding drive roller 106 and both axial ends of the shaft 107a of the sheet feeding driven roller 107. Respective bearings 123 are provided at both axial ends of the sheet feeding drive roller 106 supported by the housing 122. Each of the bearings 123 includes a spring 124.
As illustrated in
Respective pressing members 140 are provided at both lateral ends of the sheet member P in both outside areas in a width direction of the sheet feeding drive roller 106, the sheet feeding driven roller 107, and the housing 122, which is a vertical direction in
Elastic members 141, each of which functioning as an elastic biasing member, are provided at both longitudinal ends of each of the pressing members 140.
As illustrated in
As illustrated in
Due to the above-described action, even if the uppermost sheet P1 has waves or is curled at the leading end thereof, the uppermost sheet P1 is flatted due to the pressure applied by the pressing member 140 from above and can be fed to the downstream image forming devices reliably.
As illustrated in
When the uppermost sheet P1 is attracted to the attraction belt 52, the attraction/separation unit 130 separates from the sheet stack PA to move to the sheet feeding position and feed the attracted uppermost sheet P1 to the downstream image forming devices. At this time, rotation of the motor 143 rotates the eccentric cam 142. As the eccentric cam 142 rotates, the large diameter part 142b moves to an upper part of the eccentric cam 142. As a result, the eccentric cam 142 no longer press the pressing member 140 downwardly. When the downward pressure to the pressing member 140 by the eccentric cam 142 is eliminated, the pressing member 140 is moved toward the housing 122 due to a biasing force applied by the elastic member 141, and therefore is separated from the sheet stack PA. This position or state in which the pressing member 140 is separated from the sheet stack PA and the downward pressure thereto is eliminated is referred to as a retracted position of the pressing member 140.
During a period after the attraction/separation unit 130 is separated from the sheet stack PA and before the attraction/separation unit 130 is moved from the sheet attraction position to the sheet feeding position, the pressing member 140 is switched from the pressing position as illustrated in
Since the elastic member 141 biases the pressing member 140 toward the retracted position, i.e., the housing 122 constantly, elimination of the downward pressure applied by the eccentric cam 142 to the pressing member 140 can switch the pressing member 140 from the pressing position to the retracted position reliably and prevent the pressing member 140 from returning to the pressing position naturally. According to this configuration, when the sheet member P is fed, the pressing member 140 is retained at the retracted position constantly and does not hinder the sheet feeding operation.
A timing to switch the pressing member 140 to the retracted position can be adjusted by a timing of rotation of the eccentric cam 142 when the motor 143 is driven. Specifically, the pressing member 140 can be switched to the retracted position according to paper types and conditions. For example, the switching timing of the pressing member 140 can be at the same time as or after the attraction/separation unit 130 separates from the sheet stack PA.
A description is given of a configuration of the sheet feeding device 5 according to another example of this disclosure with reference to
The sheet feeding device 5 according to this example includes an actuator 145 and a link 144 instead of the motor 143 and the eccentric cam 142. The actuator 145 functions as a drive unit to apply a driving force and the link 144 functions as a linking member to move upward and downward.
The pressing member 140 is connected to the link 144, so that the driving force applied by the actuator 145 is transmitted from the link 144.
Similar to the example illustrated in
Transmission of the driving force of the actuator 145 via the link 144 to the pressing member 140 presses the pressing member 140 downwardly to move to the pressing position as illustrated in
It is to be noted that, different from the example illustrated in
The sheet feeding device 5 according to this example includes an additional pressing member 140 and two attraction/separation units 130A and 130B. Specifically, the sheet feeding device 5 includes not only the two pressing members 140 disposed at both lateral ends or width ends of the sheet stack PA (upper and lower parts in
The sheet feeding device 5 as illustrated in
Other than the above-described configurations of the sheet feeding device 5, a single pressing member 140 may be used for multiple attraction/separation units 130. Further, more than four of the pressing members 140 may be provided or a single pressing member 140 may be used to press either one of both lateral ends of the sheet member P.
It is to be noted that an image forming apparatus of this disclosure is not limited to the color image forming apparatus 1 as illustrated in
The above-described embodiments are illustrative and do not limit this disclosure. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements at least one of features of different illustrative and exemplary embodiments herein may be combined with each other at least one of substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of this disclosure may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2013-222213 | Oct 2013 | JP | national |