1. Field of the Invention
The present invention relates to a sheet feeding apparatus and an image forming apparatus, and more particularly to an arrangement for lifting a sheet supporting member having sheets stacked thereon so as to press the sheets against a feed roller.
2. Description of the Related Art
Today, among image forming apparatuses such as a copy machine, a printer, a facsimile machine and the like, widely used types of image forming apparatus feed a sheet from a sheet feeding apparatus to an image forming portion to form an image. Here, the sheet feeding apparatus generally has a sheet cassette serving as a sheet storage portion and being attachable to and detachable from the body of the apparatus, and automatically feeds a sheet stored in the sheet cassette to the image forming portion.
For example, there is known sheet cassette arranged to be able to lift and lower a sheet supporting member which has sheets stacked thereon and when the sheets are fed, is lifted to press the stacked sheets against a feed roller. When the sheets are fed, the feed roller rotates to feed the sheets pressed by the sheet supporting member to the image forming portion, one by one from the uppermost sheet.
Such a sheet feeding apparatus has a cam provided coaxially with the feed roller so as to lift and lower the sheet supporting member. When the apparatus is in a standby state and is not feeding a sheet, the sheet supporting member is forced down to a certain position by the cam, whereby the sheets are easily set and replaced. In the course of feeding out the sheets, the cam presses down the sheet supporting member, whereby a feed force by the feed roller is not applied to the sheets to be fed out. This can improve sheet separability in a separation unit such as a separation pad.
The sheet feeding apparatus of such a configuration requires one vertical reciprocating motion of the sheet supporting member for each rotation of a drive shaft, which imposes a problem in that it is difficult to reduce the size (outermost diameter) of the cam. For example, in a case in which the sheet supporting member is provided rotatably in a vertical direction, a reduction in size of the cam reduces a rotational angle of the sheet supporting member, thereby reducing the spacing between the feed roller and the sheet supporting member.
Such a reduction in the spacing between the feed roller and the sheet supporting member reduces the number of sheets to be stacked on the sheet supporting member. Then, the user has to frequently replenish sheets, thereby causing a problem of poor operability. Since there is a trade-off between the size of the cam and the rotational angle of the sheet supporting member, it is difficult to reduce the size of the cam.
As the conventional sheet feeding apparatus for the purpose of reduction in size of the cam and noise thereof, there has been proposed an arrangement of providing a lever member serving as a link member between the cam and the sheet supporting member for performing rotation. According to Japanese Patent Application Laid-Open No. 2008-105790, first and second arm portions are disposed in a lever member disposed in the apparatus body, wherein the first arm portion is in sliding contact with a cam fixed to a drive shaft of a feed roller and the second arm portion is in sliding contact with the front end portion of the sheet supporting member. According to U.S. Patent Publication No. 2008/0101837 as another arrangement, an end portion of the lever member rotatably provided in the apparatus body is locked to the sheet supporting member and an intermediate portion of the lever member is in sliding contact with the cam fixed to the drive shaft of the feed roller.
Such conventional sheet feeding apparatuses can reduce the size of the cam, but has a problem in that it is difficult to reduce the entire size of the sheet feeding apparatus under the constraints of fulcrum placement of a lever member abutting against the cam and serving as a link member so as to transmit a force to the sheet supporting member. For example, the arrangement disclosed in Japanese Patent Application Laid-Open No. 2008-105790 is such that the second arm portion of the lever member is in sliding contact with the front end of the sheet supporting member so as to move the sheet supporting member against a biasing force of a feed spring. Thus, the second arm portion has a smooth relatively long arcuate shape. In a case in which the second arm portion has such a shape, the second arm portion swings on the underside of the separation unit, whereby it is necessary to provide a space for the second arm portion to swing. Thus, the above arrangement can reduce the outermost diameter of the cam, but may increase the entire size of the sheet feeding apparatus.
The arrangement disclosed in U.S. Patent Publication No. 2008/0101837 requires an end portion of the lever member to be locked to the sheet supporting member and an intermediate portion thereof to be in sliding contact with the cam. This arrangement imposes constraints on the place where the turning fulcrum of the lever member can be positioned between the rotational trajectory of the cam and the rotational trajectory of the sheet supporting member. Further, the turning fulcrum of the lever member is projected toward a downstream side surface of the feed roller, whereby this arrangement can reduce the outermost diameter of the cam, but may increase the entire size of the sheet feeding apparatus. An increase in the entire size of sheet feeding apparatus increases the entire size of the image forming apparatus housing the sheet feeding apparatus, whereby this arrangement imposes a problem of enlarging the installation place of the image forming apparatus.
In view of the present circumstances described above, it is an object of the present invention to provide a sheet feeding apparatus and an image forming apparatus capable of preventing an increase in the entire size of the apparatus even in a case of using a link member.
A sheet feeding apparatus of the present invention includes: a sheet supporting member capable of being lifted and lowered while supporting a sheet; a feed roller located above the sheet supporting member and feeding the sheet stacked on the sheet supporting member; and a lifting portion lifting and lowering the sheet supporting member, the lifting portion including a biasing portion which biases the sheet supporting member toward the feed roller; a link member which is rotatably supported by the sheet supporting member; and a regulation release member which rotates integrally with the feed roller and enables movement of the link member being restricted from movement when the sheet is fed.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
The image forming portion 52 includes a laser exposure apparatus 5, a photosensitive drum 8 for forming a toner image, a transfer roller 9 for transferring the toner image formed on the photosensitive drum 8 to a sheet S, and the like. A process cartridge 7 includes the photosensitive drum 8, a charge roller 7a, a developing unit 7b, and the like and is attachable to and detachable from a printer body 101.
The sheet feeding apparatus 53 includes a feed roller 2, a sheet tray 1 as a sheet storage portion, and a lifting plate 22 liftably disposed in the sheet tray 1 and serving as a sheet supporting member for supporting the sheet S stored in the sheet tray 1 and pressing the sheet S against the feed roller 2. As described later, when the lifting plate 22 is lifted, a feed idler roller 30 abuts against the sheet S before the sheet S abuts against the feed roller 2 located above the lifting plate 22. A drive motor 16 drives the feed roller 2 and the like.
A separation pad 20 being in press-contact with the feed roller 2 is disposed on a downstream side in a sheet feeding direction of the sheet tray 1. The sheet feeding apparatus 53 uses the feed roller 2 to feed the sheet S from the sheet tray 1 for image formation. Subsequently, the sheet feeding apparatus 53 uses the separation pad 20 being in press-contact with the feed roller 2 to separate the sheets S one by one.
Now, an image formation operation of the printer 100 will be described. When the image formation operation starts, first, a laser beam corresponding to an image signal is emitted from the laser exposure apparatus 5 to the photosensitive drum 8 whose surface is charged and which is rotatably driven clockwise. When the laser beam corresponding to the image signal is emitted, a latent image is formed on the photosensitive drum. Then, the latent image on the photosensitive drum is developed by toner supplied by a developing unit 7b to be visualized as a toner image.
In parallel to the toner image formation operation, the lifting plate 22 is lifted and the sheet S set in the sheet tray 1 is fed by the feed roller 2. Subsequently, the sheet S is separated one by one by the separation pad 20 to be fed substantially vertically. Then, the sheet S is conveyed to a transfer portion by a conveying roller pair 3.
Subsequently, when a voltage with the polarity opposite to that of the toner image formed on the photosensitive drum 8 is applied to the transfer roller 9 in the transfer portion, the visualized toner image on the photosensitive drum is transferred to the sheet S. Then, the sheet S to which the toner image is transferred is conveyed along a conveying guide 10 to a fixing unit 11 disposed on an upper portion of the printer body. When passed through the fixing unit 11, the sheet S is heated and pressed, whereby the toner image transferred on the sheet is fixed thereto. Subsequently, the sheet S to which the toner image is fixed is conveyed by a discharge roller pair 12 and is discharged to a discharge portion 14 provided above the printer body 101.
The feed roller 2 is fixed to a drive shaft 24. The drive shaft 24 is rotatably attached to a later described frame of the printer body 101 illustrated in
A link member 34 is supported on the lifting plate 22 and is rotatable in a vertical direction around a link member boss 34a serving as the rotational center. An engaging boss 34b is disposed in a rotation end of the link member 34. The engaging boss 34b is engaged with a link guide hole 35 as an arcuate shaped guide portion serving as a rotation regulating portion formed in a later described frame of the printer body 101 illustrated in
This link guide hole 35 has a function of regulating the movement trajectory of the link member 34. When the feed cam 36 rotates, the link member 34 rotates vertically while moving the engaging boss 34b along the link guide hole 35 with rotation of the feed cam 36 as described later. According to the present embodiment, the feed cam 36, the feed spring 23, the link member 34, and the link guide hole 35 constitute the lifting portion for lifting and lowering the lifting plate 22.
As illustrated in
When the link member 34 locking the engaging boss 34b to the holding portion 35a is held in the standby position, the lifting plate 22 does not move upward even if the biasing force is received from the feed spring 23. In other word, the holding portion 35a of the link guide hole 35 has a stopper function of regulating the upward movement of the lifting plate 22.
The guide portion 35b forms a guide path for guiding the engaging boss 34b moving along a cam surface 36a of the feed cam 36 by the biasing force from the feed spring 23. The link member 34 moves upward and downward while moving the engaging boss 34b along the guide portion 35b. With a vertical movement of the link member 34 in conjunction with the operation of the feed cam 36, the lifting plate 22 turns (moves) upward and downward. In other word, the guide portion 35b of the link guide hole 35 has a guide function of guiding the turn of the lifting plate 22 in the vertical direction.
In aforementioned
R3 indicate a direction in which the lifting plate 22 rotates around the lifting plate boss 22a. The arrows R4 and R5 indicate a direction in which the link member 34 turns along the link guide hole 35. The arrows R8 and R9 indicate a direction in which the link member 34 rotates around the link member boss 34a.
The holding portion 35a as a locking portion for regulating the movement of the link member 34 by locking the engaging boss 34b is disposed in a lower end of the guide portion 35b. Each time the feed cam 36 rotates once in a direction indicated by the arrow R1, the rotation end of the link member 34 in which the engaging boss 34b is locked by the holding portion 35a is pressed by the feed cam 36 to move the link member 34 toward the guide portion side, whereby the locking is released. After the link member 34 is released from locking, the link member 34 moves in a direction indicated by the arrows R4 and R5 along the guide portion 35b by the biasing force of the feed spring 23. Then, the lifting plate 22 performs one reciprocating motion of rotation in a direction indicated by the arrows R2 and R3 while moving the link member 34.
Next, the sheet feeding operation of the sheet feeding apparatus 53 will be described. Before the sheet feeding operation starts, as illustrated in
When the sheet feeding operation starts, first, an unillustrated solenoid is sucked and a rotational driving force in a direction indicated by the arrow R1 is transmitted from the drive motor 16 to the drive shaft 24 through an unillustrated drive train, whereby the drive shaft 24 starts rotating. Then, the feed cam 36 starts rotating integrally with the feed roller 2 fixed to the drive shaft 24 in a direction indicated by the arrow R1.
When the feed cam 36 rotates, the rotation end of the link member 34 rotatably supported by the lifting plate 22 is pressed by the feed cam 36. As illustrated in
Then, when an uppermost sheet of the sheets stacked on the lifting plate 22 abuts against the feed idler roller 30, the lifting plate 22 stops rotating upward, and accordingly the link member 34 stops moving in a direction indicated by the arrow R4. When the lifting plate 22 stops and then the half-moon shaped feed roller 2 rotating together with the drive shaft 24 abuts against a position illustrated in
After the sheet feeding starts, the feed cam 36 further rotates together with the feed roller 2. As illustrated in
At a time when the drive shaft 24 returns to the initial position, the rotational driving force is blocked from being transmitted from the drive motor 16 to the drive shaft 24 and the feed roller 2 and the feed cam 36 stop rotating at the initial feed position illustrated in
According to the present embodiment, the lifting plate 22 returns to the initial feed position once for each feeding operation. Accordingly, when printing is finished, the sheets and the feed idler roller 30 are always spaced apart from each other, whereby the user can easily stack sheets. A selection of a profile of the feed cam 36 and a profile of the link guide hole 35 can determine the rotational speed in a direction indicated by the arrows R2 and R3 of the lifting plate 22.
The hatched portion illustrated in
According to the present embodiment, the link member 34 is rotatably supported by the lifting plate 22, whereby when the sheet is fed, the link member 34 whose movement is regulated can be moved along the guide portion 35b by the feed cam 36. Thus, the maximum turning radius of the feed cam can be reduced while maintaining the same rotational angle 8 of the lifting plate 22 without scarifying the stackable sheet height.
In comparison with the conventional arrangement, the present embodiment can greatly reduce the maximum turning radius of the feed cam 36 under the conditions of the same rotational angle of the lifting plate 22. As a result, even a small-sized feed cam 36 can increase the maximum number of stackable sheets. Further, a space is formed between the feed cam 36 and the peripheral components. A reduction of this space can provide a smaller-sized sheet feeding apparatus for the image forming apparatus even in the case of using the link member 34. In the case of the same-sized image forming apparatus, the present arrangement can increase the cartridge size and thus can provide an image forming apparatus having a toner cartridge having a further larger capacity.
Next, a second embodiment of the present invention will be described.
In
As illustrated in
According to the present embodiment, the feed spring 23 is a biasing member for always biasing the lifting plate 22 in a direction of the feed roller 2. The spring force of this feed spring 23 is set to be smaller than the spring force of the feed spring 23 of the first embodiment for always biasing the lifting plate 22 in a direction of the feed roller 2. More specifically, assuming that P2 is a press-contact force occurring when the lifting plate 22 and the feed roller 2 are in press-contact with each other by the feed spring 23, P2 has a relation of P1>P2>0. P1 denotes a press-contact pressure due to the feed spring 23 according to the aforementioned first embodiment. The relation of P2>0 indicates a sufficient condition for an uppermost sheet to be in contact with the feed roller when the sheets are fully stacked.
Next, the sheet feeding operation of the sheet feeding apparatus 53 will be described. Before the sheet feeding operation starts, as illustrated in
When the sheet feeding operation starts, the drive shaft 24 starts rotating. Accordingly, the feed roller 2 fixed to the drive shaft 24 and the feed cam 36 start rotating in a direction indicated by the arrow R1. A rotation of the feed cam 36 causes the rotation end of the link member 34 rotatably supported by lifting plate 22 to be pressed by the feed cam 36. As illustrated in
Then, the engaging boss 34b is made movable in a direction indicated by the arrow R4. When the link member 34 is made movable, as illustrated in
Then, when the uppermost sheet of the sheets stacked on the lifting plate 22 abuts against the feed idler roller 30, the lifting plate 22 stops rotating upward and accordingly the link member 34 stops moving in a direction indicated by the arrow R4. After the lifting plate 22 stops moving, the half-moon shaped feed roller 2 rotating together with the drive shaft 24 abuts against the uppermost sheet at a position illustrated in
After the sheet feeding starts, the feed cam 36 further rotates together with the feed roller 2. The feed cam 36 is engaged again with the rotation end of the link member 34 stopping movement and presses the link member 34. Then, the link member 34 starts moving downward while moving the engaging boss 34b along the guide portion 35b in a direction indicated by the arrow R5 (see
At a time when the drive shaft 24 returns to the initial position, the rotational driving force is blocked from being transmitted from the drive motor 16 to the drive shaft 24 and the feed roller 2 and the feed cam 36 stop rotating at the initial feed position illustrated in
According to the present embodiment, when a small number of sheets are stacked, as illustrated in
The gap G between the link guide hole 35 and the engaging boss 34b and the protruding height H satisfy the relation of H<G. Thus, the link member 34 pressed by the protruding portion 36a and rotated in a direction indicated by the arrow R8 is movable in a direction indicated by the arrow R8 without interfering with the link guide hole 35. When the link member 34 rotates, a biasing force for biasing the lifting plate 22 in a direction of the feed roller indicated by the arrow R2 is generated between the link member 34 and the lifting plate 22 by a spring force of the link spring 39.
Thus, when a small number of sheets are stacked, the press-contact pressure between the lifting plate 22 and the feed roller 2 can be increased. Specifically, an auxiliary biasing portion including the link spring 39 and the protruding portion 36a of the feed cam 36 generates the biasing force for biasing the lifting plate 22 in a direction of the feed roller 2 at sheet feeding. Thus, the press-contact pressure between the lifting plate 22 and the feed roller 2 at sheet feeding can be increased.
Assuming that P3 denotes the increased press-contact pressure at this time, the feed spring 23, the link spring 39, and the protruding height H are set so as to satisfy the relation: P1=P2+P3. The present embodiment includes not only the feed spring 23 but also the link spring 39 and secures P1 by the link spring 39 and the feed spring 23 at feeding the sheet. Thereby, the biasing force of the feed spring 23 can be reduced. The biasing force of the feed spring 23 depends on the feeding performance, and thus the higher the biasing force of the feed spring 23, the higher the feeding performance is.
Thus, when the press-contact pressure is secured only by the feed spring 23 like the first embodiment, the biasing force of the feed spring 23 is increased. Such an increase in the biasing force increases a contact sound occurring when the sheets stacked on the lifting plate 22 abut against the feed idler roller 30. On the contrary to this, when P1 is secured by the link spring 39 and the feed spring 23 like the present embodiment, the biasing force of the feed spring 23 can be reduced, whereby the contact sound can be reduced.
More specifically, according to the present embodiment, after the feed idler roller 30 abuts against the lifting plate 22 or a sheet stacked on the lifting plate 22, the protruding portion 36a of the feed cam 36 presses the link member 34. Thereby, a biasing force in a direction indicated by the arrow R2 occurs in the lifting plate 22, whereby after the feed idler roller 30 abuts against the lifting plate 22 or a sheet stacked thereon, the biasing force between the lifting plate 22 and the feed roller 2 can be increased again.
This will be described from the point of view of the press-contact pressure between the feed roller 2 and the lifting plate 22. According to the first embodiment, the press-contact pressure between the feed roller 2 and the lifting plate 22 by the feed spring 23 is P1 as a press-contact pressure satisfying the feeding performance. According to the present embodiment, the press-contact pressure P2 between the feed roller 2 and the lifting plate 22 by the feed spring 23 is smaller than P1. Thus, the contact sound can be reduced.
However, since P2 has a relation of P1>P2 due to the formula, the feeding performance is reduced only by the feed spring 23. To compensate for it, the press-contact pressure is increased again by the link spring 39 and the protruding portion 36a of the feed cam 36 to generate the press-contact pressure P3. This can compensate for an insufficient press-contact pressure due to the relation of P1>P2 and can secure a sufficient feeding performance.
As described above, according to the present embodiment, when the link member 34 rotates, the link spring 39 and the protruding portion 36a of the feed cam 36 biases the lifting plate 22. Thus, the present embodiment can provide a sheet feeding apparatus for a smaller-sized low-noise image forming apparatus.
According to the first and second embodiments, the link guide hole 35 is formed on the frame, but the link guide hole 35 may be formed on any member as long as the member has a function of regulating the link tip trajectory. The position of the link member boss 34a is a specific point of the lifting plate 22, but any place may be suitable as long as the place is on the lifting plate 22. In this case, the maximum turning radius of the feed cam 36 can be determined by selecting the position of the link member boss 34a.
The arrangement is such that under the conditions of setting the rotational angle θ of the lifting plate 22 to the same, the maximum turning radius of the feed cam is reduced, but another arrangement under the conditions of setting the maximum turning radius of the feed cam to the same may be suitable as well. In this case, the rotational angle θ of the lifting plate 22 can be increased by providing the link member 34, whereby a sheet feeding apparatus capable of stacking a larger number of sheets thereon can be provided. A hole may be provided in the link member and a boss may be provided in the frame.
Next, a third embodiment of the present invention will be described.
In
As illustrated in
Thus, each time the feed cam 36 rotates in a direction indicated by the arrow R1, the lifting plate 22 reciprocates once in a direction indicated by the arrow R2 and in a direction indicated by the arrow R3 as illustrated in
Next, with reference to
The sheet feeding operation starts and then a signal is input from an electric board to an unillustrated solenoid. The drive shaft 24 starts rotating and the feed roller 2 fixed to the drive shaft 24 and the feed cam 36 start rotating in a direction indicated by the arrow R1. When the feed cam 36 rotates, the link member 70 engaged with the feed cam 36 moves along the trajectory of the guide member hole 71a. At this time, the guide member 71 does not rotate in a direction indicated by the arrow R1 because the guide member 71 is in contact with the guide member stopper 72. As illustrated in
The link member 70 is rotatably supported by the lifting plate 22. Thus, when the link member 70 is made movable in a direction indicated by the arrow R4, in response to the biasing force of the feed spring 23, the lifting plate 22 starts rotating in a direction indicated by the arrow R2 as illustrated in
Then, when the uppermost sheet of the sheets stacked on the lifting plate 22 abuts against the feed idler roller 30, the lifting plate 22 stops rotating upward and accordingly the link member 70 stops moving in a direction indicated by the arrow R4. After the lifting plate 22 stops moving, the half-moon shaped feed roller 2 rotating together with the drive shaft 24 abuts against the uppermost sheet and accordingly the uppermost sheet is fed.
After the sheet feeding starts, the feed cam 36 further rotates together with the feed roller 2. As illustrated in
When the link member 70 rotates, as illustrated in
According to the present embodiment, the link member boss 70b is guided by the guide member 71. In other word, the link member boss 70b and the guide member 71 slide. In comparison with the case in which the link member boss 70b is moved along the link guide hole 35, the present embodiment can reduce the load applied to the link member boss 70b and thus can provide a sheet feeding apparatus with higher durability.
Next, a fourth embodiment of the present invention will be described.
In
As illustrated in
Next, with reference to
The sheet feeding operation starts and then a signal is input from an electric board to an unillustrated solenoid. Then, the drive shaft 24 starts rotating and the feed roller 2 fixed to the drive shaft 24 and the feed cam 36 start rotating in a direction indicated by the arrow R1. When the feed cam 36 rotates, the link member 80 engaged with the feed cam 36 moves in sliding contact with the guide bosses 81a and 81b. At this time, the guide boss 81a does not rotate in a direction indicated by the arrow R1 because the guide boss 81a is fixed to the frame 40. Thus, as illustrated in
The link member 80 is rotatably supported by the lifting plate 22. Thus, when the link member 80 is made movable in a direction indicated by the arrow R4, as illustrated in
After the sheet feeding starts, the feed cam 36 further rotates together with the feed roller 2. As illustrated in
When the link member 80 rotates, as illustrated in
According to the present embodiment, the movement of the link member 80 is guided (regulated) by the guide bosses 81a and 81b. Thus, the present embodiment can reduce the load applied to the link member 80 and thus can provide a sheet feeding apparatus with higher durability.
The aforementioned description has focused on the lifting portion such that the feed cam as the regulation release member is provided on the drive shaft to make the link member movable by rotation of the feed cam to thereby lift and lower the lifting plate, but the present invention is not limited to this. For example, the lifting portion may be such that as an example of the regulation release member making the link member movable, a crank portion is provided on the drive shaft to make the link member movable by rotation of the crank portion to thereby lift and lower the lifting plate.
Next, a fifth embodiment of the present invention will be described. The fifth embodiment provides a crank portion on a drive shaft to lift and lower the lifting plate by rotation of the crank portion.
In
As illustrated in
Next, with reference to
The sheet feeding operation starts and then a signal is input from an electric board to an unillustrated solenoid. Then, the drive shaft 50 starts rotating and the feed roller 2 fixed to the drive shaft 50 and the drive shaft crank portion 50a start rotating in a direction indicated by the arrow R1. Accordingly, the link member 51 engaged with the drive shaft crank portion 50a also moves in conjunction therewith.
The link member 51 is rotatably supported by the lifting plate 22. Thus, when the link member 51 is made movable in a direction indicated by the arrow R1, as illustrated in
After the sheet feeding starts, the feed roller 2 further rotates. Then, the drive shaft crank portion 50a rotates and accordingly the link member 51 starts moving in a direction indicated by the arrow R1 as illustrated in
As described above, the present embodiment can make the link member 51 movable by rotation of the drive shaft crank portion 50a to thereby lift and lower the lifting plate 22, thus eliminating the need of the feed cam. As a result, the present embodiment can prevent an increase in the entire size of the sheet feeding apparatus even in a case of using the link member 51. Since the link member 51 is moved by the drive shaft crank portion 50a, the present embodiment can eliminate the need of the link guide hole 35 otherwise required to move the link member 51 by the feed cam.
Next, a sixth embodiment of the present invention will be described.
In
The second link member boss 61b of the first link member 61 and the second link member boss 62b of the second link member 62 are engaged with a link guide hole 63 provided in a frame. The link guide hole 63 regulates the movement trajectory of the first link member 61 and the second link member 62 through the second link member boss 61b of the first link member 61 and the second link member boss 62b of the second link member 62. The second link member 62 is in press-contact with the first link member 61 by the feed spring 23 while engaging the second link member boss 62b with the link guide hole 63. The drive shaft 60, the first link member 61, the second link member 62, and the link guide hole 63 configure a lifting portion for lifting and lowering the lifting plate 22.
As illustrated in
Next, with reference to
The sheet feeding operation starts and then a signal is input from an electric board to an unillustrated solenoid. Then, the drive shaft 60 starts rotating and the feed roller 2 fixed to the drive shaft 60 and the drive shaft crank portion 60a start rotating in a direction indicated by the arrow R1. Accordingly, the second link member 62 engaged with the drive shaft crank portion 60a moves upward along the link guide hole 63. When the second link member 62 moves upward, the first link member 61 being in press-contact with the second link member 62 is made movable upward integrally therewith.
The first link member 61 is rotatably supported by the lifting plate 22. Thus, when the link member 61 is made movable upward, as illustrated in
After the sheet feeding starts, the feed roller 2 further rotates. Then, the second link member 62 moves downward along the link guide hole 63 and press-contacts the first link member 61 again. Accordingly, the first link member 61 starts moving downward along the link guide hole 63. When the link member 61 moves downward, as illustrated in
When the feed roller 2 reaches the initial feed position, the feed roller 2, the drive shaft 60, the first link member 61, the second link member 62, and the lifting plate 22 also return to the initial feed position illustrated in
As described above, the present embodiment can make the first link member 61 and the second link member 62 movable by rotation of the drive shaft crank portion 60a to thereby lift and lower the lifting plate 22, thus eliminating the need of the feed cam. As a result, the present embodiment can prevent an increase in the entire size of the sheet feeding apparatus even in a case of using the first link member 61 and the second link member 62.
In the above description, for each rotation of the feed roller 2, the lifting plate 22 performs one reciprocating motion of rotation around the lifting plate boss 22a in a direction indicated by the arrows R2 and R3. However, as illustrated in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-058348, filed Mar. 16, 2011, and Japanese Patent Application No. 2011-249811, filed Nov. 15, 2011, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2011-058348 | Mar 2011 | JP | national |
2011-249811 | Nov 2011 | JP | national |