The present application claims priority from Japanese Application No. 2014-250259 filed Dec. 10, 2014, which is incorporated by reference in its entirety.
Field of the Invention
The present invention relates to a sheet feeder having a configuration for preventing a sheet feeding failure.
Description of the Related Art
An image forming device, such as a printer or a copier, is provided internally or externally with a sheet feeder for continuously conveying sheets stacked on a stack tray one by one. The sheet feeder has an elevating stack tray on which the sheets are stacked, a delivery roller that is brought into contact with an upper surface of the sheet stack to deliver the sheets, a feeding roller and a separating member that separate and feed one by one the delivered sheets, and a conveying roller pair that conveys the fed sheet toward the image forming apparatus. The sheets on the stack tray are sequentially guided toward the image processing section by the above delivery, separating, and conveying rollers.
As a separating mechanism that separates the sheets one from another, there is known so-called a friction separation system constituted by a feeding roller that feeds the sheet as described above and a separating member which is a separating pad or a separating roller that is brought into contact with an outer peripheral surface of the feeding roller. In such a friction separation system, a surface of the feeding roller or separating member is worn due to age or contact to the sheet, thus deteriorating separating performance. With the deterioration in the separating performance, double-feeding where two or more sheets are fed at the same time in an overlapped manner frequently occurs.
Further, in recent years, types of the sheets to be handled in the image forming apparatus are diversified, and there is a demand for a sheet feeder capable of separating and feeding special sheets, such as OHP sheets, tracing papers, or coated papers. However, such special sheets are more likely to be double-fed than regular papers.
A sheet feeder includes a stack tray on which the sheets are stacked, a feeding mechanism that separates and feeds one by one the sheets on the stack tray, a blowing mechanism that blows a predetermined amount of air against the sheets on the stack tray. An operation of the feeding mechanism and an amount of air to be blown by the blowing mechanism are controlled in association with each other, so that it is possible to prevent double-feeding of the sheets and a feeding failure, thereby achieving reliable sheet feeding.
Hereinafter, an embodiment of a sheet feeder according to the present invention will be described in detail.
As illustrated in
Upon activation of the sheet feeder 12 having the above configuration, the topmost surface of the sheet bundle on the stack tray 21 is elevated toward a delivery position at which the sheets can be delivered by the delivery roller 31. Then, the sheets are delivered by the delivery roller 31, separated by the separating/feeding mechanism 35, and conveyed toward the image forming apparatus 11 by the conveying roller pair 34. The stack tray 21 is elevation controlled such that the topmost surface of the sheet bundle comes to the delivery position every time the delivery roller 31 delivers a predetermined number of sheets.
A blowing mechanism (blowing unit) 40 for eliminating adhesion between the stacked sheets is provided in the stack tray 21. The blowing unit 40 has a side regulating plate 41 that regulates a side surface of the sheet bundle stacked on the stack tray 21, a blowing duct 42 provided in the side regulating plate 41, a blowing fan 43 that supplies air inside the duct 42 from outside, and a heater 44 that heats the air supplied by the blowing fan 43 to a predetermined temperature. The duct 42 extends toward an air outlet 45 formed at an upper portion of a sheet regulating surface 41a of the side regulating plate 41. With this configuration, the air supplied by the blowing fan 43 and heated by the heater 44 is blown against the topmost surface of the sheet bundle. A rotation speed of the blowing fan 43 can be switched, and a temperature of the heater 44 can be set to an arbitrary temperature. As described later, by interlocking the rotation control of the blowing fan 43 or temperature control of the heater 44 with drive and stop of the separating/feeding mechanism 35, it is possible to prevent double-feeding of the sheets to thereby achieve smooth sheet feeding operation.
In the separating/feeding mechanism 35, the sheets delivered from the stack tray 21 by the delivery roller 31 are conveyed toward the conveying roller pair 34 while being nipped one by one between the feeding roller 32 and the separating roller 33. When the conveyance sensor SE2 detects a leading end of the sheet P conveyed by the separating/feeding mechanism 35, a nip operation of the conveying roller pair 34 is started.
The sheets delivered from the topmost surface of the stack tray 21 are continuously fed one by one toward the image forming apparatus 11. At this time, double-feeding where two or more sheets are fed at the same time in an overlapped manner may occur. This double-feeding is often caused when the sheets in a bundled state delivered from the stack tray 21 by the delivery roller 31 are adhered to one another due to influence of static electricity or humidity. To cope with this problem, the blowing unit 40 is used to blow air against a sheet immediately before it is delivered by the delivery roller 31. This allows the sheet to be adequately separated to thereby eliminate the adhesion state. Generally, a fixed amount of air is continuously supplied so as not to excessively float the sheet, during a time from when the sheet feeding operation is started to when a series of the feeding operation is completed.
However, when the double-feeding is caused not by the static electricity between the sheets, but by degradation in the separating performance of the separating/feeding mechanism 35 due to wear of the feeding roller 32 or the separating roller 33 or a change in friction coefficient between the sheets associated with influence of temperature or humidity inside the sheet feeder 12, blowing of the fixed amount of air by the blowing unit 40 is insufficient.
Thus, in the sheet feeder 12 of the present embodiment, the following control is performed. That is, a timing among the sheets to be continuously fed is measured. When a feeding failure such as the double-feeding is likely to occur, the sheet feeding operation is once stopped, and the amount of air to be blown against the sheet is increased from a normal set amount. The air amount is set back to the original set amount after elapse of a predetermined time during which it can be determined that the double-feeding does not occur, and the sheet feeding operation is resumed.
The following describes the sheet feeding operation based on the control mechanism with reference to
After start of the air blowing by the blowing unit 40, a feeding motor M1 and a conveying motor M2 are driven (ST2). As a result, the delivery roller 31 and the feeding roller 32 are rotated in a sheet feeding direction. Accordingly, the topmost sheets of the sheet bundle on the stack tray 21 are delivered by the delivery roller 31 and fed toward the conveying roller pair 34 one by one through the separating/feeding mechanism 35 including the feeding roller 32 and the separating roller 33 (see
The sheet conveyed in a state of being separated one by one is detected at its leading end by the conveyance sensor SE2 (ST3). The sheet is then conveyed until the leading end thereof is reliably nipped by the conveying roller pair 34 (ST4), and the feeding motor M1 is stopped when the leading end of the sheet is nipped by the conveying roller pair 34 (ST5). Since the conveying motor M2 is still rotated, the sheet is pulled out from the nip portion between the feeding roller 32 and the separating roller 33 by the conveying roller pair 34 to be conveyed toward the image forming section.
As illustrated in
On the other hand, when the conveyance sensor SE2 stays in an ON state even after elapse of a predetermined time, it is determined that the preceding sheet P1 and the succeeding sheet P2 continuously pass through the conveyance sensor SE2 in a partially overlapped state as illustrated in
When the conveyance sensor SE2 continues staying in the ON state, the feeding failure processing is executed. First, in the feeding failure processing, the blowing fan 43 and the conveying motor M2 are stopped. Since the feeding motor M1 is stopped at this time, the entire sheet feeding operation in the sheet feeder 12 is stopped. Then, information indicating occurrence of the feeding failure is notified from the notification section 28 to an operator through the display panel or sound.
When the separation sensor SE1 does not detect the succeeding sheet P2 (see
The following describes the double-feeding prevention processing with reference to
In the embodiment described above, it is determined that the double-feeding is likely to occur when the separation sensor SE1 detects the succeeding sheet P2 at a time point when the conveyance sensor SE2 detects the rear end of the preceding sheet P1. Alternatively, however, the double-feeding prevention processing may be executed when the stack tray 21 is elevated to the sheet delivery position of the delivery roller 31. Further, the double-feeding prevention processing may be executed every time a predetermined number of sheets are delivered by the delivery roller 31. As described above, the double-feeding prevention processing can be executed at an arbitrary timing of the sheet delivery operation, so that it is possible to prevent the double-feeding in all the types of the sheet feeders which performance is different in number of sheets to be supplied or sheet feeding speed.
Number | Date | Country | Kind |
---|---|---|---|
2014-250259 | Dec 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6279896 | Linder et al. | Aug 2001 | B1 |
6354585 | Takahashi | Mar 2002 | B1 |
7748698 | Shelhart | Jul 2010 | B2 |
20110316220 | Yoshii | Dec 2011 | A1 |
20140191461 | Umemoto et al. | Jul 2014 | A1 |
20140339759 | Takahashi et al. | Nov 2014 | A1 |
20150239692 | Furuichi et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2007-297149 | Nov 2007 | JP |
2009-161282 | Jul 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20160167905 A1 | Jun 2016 | US |