1. Field of the Invention
The present invention relates to a sheet feeding apparatus, and an image forming apparatus and an image reading apparatus which are respectively equipped with the sheet feeding apparatus.
2. Related Background Art
Conventionally, an image forming apparatus such as a copying machine, a printer, a facsimile machine or the like, or an image reading apparatus such as a scanner or the like is equipped with a sheet feeding apparatus which feeds sheets to an image forming portion or an image reading portion. More specifically, in the sheet feeding apparatus like this, for example, the sheets stacked on a sheet stacking portion are fed to a sheet feeding means, the fed sheets are then separated one by one by a separating portion consisting of a separating roller and a separating pad, and the separated sheet is further conveyed to the image forming section or the image reading section.
Incidentally, as the conventional sheet feeding apparatus like this, there is an apparatus which is equipped with a stopper member rotating on, e.g., the upper point of a sheet conveying path so as to stop the sheets at a predetermined position when the sheets are stacked on the sheet staking portion. Thus, in this apparatus, the sheets are stacked when the stopper member is at the position to block up the sheet conveying path so that the stacked sheets abut against the stopper member, whereby the sheets are stopped at the predetermined position.
Here, in the case where the stopper member like this is provided, it is necessary to shift the stopper member to its initial position after ending the sheet conveying. In this context, as the construction for controlling the position of the stopper member, a construction for controlling the position of the stopper member without using a solenoid and an electromagnetic clutch being electrical actuators, and a mechanical spring clutch has been proposed (see Japanese Patent Application Laid-Open Nos. 2001-022137, H09-240862 and H09-058891).
In the above construction, for example, a driving source of a sheet conveying means is used as the driving source for controlling the position of the stopper member, and driving to the stopper member is transmitted through the sheet conveying means, whereby it is possible to prevent from transmitting excessive driving force. Thus, the above construction achieves the stopper member position controlling without using the electrical actuator and the spring clutch. Consequently, by not using the electrical actuator and the spring clutch as above, the above construction achieves space saving, cost reduction, and load reduction to a power supply substrate. Moreover, the above construction achieves achieve the high-reliability stopper member position controlling with extremely less number of parts.
However, in the conventional sheet feeding apparatus and the image forming and reading apparatuses respectively equipped with the conventional sheet feeding apparatus, after discharging all the sheets and before inserting a next sheet, it is necessary to execute an initialization operation to return the stopper member to its initial position preceding the stacking of the sheets so as to prepare a control function for the sheet leading edges. Here, to return the stopper member to its initial position, it is necessary to reverse a motor.
Incidentally, in Japanese Patent Application Laid-Open No. 2001-022137, when the stopper member is returned to its initial position and fixed, a large load is applied to the engaging arm portion of the stopper member, whereby it is necessary to sufficiently enlarge the stopper member (i.e., the engaging arm portion thereof) to maintain the intensity thereof. Moreover, there is a problem that the cost of the motor increases because large torque is necessary for the motor.
Further, in Japanese Patent Application Laid-Open No. H09-240862, it is necessary to surely reverse the motor as many as a predetermined rotation number to return the stopper member to its initial position. For this reason, there is a problem that the above controlling for the stopper member position is not applicable to the apparatus in which reverse rotation of the motor is executed for another use, that is, the use other than the return of the stopper member to its initial position.
Furthermore, in Japanese Patent Application Laid-Open No. H09-058891, the initial position of the stopper member is recognized by a sensor of primarily detecting whether an original (sheet) exists. However, in such a construction, turning on and off of the sensor are repeated intermittently even after a last original passed the stopper member, whereby interrupt processes of software frequently occur. Thus, the overall process might become heavy. Moreover, it is likely that the sensor is turned on because the position of the stopper member shifts due to opening and closing of an original guide. In this case, there is a problem that it is difficult on software to discriminate whether the original has been inserted or the stopper member is not on its initial position.
The present invention has been made in consideration of such present situations, and an object thereof is to provide a sheet feeding apparatus which can achieve space saving and cost reduction, and, when sheets are stacked thereon, can surely stop the sheets at a predetermined position, and to further provide an image forming apparatus and an image reading apparatus each of which is equipped with the sheet feeding apparatus.
The present invention is characterized by comprising a sheet stacking portion for stacking sheets thereon, a sheet feeding rotating member adapted to feed the sheet stacked on the sheet stacking portion, a stopper adapted to regulate the sheets stacked on the sheet stacking portion, and a rotatable gear adapted to hold the stopper at a regulating position of regulating the sheets stacked on said sheet stacking portion, by engaging with the stopper, and is further characterized in that the engagement of the gear and the stopper portion is released when the gear is rotated.
Hereinafter, the preferred embodiments of the present invention will be explained in detail with reference to the accompanying drawings.
The MFP has four functions, i.e., a copy function, a facsimile function, a printer function for acting as a computer peripheral device, and an image scanner function for also acting as the computer peripheral device. Besides, the MFP consists of an apparatus main body 100, a recording sheet feeding portion 101, an electrophotographic image forming section 102, an original reading section 105, and an operation portion 106.
Here, the recording sheet feeding portion 101 separates and feeds one by one recording sheets S stacked on a recording sheet cassette 7 by a separating means consisting of a not-shown separating pawl and a friction pad 101b, and then supplies the recording sheet S to the image forming section 102 through a pair of registration rollers (hereinafter called registration roller pair) 101c.
Incidentally, the recording sheet S is a paper, a resin sheet, and another material, and can use electrostatic dry recording toner as transferable toner. Besides, the recording sheet cassette 7 which can hold 150 standard-sized plain sheets (papers) can be drawn from the apparatus main body 100 in the near-side direction (i.e., direction B in
Moreover, in
The image forming section 102 forms an image in an electrophotographic manner on the recording sheet S supplied from the recording sheet feeding portion 101, in response to an image signal transmitted from another apparatus, an image signal transmitted from the later-described original reading section 105 or data output from a computer and the like. The image forming section 102 is held within a main body frame 9, and consists of a laser scanner 102b, a toner-incorporated cartridge 102c, the transferring portion 102a, a fixing portion 102d and a discharging portion 103.
Incidentally, the toner-incorporated cartridge 102c can be inserted into and removed from the opening portion which is opened by rotating the front cover 8 of the apparatus main body 100 in the direction indicated by an arrow C as shown in
Moreover, the discharging portion 103 consists of a U-turn path 103a, a pair of discharging rollers (hereinafter called discharging roller pair) 103b, a recording sheet excessive stacking detecting portion 103c, and a discharging tray 103d. Further, a heat discharging duct 10 is provided between the discharging portion 103 and the original reading section 105, whereby heat from the fixing portion 102d is discharged forward and backward of the apparatus main body 100.
The original reading section 105 converts reflection light obtained by illuminating light onto an original P into an electrical signal, executes a predetermined image process to the acquired electrical signal, and then transmits the processed signal to another apparatus or an own recording controlling portion 104. Thus, the original feeding portion (sheet feeding device) is provided to feed an original being a sheet to the image reading section.
In addition, in
Numeral 12 denotes an original tray(sheet tray) which is equipped with original width regulating plates 13a and 13b, and the original tray 12 acts as the sheet stacking portion. Numeral 14 denotes an extension tray which is rotatable based on a fulcrum 14a, numeral 15 denotes a pre-feeding roller, numeral 16 denotes a separating roller, numeral 18 denotes a detachable original discharging tray, numeral 17 denotes a photoelectric converting element which acts as the image reading portion, numeral 20 denotes a conveying roller, and numeral 21 denotes a discharging roller. Incidentally, in the present embodiment, a CIS (Contact Image Sensor) is used as the photoelectric converting element 17 to achieve downsizing.
Moreover, numeral 1 denotes an upper original guide in which an original presence/absence sensor 2 and an original edge sensor 3 each consisting of a photointerruptor and a resin actuator are provided. Numerals 2a and 3a denote wiring harnesses of the respective sensors 2 and 3. The respective wiring harnesses 2a and 3a are led from the backside of the upper original guide 1 to the outside, and then connected to a connector 4a provided on an operation portion substrate 4 through a wiring harness holding portion 1a shown in
The reason why the wiring harnesses 2a and 3a of the respective sensors 2 and 3 are once led outside is to improve assembling performance. In other words, to dispose and connect the wiring harnesses 2a and 3a within the area of the operation portion substrate 4, it is necessary to lengthen these harnesses unnecessarily for wiring work and it is also necessary to provide a hole by which these harnesses and assembling tools are penetrated through the operation portion substrate 4.
However, in the above former case, the redundant wiring harnesses 2a and 3a come into contact with the element legs, whereby there is a fear that these harnesses are damaged and/or short-circuited. In addition, in the above latter case, the unnecessary hole exists on the operation portion substrate 4, whereby there is a fear that a degree of freedom of the layout of an operation key, which should attach importance to operability, is obstructed. Thus, in the present embodiment, to solve such problems, the wiring harnesses 2a and 3a are led outside the projection plane of the operation portion substrate 4, the operation portion substrate 4 and an operation portion cover 5 shown in
Moreover, as shown in
Here, the upper original guide 1 is rotatably held based on a fulcrum 14a by the frame 11. Thus, when a jam occurs between a lower original guide 12a being the extension of the original tray 12 shown in
Incidentally, metal parts, such as metal shafts 20b and 21b of the respective backup rollers 20a and 21a of
Moreover, in the original reading section 105, a steel-plate original urging plate 24 (see
Here, the earth plate 25 is fixed to the upper original guide 1 by screws together with the blade springs 19a and 19b and an earth lead 26 consisting of a coated lead and a round terminal, and the earth lead 26 is connected to the frame ground through the opening portion 1c provided in the vicinity of a rotational supporting portion 1b of the upper original guide 1.
The operation portion 106, which is used by a user to issue various indications to the apparatus with respect to the four functions such as the copy function and the like of the MFP, is provided on the upper portion (upper original guide 1) of the original reading section 105. Incidentally, the operation portion 106 is connected to a main body control substrate 107 as shown in
Here, the position of the flexible flat cable 6 is fixed at the engaging portion provided on the frame 11 of the reading portion, and an elastic margin portion is provided between the engaging portion and the operation portion substrate 4. Thus, when the upper original guide 1 is opened to deal with the jam of the original P, the elastic margin portion of the flexible flat cable 6 can absorb positional shifting of a flat cable connector 4b on the operation portion substrate.
The main body control substrate 107, which is provided on the side face of the main body, includes an image processing portion 107c, a communication controlling portion 107d, a CPU 107e, a ROM 107f and a RAM 107g. Here, although not shown, a network connecting terminal, a telephone line connecting terminal, and a peripheral device connecting terminal (USB (Universal Serial Bus), IEEE (Institute of Electrical and Electronics Engineers) 1394 bus, a memory device, etc.) are provided on the communication controlling portion 107d. Thus, the relevant apparatus can function as a standalone apparatus or can function as a network device or a computer peripheral device. Incidentally, the main body control substrate 107 is connected to a power supply 104a and a recording control substrate 104b provided above the recording sheet cassette 7 through wiring harnesses 107a and 107b.
Here, as shown in
Moreover, the separating roller 16 is rotatably attached to the separating roller shaft 30 on the side opposite to the separating driving gear 32 across the resin collar 30a. Besides, an output gear 33 is fixed to the other end of the separating roller shaft 30, whereby the output gear 33 rotates integrally with the separating roller shaft 30.
Incidentally, the resin collar 30a acts as a sheet feeding means driving force supplying portion which transmits the driving force from the motor 40 to the pre-feeding roller 15 through the clutch spring 34, and the sleeve 16a of the separating roller 16 acts as a sheet conveying means driving force supplying portion which transmits the driving force from the motor 40 to the separating roller 16.
Here, in the present embodiment, the winding direction of the clutch spring 34 being a clutch means is, for example, the winding direction so as to transmit the power to the output gear 33 and the separating roller 16 through the resin collar 30a and the sleeve 16a of the separating roller 16 when the separating driving gear 32 being a driving force supplying portion for supplying the driving force from the motor 40 is rotated in the direction indicated by an arrow D shown in
Moreover, in the case where the separating driving gear 32 is driving also in the direction indicated by the arrow D, when the original P reaches the conveying roller 20 of which conveying speed is higher than that of the separating roller 16 as described later, there is a possibility that the separating roller 16 rotates faster than the separating driving gear 32 because compelling force is applied to the separating roller 16 through the original P due to a difference in rotational speed between the separating roller 16 and the conveying roller 20. In such a case, it is set that the clutch spring 34 loosens. Then, when the clutch spring 34 loosens, the driving force is not transmitted to the resin collar 30a, whereby the output gear 33 does not rotate.
Incidentally, when the clutch spring 34 loosens as above, the clutch spring 34 rotates according to the sleeve 16a of the separating roller 16 having the largest external diameter, and the mechanical timer 31 rotates according to the clutch spring 34 at rotational speed higher than that of the separating driving gear 32 due to loosening torque of the clutch spring 34. Here, when the mechanical timer 31 rotates faster than the separating driving gear 32 as above, the slack provided between the mechanical timer 31 and the separating driving gear 32 shifts toward the one side of the rotational direction, that is, the slack becomes small gradually in the rotational direction.
Then, when the mechanical timer 31 further rotates, the slack completely shifts toward the one side of the rotational direction, that is, the slack disappears. After then, because the loosening torque of the clutch spring 34 is minute, the rotational speed of the mechanical timer 31 comes to be substantially the same as that of the separating driving gear 32, and the state that the slack has shifted toward the one side of the rotational direction is maintained.
On one hand, after then, when the original P passed and thus the compelling force is not applied to the separating roller 16, the driving force is not transmitted from the separating driving gear 32 through the clutch spring 34 until the separating driving gear 32 rotates by the slack amount even if the separating driving gear 32 rotates, because the slack provided between the mechanical timer 31 and the separating driving gear 32 shifts toward the one side. Incidentally, when the separating driving gear 32 rotates reversely in the opposite direction indicated by an arrow E, the clutch spring 32 loosens, whereby the driving force is not transmitted to the resin collar 30a. For this reason, the driving force is not transmitted to the separating roller 16 and the output gear 33.
Meanwhile, the pre-feeding roller 15 is formed of a section D-cut shape having a notch portion 15A (see
Here, it should be noted that the phase relation between the snaggletoothed portion of the snaggletoothed gear 37 and the notch portion 15A of the pre-feeding roller 15 satisfies that, when the snaggletoothed portion of the snaggletoothed gear 37 is at the position facing a shock absorbing gear (or buffer gear) 36, the notch portion 15A of the pre-feeding roller 15 is at its initial position which faces the original P stacked on the original tray 12 and does not project from the original tray 12.
When the rotation starts, the snaggletoothed gear 37 engages with the shock absorbing gear 36 being the intermediate gear. Here, the first tooth of the snaggletoothed gear 37 which first engages with the teeth of the shock absorbing gear 36 is made small so that the snaggletoothed gear 37 can easily engage with the shock absorbing gear 36. More specifically, the height of the first tooth of the snaggletoothed gear 37 is made low and the heights of the following teeth are made gradually large. Moreover, for example, the ends of the first to fourth teeth of the snaggletoothed gear 37 are made arc so that the snaggletoothed gear 37 can easily engage with the shock absorbing gear 36.
Furthermore, the ends of all the teeth of the shock absorbing gear 36 are made arc so that the shock absorbing gear 36 can easily engage with the snaggletoothed gear 37. Incidentally, it should be noted that such arc shape may be formed to at least one of the snaggletoothed gear 37 and shock absorbing gear 36.
The shock absorbing gear 36 and the first idler gear 28 being the transmitting gear engaging with the separating driving gear 32 are provided on the same shaft and thus constitute a train of gears as shown in
Incidentally, as shown in
Then, when the first idler gear 28 rotates without any load in the direction according to the rotational direction D of the separating driving gear 32, that is, when the gears rotate in the state that the snaggletoothed gear 37 does not engage with the shock absorbing gear 36, the first idler gear 28 rotates by a predetermined amount, and the driving force is then transmitted from the first idler gear 28 to the shock absorbing gear 36 through the shock absorbing spring 35 which generates torque when the relative phase between the first idler gear 28 and the shock absorbing gear 36 comes to be equal or lower than a predetermined amount. Incidentally, it should be noted that the shock absorbing gear 36 rotates in any direction with respect to the first idler gear 28 according to deflection of the shock absorbing spring 35.
Moreover, the pre-feeding roller 15 is held at its initial position by a rotation controlling spring 38 being a holding means shown in
Incidentally, a stopper mechanism is provided in the original feeding portion to hold the original P at a predetermined position when the original P is inserted. As shown in
Here, the stopper member 41 is rotated or turned from an initial position 41a which is denoted by the dashed line in
Incidentally, when the original P is stacked and inserted to the original stacking board 12 by an operator and the stopper member 41 is pressed by the stacked and inserted originals P in the direction indicated by an arrow K as shown in
That is, when the stopper member 41 is rotated or turned from the initial position to the regulating position for regulating the original P to the predetermined position by the pressing of the original P stacked by the operator on the original stacking board 12, the stopper member 41 is held at the regulating position by a stopper holding means which consists of the pawl member 42 and the separating driving gear 32, whereby the leading edges of the originals P can be aligned and held at the predetermined position.
Moreover, as above, when the stopper member 41 is pressed by the original P and thus shifted from the initial position to the regulating position, the stopper member 41 is held at the regulating position by the stopper holding means. Thus, even if the original P is strongly pressed, the original P can be surely stopped at the predetermined position.
Meanwhile, when the original P is fed, if the separating driving gear 32 rotates in the direction indicated by the arrow D as shown in
Under the circumstances, the pre-feeding roller 15 rotates in the direction indicated by an arrow G according to the rotation of the separating driving gear 32, and thus feeds the originals P from the lowest one on the original stacking board 12. Then, as shown in
Incidentally, as shown in
In any case, after the stopper member 41 rotated or turned to the position which enables to feed the original P by the pressing of the fed original P, when the pressing by the original P is released, the stopper member 41 returns from the rotated position to the initial position, whereby it is possible to eliminate an initialization operation of the stopper member 41. Moreover, by eliminating the initialization operation of the stopper member 41 as above, it is possible to omit an electrical actuator, a spring clutch and the like, whereby it is possible to achieve space saving and cost reduction.
Besides, a barycenter 42e of the pawl member 42 is provided on the separating driving gear 32 side (i.e., downstream side in feeding direction) with respect to a rotating center 42d of the pawl member 42. Thus, the pawl member 42 can surely latch the latch pawl 42g between the teeth of the separating driving gear 32 by its own weight.
Incidentally, the pawl member 42 is constructed to return by its own weight to the position where the latch pawl 42 is not latched between the teeth of the separating driving gear 32 in the case where the stopper member 41 returns to the initial position. Thus, by such a construction, when the stopper member 41 returns to the initial position 41a or has returned to the initial position 41a, it is possible to prevent that the latch pawl 42g of the pawl member 42 engages with the separating driving gear 32 when the separating driving gear 32 rotates in the opposite direction (indicated by arrow N) to execute phase initialization of the pre-feeding roller 15 by the reverse rotation of the motor 40 as described later. As a result of this, it is possible to prevent that a load is applied from the pawl member 42 to the separating driving gear 32, whereby it is possible to smoothly rotate the separating driving gear 32.
Moreover, in a case where the upper original guide 1 is closed when the original P still remains on an original conveying path, the portions of the stopper member 41 and the pawl member 42 which first come into contact with the original P are set to be located on the downstream side of the rotating shaft 41d of the stopper member 41 in the original conveying direction. Consequently, even when the upper original guide 1 is closed, the stopper member 41 smoothly rotates so that the original P is not damaged.
Subsequently, an original feeding operation in the original feeding portion of the original reading section 105 will be explained.
First, when the plural originals P are inserted in the direction indicated by an arrow F of
Next, when a reading start indication is issued by the user from the operation portion 106 or from an external peripheral device, the motor 40 shown in
Moreover, when the separating driving gear 32 rotates as above, the clutch spring 34 shrinks and the driving in the conveying direction (arrow G direction) is thus transmitted to the separating roller 16, whereby the separating roller 16 rotates. At the same time, the driving is transmitted to the separating roller shaft 30 by the clutch spring 34 through the resin collar 30a, whereby the separating roller shaft 30 rotates.
Then, when the separating roller shaft 30 rotates as above, the driving is transmitted to the input gear 43 acting as the roller shaft gear of the pre-feeding roller 15 through the output gear 33 and the second idler gear 29 acting as the transmitting gear, whereby the pre-feeding roller 15 rotates in the conveying direction (arrow G direction).
That is, when the motor 40 rotates forwardly, the rotation (driving force) of the motor 40 is transmitted to the pre-feeding roller 15 by a first driving transmitting portion consisting of the separating roller shaft 30, the second idler gear 29 and the input gear 43 through the clutch spring 34, whereby the pre-feeding roller 15 rotates in the direction for feeding the original P.
Next, when the pre-feeding roller 15 rotates by a predetermined amount, the pre-feeding roller 15 comes into contact with the original P and starts to convey the original P. Moreover, according to the rotation of the pre-feeding roller 15, the snaggletoothed gear 37 engages with the shock absorbing gear 36. In this case, even if the snaggletoothed gear 37 and the shock absorbing gear 36 are not in phase, these gears smoothly engage with each other due to the shapes of the teeth thereof as described above.
Moreover, the phase difference between the snaggletoothed gear 37 and the shock absorbing gear 36 is absorbed according as the shock absorbing gear 36 having a slack (lash or play) with respect to the first idler gear 28 in the rotational direction rotates with respect to the first idler gear 28. Then, by constituting the snaggletoothed gear 37, the shock absorbing gear 36 and the first idler gear 28 as above, the snaggletoothed gear 37, the shock absorbing gear 36 and the first idler gear 28 can respectively rotate without preventing the separating driving gear from rotating even when the pre-feeding roller 15 rotates.
Next, the original P is fed by the rotation of the pre-feeding roller 15 as above, the fed original P is separated one by one by the separating roller 16 and the friction pad 22, and the separated original P is then transported to the conveying roller 20.
Incidentally, to prevent a jam and to make a gap between the current and subsequent originals P, the rotational speed of the conveying roller 20 is set higher than that of the separating roller 16. For this reason, when the conveying roller 20 starts to convey the original P, the separating roller 16 rotates at speed higher than that of the rotational speed of the separating driving gear 32 according to the conveying of the original P.
Here, when the separating roller 16 rotates at the higher speed than that of the rotational speed of the separating driving gear 32, the clutch spring 34 is loosened, whereby the shrinkage of the separating roller shaft 30 is released. Thus, the separating roller 16 rotates at the same speed as that of the conveying roller 20 without applying any load to the conveyed original P. Moreover, when the shrinkage of the separating roller shaft 30 by the clutch spring 34 is released, the driving force is hardly transmitted to the output gear 33, whereby the driving force is hardly transmitted to the pre-feeding roller 15 through the second idler gar 29.
Incidentally, even when the driving force is not transmitted through the second idler gear 29, the snaggletoothed gear 37 and the first idler gear 28 engaging with the separating driving gear 32 and thus rotating engage with each other through the shock absorbing gear 36, whereby the driving force is continuously transmitted to the pre-feeding roller 15 through these gears until the snaggletoothed portion of the snaggletoothed gear 37 comes to the position facing the shock absorbing gear 36. As a result of this, the pre-feeding roller 15 rotates up to the initial position where the roller does not project from a lower original conveying path. In this case, when the pre-feeding roller 15 comes to the position nearby the initial position, the rotation controlling spring 38 holds it, whereby the pre-feeding roller 15 stops just at the initial position.
That is, even when the driving force is not transmitted through the second idler gear 29, the rotation of the motor 40 is continuously transmitted to the pre-feeding roller 15 by a second driving transmitting portion consisting of the snaggletoothed gear 37, the first idler gear 28 and the shock absorbing gear 36. Thus, the pre-feeding roller 15 stops after it rotated up to the initial position.
Then, by stopping the pre-feeding roller 15 to the initial position as above, a released state is surely produced between the pre-feeding roller 15 and a pre-feeding pressing plate 44 when the original P is conveyed by the conveying roller 20, whereby it is possible to convey the original P without loading it, and there is no fear that disturbance of image occurs.
Subsequently, when the original edge sensor 3 (
Incidentally, as described above, because the separating roller 16 rotates at high speed, the clutch spring 34 rotates according to the sleeve 16a of the separating roller 16. Thus, a slight idling torque occurs with respect to the resin collar 30a even when the pre-feeding roller 15 stops, whereby the slight driving is transmitted in practice to the pre-feeding roller 15 through the output gear 33 and the second idler gear 29. However, because the relation of [“the holding force of the rotation controlling spring 38” >>“the looseness torque of the clutch spring 34”] is satisfied, the pre-feeding roller 15 does not rotate.
Moreover, when the separating roller 16 rotates according to the original P at the speed higher than that of the separating rotating gear 32, the slack provided between the mechanical timer 31 and the separating driving gear 32 shifts toward the one side due to such a speed difference between the separating roller 16 and the separating driving gear 32, and such a situation is maintained. In this case, it should be noted that the speed difference is set so that the slack can sufficiently shift toward the one side while one original is passing.
Meanwhile, when the trailing edge of the original P passes the separating roller 16, the surrounding area of the separating roller 16 does not receive tensility. At that time, because the slack between the mechanical timer 31 and the separating driving gear 32 has shifted toward the one side, the separating roller 16 or the pre-feeding roller 15 does not rotate until the slack is consumed even when the separating driving gear 32 rotates in the D direction. Then, because a time of no sheet feeding is provided by inhibiting the pre-feeding roller 15 and the like from rotating, it is possible to control original reading intervals.
Subsequently, at the point that the slack provided between the separating gear 32 and the mechanical timer 31 is consumed, the clutch spring 34 again shrinks, whereby the separating roller 16 rotates based on the driving force transmitted from the separating driving gear 32. At the same time, the driving is transmitted to the separating roller shaft 30 through the resin collar 30a, and the driving is also transmitted again to the pre-feeding roller 15.
Incidentally, at that time, because the holding force of the rotation controlling spring 38 is sufficiently small with respect to the driving force of the pre-feeding roller 15 to which the driving is transmitted when the clutch spring 34 shrinks, the pre-feeding roller 15 can surely rotate.
After then, when the original presence/absence sensor 2 detects the next original P, the above operation is repeated to sequentially execute the image reading. Meanwhile, when the original presence/absence sensor 2 does not detect the next original P and the original edge sensor 3 detects the passing of the original P, a not-shown controlling means judges that the reading and discharging of the originals P ended and thus the sequential image reading wholly ended.
Incidentally, when it is judged based on the outputs from the original presence/absence sensor 2 and the original edge sensor 3 that the sequential image reading wholly ended, the controlling means causes the motor 40 to rotate reversely as the initializing operation to return the pre-feeding roller 15 to its initial position.
Then, as shown in
Here, when the pre-feeding roller 15 is not at the initial position, because the snaggletoothed gear 37 engages with the shock absorbing gear 36 as described above, the driving force is transmitted to the pre-feeding roller 15 through the first idler gear 28, the shock absorbing gear 36 and the snaggletoothed gear 37. As a result of this, the pre-feeding roller 15 rotates up to the position nearby the initial position, the rotation controlling spring 38 then holds it, whereby the pre-feeding roller 15 stops just at the initial position. Meanwhile, when the pre-feeding roller 15 is already at the initial position, the driving force is not transmitted to the pre-feeding roller 15, whereby the pre-feeding roller 15 does not rotate.
By the above operation, it is possible to initialize the pre-feeding roller 15, that is, to return the pre-feeding roller 15 to its initial position. By the way, the stopper member 41 automatically returns to its initial position due to its own weight when the original P on the stopper portion goes out of existence, whereby such an initializing operation as above is unnecessary.
As described above, when the motor 40 rotates forwardly, it is set to transmit the driving of the motor 40 to the pre-feeding roller 15 by using the clutch spring 34 through the first driving transmitting portion. On the other hand, when the motor 40 rotates reversely, it is set not to transmit the driving of the motor 40 to the pre-feeding roller 15 by using the clutch spring 34, and it is further set to transmit the driving force to the pre-feeding roller 15 by the second driving transmitting portion to shift the pre-feeding roller 15 to the initial position. Thus, it is possible to execute the driving force transmission and the stop position controlling with respect to the pre-feeding roller 15 by using the one clutch spring 34. Therefore, it is possible to achieve the driving force transmission and the stop position controlling of the pre-feeding roller 15 at low cost.
Subsequently, an interlock error preventing mechanism for the shock absorbing spring 35 provided between the shock absorbing gear 36 and the first idler gear 28 will be explained hereinafter.
As shown in above-described
Here, in the present embodiment, the angle of the arc groove 28a of the first idler gear 28 is made larger than the rotational angle necessary for the mechanical timer. Thus, by setting the angle of the arc groove 28a within such a range, the shock absorbing spring 35 can move without any load.
Moreover, if it is assumed that an angle θ made by the start point of the arc groove 28a and the hole 36a as shown in
In addition, in the above-mentioned embodiments, the documents stacked on the document tray 12 are fed by the pre-feeding roller 15, and then the documents fed by the pre-feeding roller 15 are separated by the separating roller 16. However, it does not necessarily need not to provide pre-feeding roller 15. That is to say, it is possible to form an apparatus in which the documents stacked on the document tray are fed and separated by a separating roller. Incidentally, the above explanation is directed to the case where the sheet feeding apparatus according to the present invention is applied to the original feeding portion which conveys the original P to the original reading section 105. However, the present invention is not limited to this. That is, the present invention is also applicable to the recording sheet feeding portion 101 which supplies the recording sheet S to the image forming section 102.
As explained above, according to the present invention, the stopper is held by the gear at the regulating position of regulating the sheets, and the holding state of the stopper by the gear is released when the driving is transmitted to the gear. Thus, even if the sheet is strongly pressed, it is possible to surely stop the sheet at the predetermined position, and it is further possible to achieve space saving and cost reduction.
This application claims priority from Japanese Patent Application No. 2004-028279 filed on Feb. 4, 2004, which is hereby incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2004-028279 | Feb 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5504565 | Tomiki et al. | Apr 1996 | A |
5587780 | Sugino et al. | Dec 1996 | A |
5915146 | Kusaka et al. | Jun 1999 | A |
5915684 | Nakagawa et al. | Jun 1999 | A |
5918876 | Maruyama et al. | Jul 1999 | A |
6017031 | Oosawa et al. | Jan 2000 | A |
6392763 | Nishinohara et al. | May 2002 | B1 |
6991227 | Kim | Jan 2006 | B2 |
20020008343 | Inoue et al. | Jan 2002 | A1 |
20030184000 | Kim | Oct 2003 | A1 |
20040155397 | Gaarder et al. | Aug 2004 | A1 |
20040188918 | Morimoto et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
58207228 | Dec 1983 | JP |
9-58891 | Mar 1997 | JP |
9-240862 | Sep 1997 | JP |
2001-22137 | Jan 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050189699 A1 | Sep 2005 | US |