The present invention relates to a sheet feeding apparatus, which picks a plurality of sheets stacked on a sheet stacking potion out of the sheet stacking portion, and conveys the sheets one by one, and relates to a recording apparatus for recording an image on a sheet.
Particularly, the present invention relates to a sheet feeding apparatus and a recording apparatus in order to prevent a so-called double feeding such that a plurality of sheets are feed in stacked state in one feeding operation and also relates to a sheet feeding apparatus capable of switching feeding modes depending on specifications of sheets used.
As a sheet feeding apparatus for feeding a sheet such as a recording sheet or a film, such a structure provided with a separating mechanism for separating a plurality of stacked sheets or a double feeding preventing mechanism for preventing the double feeding of sheets have generally been employed conventionally.
As this type of the separating mechanism, those of a frictional plate type wherein separation is performed based on a difference in coefficient of friction among a feed roller, a sheet and a frictional plate and of a retard roller type wherein a torque limiter is provided to a sheet roller which is abutted to a feed roller, and a sheet is separated by a resisting force generated by the torque limiter and a coefficient of friction of the sheet roller, having, e.g., been known.
As representative examples of the double feed preventing mechanism, in addition to the retard roller type wherein the sheet roller is forcedly rotated reversely in terms of the sheet feeding direction, a returning lever type wherein a returning lever is actuated for each feeding operation of a predetermined number of sheets to forcedly return a leading end of the sheets in terms of the sheet feeding direction to a predetermined position is employed.
An example of the returning layer type is disclosed in Japanese Laid-Open Patent Application No. (Hei) 10-1881904 in which a bidirectional rotation control type for performing a feeding operation by rotating a driving source in a forward direction and or returning the sheet to a predetermined position by rotating the driving source in a reverse direction to actuate the returning roller.
Further, in the conventional sheet feeding apparatuses provided with a pressure plate for generating an abutting force for abutting the sheet to the feed roller, most of them employ a structure in which the pressure plate is rotatably supported. Such a pressure roller is designed so that a height of its rotational center is smaller than almost half of a height of a maximum stacked surface of sheets (topmost sheet surface) hen a maximum stacking amount of the sheets are stacked on a sheet feeding portion.
Then, the sheet fed by the feeding apparatus is conveyed to a nip portion forward between the conveyance roller 313 and the driven roller 314 by the feed roller. In some cases, the sheet is, after being adjusted so that its leading end is in parallel with a main scanning direction of a recording head (not shown) (hereinafter, referred to as “registration”), conveyed to a recording portion where recording on the sheet is performed by the recording head.
Incidentally, in the above-mentioned conventional sheet feeding apparatuses, irrespective of the separation types a resisting force is applied to the sheet by the separating means at all times during a period until the leading end of the sheet reaches the recording portion of a reading apparatus, i.e., at all times during the feeding operation. In other words, a separating force is continuously applied to the sheet by the separating means at all times during the feeding operation.
For this reason, e.g., in the case where a coefficient of friction is lowered by attachment of dust such as paper powder to the feed roller, a sliding of the sheet relative to the feed roller during the feeding operation is caused to occur, thus leading to feeding failure in some cases. Further, by the friction between the sheets, a flaw on the surface of, e.g., glossy paper is inadvantageously caused to occur.
Further, in the case of using the separation roller having the torque limiter as the separating mechanism, a clutch shaft and a clutch spring included in the torque limiter are continuously placed in a sliding state at all times during the feeding operation, so that the clutch shaft is liable to be worn. For this reason, a metal shaft is oftenly used as the clutch shaft to result in an increase in production costs.
Further, in order to actuate the mechanism for preventing the double feeding of the sheets, there are some constrains. For example, in the retarding roller-type double feeding preventing mechanism, it is necessary to use a torque limiter or retaining an appropriate releasing torque and the roller is required to be reversely rotated at all times during the feeding operation. As a result, the mechanism becomes complicated, thus leading to increases in size and production costs of the entire apparatus. Further, such a double feeding preventing mechanism also applies an undesired resisting force to the conveyed sheet in come cases.
Further, in the bidirectional rotation control-type double feeding preventing mechanism using the returning lever, an undesired resisting force is applied to the sheet in some cases by contact of the returning lever with the sheet during the conveyance operation. Further, the operation of the returning lever is performed after a sequence of the feeding operation is completed, so that it is necessary to ensure an operating time for the returning lever, in addition to the time for the feeding operation. As a result, an apparatus operating time tends to be prolonged.
Further, in the bidirectional rotation control-type double feeding preventing mechanism using the returning lever, an undesired resisting force is applied to the sheet in some cases by contact of the returning lever with the sheet during the conveyance operation. Further, the operation of the returning lever is performed after a sequence of the feeding operation is completed, so that it is necessary to ensure an operating time for the returning lever, in addition to the time for the feeding operation. As a result, an apparatus operating time tends to be prolonged.
Further, in order to decrease the resisting force at the time of the operation of the returning lever, the feed roller is required to be formed to have a substantially D character-shaped cross-section by cutting, so that a conveyance length of the sheet is determined by an outer diameter of the feed roller. As a result, in the case of a longer distance between a feeding portion and a recording portion, the outer diameter of the feeding roller has to be increased, thus leading to a large-size apparatus as a whole.
In the case where the (full) length of the pressure plate 315 is decreased or the outer diameter of the feed roller 311 is decreased in the conventional sheet feeding apparatus shown in
On the other hand, it is necessary to provide selectable modes and structures of registration in order to meet various sheet materials and recording modes (e.g., draft printing, photographic-quality printing, etc.). For example, registration is required to bring the sheet into parallelism with a recording image. On the other hand, in order to convey a thick paper such as an envelope, it is necessary to adopt a registration-less mode for conveying the sheet to the conveyance roller which is rotated normally in advance.
In order to realize two modes with respect to registration including the registration mode and the registration-less mode, it is possible to employ a simple structural mechanism such that a driving source of the feed roller and a driving source of the conveyance roller are separated from each other. However, on the other hand, the production cost is increased. Further, in the case where a common driving source is used to the feed roller and the conveyance roller, a complicated mechanism is required, thus resulting in problems such that it leads to an unstable factor in terms of quality and that a time required for recording is prolonged due to a time required for switching between drive of the feed roller and drive of the conveyance roller.
Further, apart from the registration, e.g., when a spittle paper such as glossy paper or ink jet paper, a deterioration in image quality is caused by a load on the conveyance roller. For this reason, in the case of conveying the special paper, a mechanism for reducing the load on the conveyance roller is required, so that provision of such a mechanism complicates the driving mechanism.
An object of the present invention is to provide a sheet feeding apparatus capable of reducing an undesirable resisting force applied to a sheet by switching between a separating operation and a conveying operation during sheet feeding while ensuring a stability of separating and feeding operation, of arbitrarily setting an available conveyance length of a sheet, and of downsizing an entire apparatus.
Another object of the present invention is to provide a sheet feeding apparatus capable of switching between a registration mode and a registration-less mode by a simple and inexpensive mechanism.
Another object of the present invention is to provide a sheet feeding apparatus capable of reducing a load on a conveyance roller at the time of conveying a special paper.
Another object of the present invention is to provide a recording apparatus provided with the sheet feeding apparatus described above.
Another object of the present invention is to provide a series of drive gears capable of reducing a load on a conveyance roller at the time of conveying a special paper.
According to a first aspect of the present invention, there is provided a sheet feeding apparatus for separating and feeding a plurality of sheets stacked on a sheet stacking portion one by one, comprising:
According to a second aspect of the present invention, there is provided a feeding apparatus for separating and feeding a plurality of sheets stacked on a sheet stacking portion one by one, comprising:
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
a) is a front view of the separation roller and
Hereinafter, specific embodiments of the recording apparatus according to the present invention will be described with reference to the drawings.
A recording apparatus used in this embodiment is a serial-type ink-jet printer in accordance with an ink-jet recording scheme, particularly, wherein a recording head provided with a means for generating thermal energy as energy used for ejecting liquid ink is mounted and a scheme of creating a change in state of ink by the thermal energy is adopted.
By the use of this recording scheme, resultant characters and images to be recorded have high density and high definition. Particularly, in this embodiment, ink is ejected by utilizing a pressure by bubbles generated at the time of film boiling by heating ink with a heat generating resistor as a means for generating the thermal energy. However, a method of ejecting the ink is not limited to one using the heat generating resistor but may be, e.g., one using an electrothermal transducer, such as a piezoelectric element, to impart mechanical vibration to ink and ejecting the ink by utilizing a pressure based on the vibration.
Further, in the ink-jet recording apparatus according to the present invention, for convenience, it is possible to use recording paper or a film as a sheet on which information such as characters or images is recorded.
As shown in
1 (Recording Portion)
The recording portion 3 includes, as shown in
1-1 (Recording Head)
The recording head 81 is disposed at a position facing a conveyance path of the sheet 2. At a position opposite to the sheet conveyance path, nozzles for ejecting ink is disposed (not shown). The recording head 81 includes an electrical resistor for generating thermal energy for ejecting supplied ink. The recording head 81 ejects the ink by utilizing the thermal energy applied by the electrical resistor, e.g., by utilizing film boiling.
1-2 (Carriage)
The carriage 82 includes, as shown in
1-3 (Moving Mechanism)
As shown in
The carriage motor 84 is fixed by secured to a chassis 83, and the carriage pulley 85 is fixed to a rotating pulley 85 and the supporting pulley are respectively provided with a gear portion (not shown) to be engaged with the timing belt 86, and is rotatably supported through a spindle fixed to the chassis 83.
The timing belt 86 is provided with the gear portion at its inner peripheral surface, and the gear portion is engaged with the gear portion of the carriage pulley 85 so that the timing belt extends over the carriage pulley 85 and the supporting pulley. Further, the timing belt 86 is engaged with one end portion of the carriage 82 and is integrally moved together with the carriage 82. further, the chassis 83 is provided with a guide rail 83a, for movably supporting the carriage 82 in the direction of the arrow X, with which the sliding portion of the carriage 82 is engaged.
The thus constituted moving mechanism 80 rotates the carriage pulley 85 by driving rotationally the carriage motor 84, and drives the timing belt 86 by the rotation of the carriage pulley 85. By driving the timing belt 86, the carriage 82 is moved to the arrow X direction, thereby to move the recording head 81 in its main scanning direction to effect recording.
2 (Feeding Portion)
The feeding portion 4 includes a sheet stacking (holding) portion 6 on which a plurality of sheets 2 are stacked, a separation/feeding mechanism 7 for separating the sheets 2 from the sheet stacking portion 6 one by one, and a driving mechanism 8 for driving the separation feeding mechanism.
2-1 (Sheet Stacking Portion)
The sheet stacking portion 6 includes a base 15 and a pressure plate 16 rotatably mounted to the base 15, and the plurality of sheets 2 are stacked on the pressure plate 16. The pressure plate 16 is attached to the base 15 so that it forms an inclined surface with respect to an apparatus mounting horizontal surface. Accordingly, the sheets 2 stacked on the sheet stacking portion 6 is in an inclined state, so that the sheets 2 are supplied with a force downwardly by gravity. As a result, a leading end of the sheets 2 abuts obliquely against a sheet leading end alignment reference portion 15a. By such an oblique stacking of the sheets, it is possible to reduce not only a mounting area of the sheet stacking portion 6 but also the size of the entire recording apparatus. Incidentally, in this embodiment, the sheet leading end alignment reference portion 15a is made up of a plurality of parallel ribs in order to reduce a load at the time of sheet feeding.
On the pressure plate 16, a sheet conveyance reference portion 16b for regulating one of two sides of the stacked sheets 2 is disposed so as to project from the pressure plate, and a side guide 18 is disposed for regulating the other side of the sheets 2. The side guide 18 is slidably attached to the pressure plate 16 a widthwise direction of the sheets 2, i.e., a direction of an arrow X shown in
The pressure plate 16 has a rotation center R at its upper end portion, and is pressed against the feed roller 11 by a pressure plate spring 17 as shown in
Further, the rotation center R of the pressure plate 16 is, as shown in
By disposing the rotation center R at such a height H1, as shown in
When a positional relationship between the pressure plate 16 and the feed roller 11 in this embodiment shown in
2-2 (Separation/Feeding Mechanism)
Next, the structure of the separation/feeding mechanism 7 will be described. The separation/feeding mechanism 7 includes the feed roller 11 for feeding the sheets 2 stacked on the sheet stacking portion 6, a separation roller 12 for separating the sheets 2 fed by the feed roller 11 one by one by contacting to the sheets 2, a returning lever 13 of returning the sheets 2 to the sheet stacking portion 6, and a preliminary regulation portion 22a as a preliminary regulating member for regulating the number of sheets 2 which reaches a separation portion.
The feed roller 11 is, as described above, pressed against the stack of the sheets which are under the pressure generated by the pressure plate 16 and rotationally driven to feed the topmost sheet 2 of the stacked sheets 2 by frictional force, so that the feed roller 11 may preferably be formed of a rubber such as EPDM (ethylenepropyleneterpolymer) having a relatively high coefficient of friction, urethane foam, etc.
The feed roller 11 is provided with a feeding shaft which is rotatably supported by a bearing 27 and is provided a feed roller gear 19 at one end thereof. To the feed roller gear 19, a driving force is transmitted from a driving power source described later. The feed roller gear 19 is engaged with a control gear 24 described later. To the control gear 24, in addition to the driving force inputted into the feed roller (shaft) gear 19, another driving force is independently transmitted from an unshown driving force transmission means.
The separation roller 12 as separation means feeds the sheets 2 one by one by separating the sheets 2 when the plurality of sheets 2 enter the nip portion between the feed roller 11 and the separation roller 12.
Generally, the frictional force between the feed roller 11 an the topmost sheet 2 is larger than that the topmost sheet 2 and a sheet 2 immediately under the topmost sheet 2 in many cases, so that only the topmost sheet 2 is advanced. However, there are times when two or more sheets 2 are pulled out at the same time by the feed roller 111. This phenomenon occurs, for example, when two or more sheets 2, the edges of which have been burred while they were cut, are pressed against the feed roller 11, when two or more sheets 2 adhering to each other due to the presence of static electricity are pressed against the feed roller 11, or when two or more sheets 2 which are very large in coefficient of friction, are pressed against the feed roller 11.
As shown in
Herein, referring to
With the provision of the above described structural arrangement, as the separation roller 12 and clutch cylinder 12a are rotated in the direction indicated by an arrow in
In this embodiment, it becomes possible to effect on-off control of the torque limiter by performing the fixation of the clutch shaft 12b and release of the fixation. As a separation force switching mean for switching generation of a separating force of the separation roller 12 and removal of the separating force, a release cam 28 and a lock lever 23 are provided as described later. The separation roller 12 is rotatably supported by a separation roller holder 21, that is, a sheet separating means holding member, with the interposition of clutch cylinder 12a and clutch shaft 12b. It is kept pressed on the feed roller 11 by a separation roller spring 26. The separation roller holder 21 is provided with the separation roller 12 and the lock lever 23 which are rotatably attached to the separation roller holder around the rotation center 21a.
According to the above structured separation/feeding mechanism 7, when there is no sheet 2 between the feed roller 11 and separation roller 12, the separation roller 12 is rotated by the rotation of the feed roller 11, as shown in
The friction between the feed roller 11 and the sheet 2, and the friction between the sheet 2 and separation roller 12, are greater than the braking torque of the torque limiter of the separation roller 12. Therefore, as shown in
As soon as a sheet separating operation ends, the (sheet) returning lever 13 is made to begin to return the subsequent sheets 2 in the separation nip.
After returning the sheets 2, the returning lever 13 is once rotated out of the sheet conveyance path. Then, it is moved to the standby position after it is confirmed that the trailing end of the sheet 2 has passed the recording apparatus 1.
As shown in
Further, the separation/feeding mechanism 7 is, as shown in
[Recording Portion]
The structure of the recording portion 3 will be described.
In the recording portion 3, the sheet 20 is sandwiched between a conveyance roller 30 as sheet conveyance means and a pinch roller 29 and between a discharge roller 31 and a spur-shaped wheel 32, and is conveyed intermittently in a sub-scanning direction. A plurality in a sub-scanning direction. A plurality of pinch rollers 29 are attached to a pinch roller holder 25 which presses the pinch rollers 29 against the conveyance roller 30 by an unshown pressing means. The conveyance roller 30 has a larger holding (pressing) force of sheet than the discharge roller 31, thus dominating an amount of sheet conveyance. The discharge roller 31 imparts a tension to the sheet 20 by increasing a sheet feeding amount compared with conveyance roller 30.
The recording head 81 is slidable along the chassis 83 in the main scanning direction (perpendicular to the sheet conveyance direction) and records an image having a predetermined width (a width of nozzle of the recording head) by ejecting ink droplet toward the sheet 2 while being moved. By alternately repeating the intermittent conveyance by the conveyance roller 30 and the image recording at the predetermined width by the recording head 81, an image is recorded on the entire sheet 2.
[Operation of Sheet Feeding Apparatus]
The separation/feeding and conveyance operations of sheets in the sheet feeding apparatus of the recording apparatus having the above-mentioned structure.
(Standby State)
In
The sheets 20 are on standby in such a state that they are supported by the sheet leading end alignment reference portion 15a at their leading end and also supported by the pressure plate 16 at their rear surface.
(Separating Operation)
A process from the start of sheet feeding to deliver the sheets 20 to the recording portion will be described based on the rotation angle of the control gear 24. The feeding operation of the sheet feeding apparatus according to the present invention is classified into two operations including the separating operation and the conveying operation. First, the separating operation will be described.
The separation operation is shown by angles θ1 to θ5 of the control gear 24 in
When the control gear 24 is further rotated up to the angle θ2 shown in
At this time, by the friction between the sheets, a plurality of sheets including not only the topmost sheet but also subsequent sheet(s) under the topmost sheets are fed in some cases. At that time, by the action of the spacing forward between the preliminary regulation portion 22a and the feed roller 11, the number of sheets passing through the spacing is first regulated to be several sheets.
When the sheet feeding is further continued, the plurality of sheets reaches the separation portion comprising the nip between the feed roller 11 and the separation roller 12. Even if the separation roller 12 is tried to be rotated with the advance of the sheets in the counterclockwise direction in such a state that the lock lever 23 is fitted into the clutch shaft 12b as shown in
When the control gear 24 is rotated up to the angle θ3 shown in
When the control gear 24 is rotated up to the angle θ4, by the action of the unshown control cam provided to the control gear 24, the release cam 28 is rotated in a direction of an arrow L shown in
The preliminary regulation portion 22aregulates the entrance of the sheets 20 into the separating portion until then, so that a plurality of sheets 20 enter the gap formed between the feed roller 11 and the preliminary regulation portion 22a in some cases, thus sometimes requiring a large force at the time of returning the sheets 20 by the returning lever 13 due to the nipping force at the gap. In order to remove the force, in the present invention, an operation such that the preliminary regulation portion 22a is moved toward a direction apart from the feed roller 11 to enlarge the gap is performed. By the operation for removing the sheet nipping force, it becomes possible to reduce a force required for the subsequent sheet returning operation by the returning lever 13.
On the other hand, by the action of the unshown control cam provided to the control gear 24, the tip of the returning leer 13 passes through the nip between the feed roller 11 and the separation roller 12 to start the returning operation of the subsequent sheets located at the separation nip to the sheet stacking portion 1. Immediately thereafter, the release cam is further rotated in a direction of an arrow L shown in
More specifically, when the sheet returning operation is performed by the returning lever 13, firstly, the regulation effect of the preliminary regulation portion 22a is removed and then the separation roller holder 21 is released at the time when the tip of the returning lever 13 passes through the nip. That is, the returning operation is performed in a state that all the mechanism portions which are capable of being resistive members to the returning operation are released. As a result, it is possible to apply a minimum separating force for sheet separation, so that the returning lever 13 can also be readily actuated by a smaller force. Thereafter, all the leading ends of the sheets except for the currently feeding sheet is conveyed back to the sheet leading end alignment reference portion 15a in the opposite direction.
Then, the sheet feeding operation further proceeds and during the control gear 24 is rotated up to the angle θ5 shown in
After the completion of the sheet returning operation, the returning lever 13 is not moved to the original standby position but moved to a position where the returning lever 13 is further rotated. As a result, it becomes possible to prevent a phenomenon that the returning lever 13 contacts to accidentally apply a resistive force to the sheets. Consequently, good recording results are achieved. As described above, the separating operation is performed. However, at this stage, the sheet 20 is not yet delivered to the recording portion 3.
(Conveying Operation)
Next, the conveying operation will be described.
The angle θ6 and θ7 shown in
WHen the control gar 24 is rotated up to the angle θ6 shown in
In such a state that the clutch shaft 12b can rotate freely, a releasing force for releasing the clutch spring 12c is not generated even if the separation roller 12 and the clutch shaft 12a are rotated, so that the clutch shaft 12a loses its function as the torque limiter. For this reason, the separation roller 12 is changed to a roller which is rotated with no torque by the rotation of the feed roller 11.
When the control gear 24 is rotated up to the angle θ7 shown in
More specifically, during a period from the start of conveyance operation to the transmission of the driving force to the feeding shaft gear 19, the sheet feeding apparatus is designed to permit the sheet conveyance operation. As a result, a sheet conveyance length by the sheet feeding apparatus becomes actually infinite, thus achieving an effect of arbitrarily setting a distance between the separation/feeding portion 2 and the recording portion 3. Accordingly, if the outer diameter of the feed roller 11 is set to be smaller, it is possible to realize size reduction of the sheet feeding apparatus and the recording apparatus in combination. As described above, the conveying operation is performed.
(Operations After Sheet Feeding)
In this embodiment, after the feeding operation is completed and the leading end of the sheet is delivered to the recording portion 3 while being sandwiched between the conveyance roller 30 and the pinch roller 29. At the same time, the driving force transmission from the driving power supply to the feeding shaft gear 19 is interrupted, the feeding shaft 10, to which the feeding shaft gear 19 is connected, and the feed roller 11 are changed to rollers which are freely rotated.
Accordingly, during a period in which the recording on the sheet is performed by the recording portion 3, the feed roller 11 is moved with the advance of the sheet subjected to recording and does not trail the gear train, so that the feed roller 11 does not impact an undesired resistive force to the sheet in the recording operation. Similarly, the separation roller 12 abutting the feed roller 11 also functions as the roller which is rotated by the rotation of the feed roller 11 as described above, so that it does not apply an undesired load on the sheet on recording.
Substantially simultaneous with the sheet discharge operation by the discharge roller 31 and the spur-shaped wheel 32, when the control gear 24 is rotated independently by an unshown driving means up to the angle θ8, the returning lever 13 enters again the sheet conveyance path to prevent the leading end of the sheets 20 from falling into the separation portion. Further, by the action of the unshown control cam, the release cam is rotated in a direction of an arrow L shown in
At that time, the feeding shaft gear 19 and the gears of the control gear 24 are again returned to a meshed state, so that they are in a state capable of starting the sheet feeding operation if they receives a next sheet feeding instruction. As described above, the operations of the sheet feeding apparatus of the present invention are performed.
The sheet feeding apparatus of the present invention are, as described above, provided with the feed roller 11 as a feeding means, the separation roller 12 as a separating means, the returning lever 13 as a returning means, and the release cam and the lock lever as a separating force switching means. Further, in the sheet feeding apparatus, a separating state in which a separating force for separating the sheets is generated by the separating means and a conveying state in which the separating force is removed, are switcheable. More specifically, the separating force is removed from the separation roller 12 without moving the separation roller 12 away from the feed roller 11, and the separation roller 12 is driven by rotation of the feed roller 11 to allow the conveying state in which conveyance by the feed roller 11 is performed. As a result, it becomes possible to impart a required minimum sheet separating force to the sheets, thus reducing feeding failure or frictional flaw of the sheets.
The above-mentioned separating and conveying states may also mean generation and removal states, respectively, of the separating force of the separation roller 12. On the other hand, the feeding operation by the sheet feeding apparatus as a whole may be classified into two operations including the separating operation and the conveying operation as described above. In this regard, the separating operation means an operation such that the separation roller 12 is placed in the conveyance state, moved away from the feed roller 11 and the operation of the returning lever 13 as the returning means is completed. Accordingly, in the above explanation, although the separating means is capable of switching between the separating state and the conveying state during the feeding operation, it is also possible to say that the separating and conveying states are switchable during the separating operation.
Further, in the case of adopting a separation roller provided with a torque limiter-type separation scheme, it becomes possible to suppress wear of the clutch shaft incorporated in the torque limiter, so that the metal shaft is not required to reduce production costs. Further, it is also possible to reduce a conveyance load applied on the sheet on recording to improve a conveyance accuracy.
When the sheet feeding apparatus is provided with the separation roller holder 21 as the separating means support member and the preliminary regulation portion 22a as the preregulation member, and the returning means is achieved, the separating means and the preregulation member held by the separation means support member are moved away from the feeding means to reduce an operating force at the time of returning the sheets to the sheet stacking (holding) portion by the returning means.
Further, when the separating means support member and the preregulation member are designed to be independently actuated and then the returning means is actuated, by moving the preregulation member away from the feeding means before the separating means held by the separating means support member is moved away from the feeding means, it becomes possible to reduce the operating force at the time of returning the sheets to the sheet stacking portion by the returning means while preventing the double feeding of sheets with reliability.
Further, as described above, during the separating operation up to the completion of the returning operation by the returning lever 13, the spacing operation of the separating means and the preregulation member is performed, thus ensuring the reduction in operating force described above.
After the sheet reaches the recording portion, the driving force or the separating fore is removed from both the feeding means and the separating means, whereby an undesired resistive force is applied to the sheet on recording even when the feeding means is designed to have a full circular cross-section. Accordingly, it becomes possible to arbitrarily set a conveyance possible length from the separation/feeding portion to the recording portion irrespective of the outer shape of the feeding means, so that a size reduction of the sheet feeding apparatus is realized and the sheet feeding apparatus is also improved in versatility.
Further, the separating means is constituted by the separation roller provided with the torque limiter, whereby the separation of the sheets can be performed with high reliability and it becomes possible to set an arbitrary conveyance length without adopting a complicated structure. In addition, the shaft constituting the torque limiter of the separation roller is formed in a molded shaft, thus reducing costs of parts constituting the separating portion.
Further, it is possible to simplify the driving mechanism and control by designing the driving mechanism so as to allow switching between the separating operation and the conveying operation by unidirectional rotation of the driving power supply.
The sheet feeding apparatus of the present invention is provided with the rotatable pressure plate for pressing the sheets against the feeding means and the rotation center of the pressure plate is located at a position higher than almost half of the maximum sheet stacking surface of the pressure plate, whereby it becomes possible to set an optimum sheet conveyance angle even if the sheet feeding apparatus is provided with a shorter pressure plate. Further, a gap between the pressure plate and the sheet leading end alignment reference portion is kept appropriate.
On the sheet stacking potion, the sheets are obliquely stacked with respect to the apparatus horizontal surface, whereby the sheet feeding apparatus can be downsized.
2-3 (Driving Mechanism)
The driving mechanism 8 for driving the feeding portion (means) 4 will be described.
The driving mechanism 8 provided to the feeding portion 4 is, as shown in
As shown in
The feed roller gar 19 is coaxially disposed with the feeding shaft 10 as described above, and rotates the feeding shaft 10 and the feed roller 11. The feed roller gear 19 is formed in a high-tooth for preventing tooth top abutment described hereinafter. In this embodiment, the feed roller gear 19 is designed to have an addendum, from a pitch circle to an addendum circle, 1.35 times the module.
The control gear 24 includes a first gear portion 24a to be engaged with the forward rotation planet gear 35 and a second gear portion 24b to be engaged with the feed roller gear 19. To the control gear 24, the driving force inputted into the feed roller gear 19 is transmitted and a driving force is independently transmitted through a driving force transmission path. The control gear 24 is further provided with a first shielding potion 56a and a second shielding portion 56b, which block a beam detected by the feeding sensor 38 and are disposed with a predetermined spacing. These first and second shielding portions 56a and 56b are rotationally moved integrally by the rotation of the control gear 24.
The control cam 34 is disposed coaxially with the control gear 24 and rotates in phase with the control gear 24. The control cam 34 includes a first am surface 34a to be engaged with a pressure plate boss 16a, a second cam surface 34b to be engaged with a boss 28d of the release cam 28, and a third surface 34c to be engaged with a protruding portion 13a of the returning lever 13.
The sum gear 37 includes a first gear portion 37a to be engaged with the forward rotation planet gear 35 and a second gear portion 37b to be engaged with the backward rotation planet gear 36.
The feeding sensor 38 includes a light source for emitting a detection beam and a photodetector for receiving the detection beam from the light source (not shown). The feeding sensor 38 detects the rotation position of the control gear 24 by interrupting the detection beam by the first and second shielding portions 56a and 56b.
The pendulum 39 includes a bearing portion 39a for supporting the sun gear 37 through the rotation shaft, a bearing portion 39b for supporting the forward rotation planet gear 35 through the rotation shaft, and a bearing portion 39c for supporting the backward rotation planet gar 36 through the rotation shaft. These bearing portions 39a, 39b and 39c are integrally formed. At a peripheral surface of the pendulum 39, a first engaging portion 39d and a second engaging portion 39e, for regulating the swinging position of the pendulum 39, are integrally formed to constitute protruding portions.
Between the sun gear 38 and the pendulum 39, a friction spring (not shown) is disposed to swing the pendulum 39 together with the rotation of the sun gear 37 in the same direction. More specifically, when the sun gear 37 is clockwise rotated, the pendulum is also swung clockwise similarly, whereby the backward rotation planet gear 36 is engaged with the feed roller gear 19. On the other hand, when the sun gear 37 is counterclockwise rotated, the pendulum 39 is also counterclockwise swung, whereby the forward rotation planet gear 35 is engaged with the first gear portion 24a of the control gear 24.
The idler gear 40 includes a first gear portion 40a to be engaged with a conveyance output gear 95 and a second gear portion 40b to be engaged with the second gear portion 37b of the sun gear 37, and transmit the driving force of the conveyance output gear 95 to the sun gear 37.
The stopper 41 is, as shown in
The stopper 41 further includes a hook 41d to be engaged with one end of a tension coil spring (not shown) and is pressed so that the second regulating portion 41c is engaged with the second engaging portion 39e of the pendulum 39 by an elastic force of the tension coil spring, thus preventing the pendulum 39 to swing counterclockwise.
The stopper 41 is actuated by the carriage 82 by moving the carriage 82 of the above-mentioned recording portion 3, thus regulating the swing of the pendulum.
As shown in
Several positions of the carriage 82 and corresponding operations of the stopper 41 will be described with reference to
As shown in
As shown in
As shown in
3 (Conveying Portion)
The conveying portion (means) 5, as shown in
Further, the conveyance portion 5 includes, as shown in
The conveyance portion 5 further includes guide members 25a and 25b for guiding the sheet 2 to a nip portion 99 between the conveyance roller 30 and the roller 29, a sheet end detection sensor 97 for detecting a position of the leading end of the sheet 2 fed by the feed roller 11 and a position of the trailing end of the sheet 2 conveyed by the conveyance roller 30, and a sheet end detection lever 98 which is rotated by movement of the leading end or the trailing end of the sheet 2 (
The pair of the conveyance roller 30 and the roller 29 and the pair of the discharge roller 31 and the spur-shaped wheel 32, are respectively fixed around a pair of rotation shafts which are rotatably supported on the base 15, and are respectively disposed opposite to each other. Further, at the conveyance portion 5, a frictional force is applied to the conveyance roller 30 and the sheet 2 by the roller 29, and is also applied to the discharge roller 30 and the sheet 2 by the spur-shaped wheel 32.
The conveyance motor 91 includes a pinion 90 provided to the rotation shaft as shown in
The sheet end detection sensor 97 includes the light source for emitting a detection beam and the photodetector for receiving the detection beam from the light source (not shown), and detects the leading end and trailing end of the sheet by detecting the rotation of the sheet end detection lever 98. Incidentally, as the sheet end detection sensor 97, a mechanical detector having a member which is pressed downward by operation of the sheet end detection 98 may also be used.
The sheet end detection lever 98 is rotatably supported at one end thereof where the sheet end detection sensor 97 is located, and at the other end thereof, is located at a position, corresponding to a predetermined position of the sheet conveyance path, which is an intermediary position between the separating portion by the separation roller 12 and the nip portion 99 of the conveyance roller 30 with the roller 29. Accordingly, the sheet end detection lever 98 is rotated by the abutment of the leading end of the sheet 2 to its the other end when the leading end of the sheet 2 separated and fed by the separation roller 12 reaches the predetermined position of the sheet conveyance path. One end (not the other end) of the sheet end detection lever 98 is moved away from a detection area of the sheet end detection sensor 97 by the rotation of the sheet end detection lever 98 through the abutment with the sheet leading end, thus allowing the detection of the sheet leading end. Similarly, one end of the sheet end detection lever 98 blocks the detection area of the sheet end detection sensor 97 when the sheet end detection lever 98 is rotated by passage of the sheet trailing end through the predetermined position, thus allowing the detection of the sheet trailing end.
The above-structured conveyance portion 5 conveys the sheet 2 supplied from the feeding portion 4 to the recording head 81 side by the conveyance roller 30. On the conveyed sheet 2, e.g., a desired image is recorded by ejecting ink by the recording head 81 of the recording portion 3. Then, the conveyance portion 5 discharges the sheet 2 having thereon the recorded image by the discharge roller 31 and the spur-shaped wheel 32.
In the recording apparatus 1 of this embodiment, the conveyance roller 30 and the feed roller 11 are rotated by the driving force of the conveyance motor 91, i.e., have a common driving power supply, but may be designed to be separately driven by different driving power supplies.
4 (Operation of Driving Mechanism of Feeding Portion)
The driving mechanism 8 of the feeding portion 4 described above will be explained in detail with reference to
4-1 (Standby State)
a)–18(e) show a standby state of the driving mechanism. The state P1 shown in
As shown in
As shown in
As shown in
d) shows second and third cam surfaces 34b and 34c of the control cam 34. As shown in the figure, a boss 28d of the release cam 28 is engaged with one end of the control cam surface 34b of the control cam 34. Further, a protrusion 13a of the returning lever 13 is engaged with a control cam surface 55a of the third cam surface 34c.
e) shows a state of the separation/feeding mechanism 7 at that time. As shown in the figure, the pressure plate 16 is held at a position away from the feed roller 11 having a circular cross section. Between the feed roller 11 and the pressure plate 16, a sufficient space for stacking a plurality of sheets 2 is ensured. Further, the returning lever 13 enters the conveyance path of the sheets 2 to prevent leading ends of the sheets 2 stacked on the pressure plate 16 from being fallen toward the separation roller 12 side. The separation roller 12 is placed in an abutting state against the feed roller 11, thus being capable of generating a torque. This torque generable state of the separation roller 12 is created by engaging a protrusion 23a of the returning lever 13 with a gear portion 12d of a clutch shaft 12b. The sheets stacked on the sheet stacking portion 6 are in the standby state while being supported by the sheet leading end alignment reference portion 15a at the leading ends and by the pressure plate 16 at their rear surface, respectively.
4-2 (Separation State)
As shown in
Further, as shown in
When the control gear 24 is rotated up to an angle θ1 shown in
On the other hand, by the rotation of the feed roller gear 19, the feed roller 11 is also rotated, so that the feed roller 11 together rotates the separation roller 12 to result in an increase in torque of a clutch spring 12c within the separation roller 12 up to a predetermined level.
When the control gear 24 is further rotated up to an angle θ2 shown in
Thereafter, the conveyance roller 30 is further rotated, i.e., the sun gear 37 is rotated in the arrow J1 direction, whereby the control cam 34 is rotated in a state P2 shown in
This state P2 is shown in
As shown in
As shown in
As shown in
At this time, by the friction between the sheets, a plurality of sheets including not only the topmost sheet 2a but also a second sheet 2b and subsequent sheets are feed at the same time (double feeding) in some cases. In this case, firstly, the number of sheets 2 passed is regulated by the action of a gap d1 created between the preliminary regulation portion 22a and the feed roller 11.
In addition, by continuing the feeding operation of the feeding portion 4, a plurality of sheets 2 reaches the separating portion comprising the nip between the feed roller 11 and the separation roller 12. The separation roller 12 receives a torque from the sheets in the counterclockwise direction in the figure by the advance of the sheets 2. However, as shown in
Further, as shown in
From this state, when the sun gear 37 is rotated in the arrow J1 direction to rotate the control cam 34 up to an angle θ3 shown in
Further, when the control cam 34 is rotated up to an angle θ3 shown in
When the control cam 34 is further rotated up to an angle θ4 shown in
4-3 (Released State After Separation)
a)–20(e) show a state in which the conveyance roller 30 is further rotate backwardly to rotate the control cam 34 in a state P3 shown in
As shown in
As shown in
c) shows a state of the first cam surface 34a of the control cam 34 and the pressure plate 16. Referring to
As shown in
As shown in
4-4 (Conveyance State of Sheet After Torque Removal)
When the control cam 34 is further rotated up to an angle θ6 shown in
As a result, the protrusion 23a of the returning lever 23 is moved out of the gear portion 12d of the clutch shaft 12 to place the clutch shaft 12 in a free state, so that the separation roller 12 becomes a roller which is rotated by and together with the feed roller 11 (torque-off state).
a)–21(e) show an operating state of the driving mechanism 8 in a state P4 shown in
As shown in
b) shows a state of the feed roller gear 19 and the control gar 24. As shown in the figure, the feed roller gear 19 is rotated but is not engaged with the control gear 24 by the pressure of a third tooth-less portion 52b of the control gear 24, so that the control gear 24 is not rotated.
c) shows a state of control cam 4 and the pressure plate 16. In this state, the pressure state boss 16a is engaged with a second recess 53f of the control cam 34, so that the control cam is held by the abutting force of the pressure plate spring 17. As shown in
More specifically, as shown in
As a result, as shown in
d) shows second and third cam surfaces 34b and 34c of the control gear 34 at that time. As shown in the figure, the release cam 28 is placed in the above-described torque-off state, and the returning lever 13 is in a completely returned state.
e) shows a conveyance state of the sheet 2 after the separation in this state. As shown in
On the other hand, as described above, the transmission of the driving force from the feed roller gear 19 to the control gear 24 is interrupted by the third tooth-less portion 52b, so that the control gear 24 and the control cam 34 are held in this state. Further, the returning lever 13 is held in the completed returned state.
Accordingly, the sun gear 37 is rotated continuously in this state, whereby it is possible to feed the sheet 2 by an arbitrary length. In the feeding portion 4, the separation/feeding mechanism 7 can be freely disposed without being affected by the limitation of conveyance distance with respect to the conventional feed roller having the cut D-shape cross section. This means that it becomes possible to design the entire recording apparatus even when a large distance between the feed roller 11 and the separation roller 12 of the separation/feeding mechanism 7 is ensured. As a result, it becomes possible to reduce the entire size of the recording apparatus 1 and production costs.
Referring again to
The recording apparatus 1 of this embodiment employs a common driving power source for driving the conveyance roller 30 and the feed roller 11, so that the (registration) operation for truing up the leading end of the sheet 2 is performed in such a reverse registration manner that the registration is performed by backwardly rotating the conveyance roller 30. In a state in which the conveyance roller 30 is rotated clockwise, the leading end of the sheet 2 is struck against the nip portion 99 constituted by the conveyance roller 11 and the roller 29 and a predetermined amount of the sheet is conveyed by the feed roller 11, whereby the sheet 2 is curved between the feed roller 11 and the nip portion 99. The sheet leading end is pressed against the nip portion 99, whereby oblique advance of the sheet is corrected. In the recording apparatus 1, by this registration method, the conveyance roller is rotated forwardly after the registration of the sheet 2 is performed by striking the leading end of the sheet 2 against the nip portion 99, to convey the sheet 2 to the recording head 81, thus subjecting the sheet 2 to recording.
A state P5 shown in
As shown in
Incidentally, in the recording apparatus 1 of this embodiment, the conveyance motor as the driving power source of the conveyance roller 30 is used in common with the sun gear 37, but the sun gear 37 may be driven by a motor different from the drive motor 91 for the conveyance roller 30.
In the respective states shown in
Referring to
More specifically, at the time of sheet conveyance, as a load of the driving mechanism exerted on the sheet 2, only a rotational load by the feed roller 11, the feed roller gear 19 and the separation roller 12 is applied to the sheet 2.
In the conventional case where the conveyance roller is moved together with the sheet conveyance, it is also necessary to together move, e.g., the drive gear train, for driving the conveyance roller, similarly as in the conveyance roller, so that a load of the driving mechanism exerted on the sheet becomes large. As a result, there has arisen a problem such that a conveyance accuracy of the sheet becomes worse by a change in load at the time when the trailing end of the sheet passes through the nip portion between the feed roller and the separation roller. However, according to the recording apparatus 1 of this embodiment, the load of the driving mechanism is very small, so that a stable conveyance accuracy is ensured.
Further, in this embodiment, as an example, the common driving power source is used for the conveyance roller 30 and the feed roller. Even in this case, the driving power source is backwardly rotated at the time of sheet feeding and after the registration, is forwardly rotated. By such a simple sequence, it is possible to separate and convey the sheet 2.
For this reason, according to the recording apparatus 1, even in the case where a relatively high recording speed is required, it is unnecessary to switch many times the rotation direction of the drive power source. Further, it becomes possible to perform the operations of feeding, registration and conveyance in a very short time.
Further, in a sequence of feeding mode, separation mode and conveyance mode, by the respective tooth-less portions of the control gear 24 and amounts of rotation based on the tooth-less portions, required functions as fulfilled. As a result, a phase detection sensor required for detecting a phase of, e.g., the conventional feed roller having the D-shape cut portion can be omitted, so that reduction in production cost of the entire recording apparatus is also realized.
Next, a mechanism of restoring the sheet from the above-mentioned conveyance state to the standby state.
The carriage 82 is moved from the state shown in
4-5 (Special Paper Mode)
Next, the special paper mode which further reduces the load of the driving mechanism 8 at the time of sheet feeding will be explained.
In recent years, in an ink jet recording apparatus, there has been in very increasing demand for high image quality such as so-called photographic quality, and various special papers for meeting the high image quality recording have also been provided. Such special papers require a further severe fluctuation value of load at the time of feeding the papers, so that it is necessary to further reduce the load by the driving mechanism 8 compared with the above-described conveyance mode.
For this reason, the recording apparatus 1 of this embodiment adopts thus special paper mode as a load reducing function for the driving mechanism 8 in addition to the normal (plain paper) mode.
In this special paper mode, the sequence of operations from the standby state (
States P4 and P5 shown in
a)–23(e) show the state P6 shown in
As shown in
Further, at this time, the leading end of the sheet 2 reaches the nip portion, so that the leading end advance operation of the sheet 2 is also performed at the same time with the forward rotation of the conveyance roller 30.
From the time when the first shield portion 56a of the control gear 24 is detected by the feeding (detection) sensor, the conveyance motor 91 is driven by a predetermined pulse number to rotate the control gear 24, whereby the third recess portion 53g of the control cam 34 is engaged with the pressure plate boss 16a to hold the control cam 34 as shown in
b) shows the state of the second gear portion 24a of the control gear 24 and the feed roller gear 19 in the held state of the control cam 34. Referring to
d) shows the second cam surface 34b of the control cam 34. Referring to the figure, the release cam 28 is placed in the same state as the released state after the separation operation by the cam surface 54f.
As a result, as shown in
More specifically, in this state, the load of the driving mechanism exerted on the sheet is only the rotational load of the feed roller gar 19, so that it is possible to further reduce the load compared with that in the normal mode.
In order to place the sheet 2, from this state, in a recordable conveyance state, referring to
By the drag by the sheet 2, the feed roller gear 19 is rotated but by the third tooth-less portion 52b, the feed roller gear 19 and the control gear 24 are out of mesh, so that the control gear 24 is not rotated.
Further, in the case where the apparatus is returned to the standby state after the recording operation by the recording portion 3 is completed.
4-6 (Registration-Less Mode)
Next, the registration-less mode will be described.
For example, a thick sheet, such as cardboard or envelope, is not readily nipped in the nip portion between the conveyance roller 30 and the roller 29, which is rotated by the rotation of the conveyance roller 30, in many cases. Further, in this embodiment, the driving power source is common to the conveyance roller 30 and the feed roller 11, so that the conveyance roller 30 is rotated and, in that state, the sheet is conveyed from the conveyance portion 4. The registration-less mode is effective with respect to the sheet which is not readily nipped in the portion.
More specifically, after the separation operation, in a state such that the control cam 34 is in the state shown in
At this time, similarly as in the state shown in
Referring to
Referring to
In this state, as shown in
A state in which the control gear 34 is further rotated up to a state P6 shown in
As shown in
e) shows a state of the sheet 2. Referring to the figure, when the leading end of the sheet 2 is located immediately before the nip portion 99 of the conveyance roller 30, the rotation direction of the conveyance roller 30 is switched. A length δ′ of the sheet 2 conveyed by the conveyance roller 3 in the registration-less mode corresponds to the toothed portion δ of the control gear 24. In this state, the conveyance roller 30 is once rotated backwardly, whereby the stopper 41 is engaged with the pendulum 39 to allow the recording operation and the conveyance operation.
4-7 (Measures to Prevent Tooth Top Abutment)
During the above-described sequence of feeding operations, as measures to prevent tooth top abutment at the time of engaging the second and third tooth-less portions 52 and 52b with the feed roller gear 19, not only the gear portion of the feed roller gear 19 is formed as a high-tooth portion (in this embodiment, an addendum (value) from a pitch circle to an addendum circle is set to be about 1.35 times a module) but also the second gear portion 24b of the control gear 24 is provided with elastic toothed portions 52c and 52d at sections thereof, respectively.
Effects of these elastic toothed portions 52c and 52d will be explained with reference to
As shown in
In the case where such a tooth top abutment is caused to occur, in this embodiment, the elastic toothed portion 52c is escaped from the tooth top abutment position to suppress an increase in load, thus realizing a stable engagement between the gears. Further, at this time, the feed roller gear 19 is formed in high-tooth so as to minimize the possibility of occurrence of the tooth top abutment.
As a result, a moment M is generated in the control gear 24 around the rear anchor position 52g of the elastic toothed portion 52c as the rotation center, whereby the elastic toothed portion 52c is urged against the feed roller gear 19 side. Accordingly, at the time of the ordinary intermeshing, the elastic toothed portion 52c is deflected in a direction providing a strong intermeshing state, so that it is possible to prevent an occurrence of tooth breakage, etc.
As described above, the control gear 24 has the elastic toothed portion 52c as measure to prevent the tooth top abutment and has the rear anchor position 52g which is a center of displacement of the elastic toothed portion 52c. The rear anchor position 52g is located on the side opposite from the rotational advance direction of the elastic toothed portion 52c of the control gar 24, whereby the elastic toothed portion 52c is deflected when the tooth top abutment occurs. As a result, it becomes possible to obviate the increase in load caused by the tooth top abutment. On the other hand, in the case of the ordinary intermeshing, the urging force is generated in the direction so that the elastic toothed portion 52c is pressed against the feed roller gear 19 as a gear rotated by the rotation of the control gear 24. As a result, the intermeshing state between the gears 19 and 24 are kept well, and tooth breakage of the gears is not caused to occur.
Then, operational sequences in this embodiment will be described in detail.
First of all, a sequence at the time of sheet feeding will be explained. The feeding sequence of the sheets 2, as described above, is classified into three types including plain paper feeding, special paper feeding and registration-less feeding, in view of various specifications of species of sheet materials used.
5-1 (Plain Paper Feeding)
A sequence at the time of normal feeding (of plain paper) will be described with reference to
As shown in
In the state in which the carriage 82 is moved to the trigger position, in Step 104, backward rotation of the conveyance motor 91 is started and then the carriage 82 is moved to the feeding position at the time when the conveyance motor 91 is backwardly rotated by a pulse number XP. This step is performed in order to smoothly operate the stopper 41, which has been depressed, when it is rotated by swing the pendulum 39 using to a neutral position, where the regulation by the stopper is released, through the drive of the conveyance motor 91, thereby to move the carriage 82 from the feeding trigger position.
By the rotation of the stopper 41, the engagement state of the first regulation portion 41b of the stopper 41 with the first engagement portion 39b of the pendulum 39 is removed, i.e., the regulation by the pendulum 39 is removed. For this reason, the pendulum 39 is swung, whereby the feed roller roller gear 19 and the backward rotation planet gear 36 are engaged with each other to start the separation/feeding operation of the sheets 2.
The driving state of the driving mechanism 8 at this time is shifted in the order of
When the registration is performed, the conveyance motor 91 is forwardly rotated in Step 106 by a pulse number CP after the sheet end detection sensor 97 detects the sheet 2 leading end, and then is stopped. The pulse number CP is calculated according to the following equation:
CP=CP0+(BP−BP0)×γ,
wherein CP0 represents a calculatory pulse number of the conveyance roller 30 in a period from the detection position by the sheet end detection sensor 97 to the registration by forcedly conveying the sheet leading end in the nip portion 99; BP0 represents a calculatory pulse number of the conveyance roller 30 in period from an open state (“OPEN”), in which the feeding (state) sensor 38 is open without light-interrupted by the first and second light-interrupting portions (shield portions), to the sheet 2 leading end detection; BP represents an actual pulse number of the conveyance motor in a period from the OPEN of the feeding sensor 37 to the detection of the sheet 2 leading end; γ represents a ratio between a conveyance distance between the detection position of the sheet 2 and a conveyance distance after the detection position.
Accordingly, even if the slippery sheet 2 is fed, an amount of slippage is calculated from the difference between the pulse number BP0 (which are pulse numbers in a period up to the leading end detection of the sheet 2 by the sheet end detection sensor 97) and based on the slippage amount the pulse number of the conveyance motor 91 in the state after the sheet 2 leading end is detected is corrected. As a result, it becomes possible to stabilize an amount of the sheet 2 leading end which is forcedly conveyed into the nip portion 99 at the time of the registration, thus stabilizing a registration performance.
If, at this time, the pulse number (BP+CP) of the conveyance motor 91 from the light interrupted state (“CLOSE”) of the feeding sensor 38 by the second shield portion 56b to the open state (i.e., CLOSE→OPEN), is smaller than a pulse number QP of the conveyance motor 91 required to rotate the control gear 24 so that its third tooth-less portion 52b to a position opposite to the feed roller gear 19 after the feeding sensor 38 is placed in the open state by the second shield portion 56b, the rotation positions of the control gear 24 and the control cam 34 are not their normal positions. As a result, there is a possibility that the sheet 2 is not normally fed in a subsequent feeding operation. For this reason, in such a case, a so-called sheet jam error message is displayed on a display portion (not shown) provided to the recording apparatus 1 in Step 111, and the recording operation is terminated.
When the sheet end detection sensor 97 is not placed in the ON state at the time of sheet feeding, the sequence is shifted from Step 105 to Step 107. In Step 107, the pulse number of the conveyance motor 91 is judged whether it is larger than a set maximum pulse number MAX or not.
In the case where the sheet end detection sensor 97 is not placed in the ON state even hen the pulse number of the conveyance motor 91 exceeds the set maximum pulse number MAX, the sequence is shifted to Step 108 in which retry and no-sheet error sequences are performed. If the pulse number of the conveyance motor 91 is smaller than the MAX, the sequence again goes into Step 105 in which the judgment on whether the sheet 2 leading end is detected or not is performed.
The sequence of retry and no-sheet error will be explained with reference to
As shown in
Next, in Step 179, by the movement of the carriage 82 to the feeding trigger position, the cam portion 82a of the carriage 82 depresses the working portion 41a of the stopper 41. In this state, the conveyance motor 91 is forwardly rotated by a pulse number ZP in Step 180.
By the forward rotation of the conveyance motor 91 by the pulse number ZP, the pendulum is swung to engage the forward rotation planet gear 35 with the first gear portion 24a of the control gear 24, so that the control cam 24. The control cam 34 is rotated until the driving force from the conveyance motor 91 is interrupted by the first tooth-less portion 51 of the control gear 24, and is stopped at the standby state of the feeding mechanism 8.
Thereafter, in Step 108, judgment on whether retry flag RF=0 or not is performed. If the retry flag RF is “0”, the retry flag RF is set to “1” in Step 185, and then the feeding operation is started again in Step 186.
If the retry flag RF is “1”, the retry flag RF is set to “0” in Step 182, and in Step 183, a so-called no-sheet error message is displayed at the display portion of the recording apparatus 1 or a host computer. The retry and no-sheet error sequence is completed in Step 184.
After the leading end of the sheet 2 is detected and the registration is performed by the sequence up to the above-mentioned Step 110, the driving mechanism is placed in the driving state shown in
5-2 (Special Paper Feeding)
A sequence of special paper feeding will be described with reference to
As shown in
After the registration of the sheet 2 is performed, in Step 131, the forward rotation of the conveyance motor 91 is started and after the conveyance motor 91 is forwardly rotated by the pulse number XP in order to move the pendulum 39 to the neutral position, the carriage 82 is moved to the feeding trigger position.
The ca portion 82a of the carriage 82 moved to the feeding trigger position presses the working portion 41a of the stopper downwardly to remove the engagement state of the second regulation portion 41c of the stopper 41 with the second engaging portion 39e of the pendulum 39, i.e., the regulation on the pendulum 39. For this reason, the pendulum 39 is swung, whereby the forward rotation planet gear 35 is engaged with the first gear portion 24a of the control gear 24 to rotationally drive the control cam 34 through the rotation of the control gar 24.
Next, in Step 132, the feeding sensor 38 is judged whether it is light-interrupted (i.e., CLOSE) by the first shield portion 56a of the control gear 24 or not. In the case where the feeding sensor 38 detects CLOSE, the sequence goes into Step 133, but if CLOSE is not detected by the feeding sensor 38, the sequence goes into Step 134. Steps 134 and 135 are performed in the same manner as the above-described Steps 107 and 111, respectively.
In Step 133, after the feeding sensor 38 detects CLOSE→OPEN due to the presence and absence of the first shield portion 56a of the control gear, the conveyance motor 91 is driven by a pulse number FP and stopped (the driving state shown in
Thereafter, as described in the operation explanation, the conveyance motor 91 is backwardly rotated to move the pendulum 39 to the neutral position, and the driving force transmission to the control gear 24 is interrupted. Then, the carriage 82 is moved to the feeding position, and the conveyance motor 91 is forwardly rotated to convey the sheet 2 to the recording start position. At this time, a pulse numbers for rotating the conveyance motor 91 forwardly and backwardly is determined on the basis of a pulse number GP for forwardly rotating the conveyance motor 91 after the registration and a pulse number WP of the conveyance motor 91 for conveying the sheet 2 to the recording start position.
Accordingly, in Step 136, judgment on whether GP≧WP or not is made. If GP≧WP, the sheet 2 is conveyed ahead of the recording start position, so that the sequence is shifted to Steps 137 and 138 wherein the conveyance motor 91 is forwardly rotated by a pulse number IP after rotated backwardly by a pulse number (GP−WP+IP). The forward rotation of the conveyance motor 91 by the pulse number IP is performed in order to remove backlash of the gear. The conveyance motor 91 is rotated forwardly by the pulse number IP after backwardly rotated excessively by the pulse number IP. If GP<WP, the sequence goes into Steps 141 and 142 in which, in order to move the pendulum 39 to the neutral position, the conveyance motor 91 is forwardly rotated by the pulse number (WP−GP+IP) after backwardly rotated by a pulse number IP.
The sheet 2 is conveyed to the recording start position by the forward rotation of the conveyance motor 91 in Steps 138 and 142. After the recording is effected in Step 139, the discharge sequence described hereinafter is performed in Step 143, and then in Step 144, the recording operation is completed.
5-3 (Registration-less Feeding)
A sequence of registration-less feeding will be described with reference to
As shown in
In the case where the sheet end detection sensor 97 is judged that it is in the ON state in Step 155, the conveyance motor 91 is once stopped by rotating forwardly it by a pulse number JP after the detection of the sheet 2 leading end. The pulse number JP is set to be smaller than a pulse number for conveying the leading end of the sheet 2 from the detected position to the nip portion 99, so that the sheet 2 leading end is stopped before the nip portion 99. Further, in Step 155, if the sheet end detection sensor 97 is judged that it is not in the ON state, the sequence goes into Steps 157 and 158 which are performed in the same manner as in the Steps 107 and 108 described above.
Thereafter, as described in the operation explanation, the conveyance motor 91 is backwardly rotated to move the pendulum 39 to the neutral position, and the driving force transmission to the control gear 24 is interrupted. Then, the carriage 82 is moved to the feeding position, and the conveyance motor 91 is forwardly rotated to convey the sheet 2 to the recording start position. At this time, a pulse numbers for rotating the conveyance motor 91 forwardly and backwardly is determined on the basis of a predetermined pulse number JP and a pulse number WP of the conveyance motor 91 for conveying the sheet 2 to the recording start position.
Accordingly, in Step 164, judgment on whether G≧WP or not is made. If JP≧WP, the sheet 2 is conveyed ahead of the recording start position (i.e., the recording start position is located upstream from the leading end position of the sheet 2 in the conveyance direction), so that the sequence is shifted to Steps 165 and 166 wherein the conveyance motor 91 is forwardly rotated by a pulse number IP after rotated backwardly by a pulse number (JP−WP+IP). If JP<WP, the sequence goes into Steps 168 and 169 in which, in order to move the pendulum 39 to the neutral position, the conveyance motor 91 is forwardly rotated by the pulse number (WP−JP+IP) after backwardly rotated by a pulse number IP.
The sheet 2 is conveyed to the recording start position by the forward rotation of the conveyance motor 91 in Steps 166 and 169. After the recording is effected in Step 167, the discharge of the sheet fed depending on its material is performed toward outside the recording apparatus 1 by the discharge sequence described below is performed in Step 170, and then in Step 171, the recording operation is completed.
Next, the discharge sequence will be described with reference to
As shown in
In the case where the sheet end detection sensor 97 is in the ON state, the sequence goes into Steps 194 and 195, the sheet 2 is conveyed by rotating the conveyance motor 91 forwardly to wait a state that the sheet end detection sensor 97 is placed in the OFF state.
At the time of input of the discharge instruction, in the case where the sheet end detection sensor 97 is judged that it is not in the ON state but is already in the OFF state, the sequence goes into Step 195 in which a pulse number of the conveyance motor 91 from the OFF state of the sheet end detection sensor 97 is set to EP.
After the sheet end detection sensor 97 is judged on whether it is in the OFF state or not in Step 195 and the sheet end detection sensor 97 is placed in the OFF state, the sequence goes into Steps 196 and 199, wherein the conveyance motor 91 is stopped after driving it by a pulse number DP which is equal to the pulse number EP (EP=DP). In the case where the sheet end detection sensor 97 is not in the OFF state, the sequence is shifted into Steps 197 and 198 which are performed in the same manner as in the Steps 107 and 111 described above.
Thereafter, the sequence is goes from the Steps 195 and 199 into Step 200 in which the carriage 82 is moved to the feeding trigger position. In Step 201, the conveyance motor 91 is forwardly rotated by a pulse number (FP−EP) to effect discharge of the sheet 2, and the sequence is completed in Step 202.
At that time, the working portion 41a of the stopper 41 is depressed by the cam portion 82a of the carriage 82 moved to the feeding trigger position, so that the driving force of the conveyance motor 91 is transmitted to the control gear 24. Further, the control cam 34 is rotated until the transmission of the driving force from the conveyance motor 91 is interrupted by the first tooth-less portion 51 of the control gar 24, and is stopped after being further rotated up to the standby state.
Finally, a sequence at the time of power-on of the recording apparatus 1 will be explained with reference to
As shown in
After performing the phase alignment of the conveyance motor 91, in order to prevent the pendulum to hinder the rotation of the stopper 41 thereby to place the carriage in an immovable state, in Step 214, the conveyance motor 91 is forwardly rotated by a pulse number MP to move the pendulum 39 to the neutral position and then in Step 215, the carriage motor is driven to move the carriage to the home position.
Thereafter in Step 216, the carriage 82 is moved to the feeding trigger position and in Step 217, the conveyance motor 91 is rotated forwardly. In the case where the driving mechanism 8 is not in the standby state during the forward rotation of the conveyance motor 91, the driving force is transmitted to the control gear 24 to actuate the control cam 34.
In Step 218, the feeding sensor 38 is judged on whether it is CLOSE or not. If the feeding sensor is not CLOSE, the sequence is shifted into Step 220. In Step 220, a pulse number of the conveyance motor 91 is judged whether it is larger than a set maximum pulse number MAX or not. If the pulse number of the conveyance motor 91 is larger than MAX, the sequence goes into Step 221. If the pules number of the conveyance motor 91 is smaller than MAX, the sequence is returned to Step 218 again.
In the case where the movement of the first shield portion 56a of the control gar 24 is started from the position before the feeding sensor 38, in Step 219, the conveyance motor 91 is driven by a pulse number KP after the detection of CLOSE→OPEN of the feeding sensor 38, whereby the second tooth-less portion 52a of the control gear 24 is stopped at a position opposite to the feed roller gear 19. This operation is performed in order not to rotate the control gear 24 when the feed roller gear 19 is rotated together with the feed roller 11 for conveying the sheet 2 in the case where the sheet 2 is located at the nip portion 99 between the conveyance roller 30 and the roller 29 driven by the rotation of the conveyance roller 30.
In the case where the movement of the first and second shield portions 56a and 56b of the control gear 24 is started or where the driving mechanism 8 is in the standby state, the transmission of the driving force to the control gear 24 is interrupted at a position, at which the forward rotation planet gear 35 is opposite to the first tooth-less portion 51 of the control gear 24, unless the sheet 2 is located at the nip portion 99. Thus, the initializing operation of the driving mechanism 8 is performed.
If the sheet 2 is located at the nip portion 99, the control gear 24 which is stopped at the standby position of the driving mechanism 8 by dragging the feed roller 11 by the sheet 2, is rotated by the feed roller gear 19. However, thereafter, the control gear 24 is moved similarly as in the case where the movement of the first shield portion 56a is started from the position before the feeding sensor 38.
At the time when the conveyance motor 91 is stopped, the sheet end detection sensor 97 is confirmed. If the sheet end detection sensor 97 is in the ON state in Step 221, the sequence goes into Steps 222 and 223, in which the conveyance motor 91 is backwardly rotated by a pulse number IP to move the pendulum 39 to the neutral position and, the carriage is moved to the feeding position after the conveyance motor 91 is forwardly rotated by the pulse number XP, thus performing the discharge sequence.
In the case where the sheet end detection sensor 97 is in the OFF state in Step 221, the sequence goes into Step 224, in which the conveyance motor 91 is rotated forwardly by the pulse number NP, whereby the first tooth-less portion 51 of the control gear 24 is rotated up to the position opposite to the forward rotation planet gear 35 to effect the initializing operation of the driving mechanism 8. Thereafter, the sheet end detection sensor 37 is in the OFF state, the sequence goes into Step 226 and is completed. If the sheet end detection sensor 97 is in the ON state, the sequence goes into 223, in which the discharge sequence is effected.
As described hereinabove, according to the recording apparatus 1 of this embodiment, the driving mechanism 8 includes the control gear 24 provided with the first and second shield portions 56a and 56b to be detected by the feeding sensor 38, thus allowing the detection of the control gear 24 with reliability.
Further, according to the recording apparatus 1, by including therein the feeding portion (means) 4 provided with the driving mechanism 8, the separating operation and the conveying operation is switched during the feeding operation while ensuring a stability of the separating/feeding operation, whereby the recording apparatus 1 is capable of conforming to various sheet specifications and reducing an undesired resistive force imparted to the sheet.
Further, according to the recording apparatus 1, it becomes possible to arbitrarily set a possible conveyance length of the sheet 2, thus improving a latitude in design of the entire recording apparatus 1. Further, the recording apparatus 1 can reduce its size as a whole and is capable of switching between the registration mode and the registration-less mode by a simple and inexpensive mechanism. It is also possible to reduce the load on the conveyance roller at the time of conveying the special paper.
As described hereinabove, according to the recording apparatus of the present invention, while ensuring the stability of the separating/feeding operation, the undesirable resisting force imparted to the sheet can be reduced by switching between the separating operation and the conveying operation. Further, it becomes possible to arbitrarily set the possible conveyance length and to reduce the entire apparatus size.
Further, according to the recording apparatus of the present invention, by a simple and inexpensive structure, it becomes possible to switch between the registration mode and the registration-less mode. Further, it is possible to realize compatibly the ordinary (plain paper) feeding mode and the special paper mode for further reducing the load on drive.
Number | Date | Country | Kind |
---|---|---|---|
2002-166626 | Jun 2002 | JP | national |
2002-237432 | Aug 2002 | JP | national |
2002-253560 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4025187 | Taylor et al. | May 1977 | A |
4627607 | Ishii | Dec 1986 | A |
4822023 | Miyoshi | Apr 1989 | A |
4844638 | Kagami et al. | Jul 1989 | A |
4852868 | Fukui et al. | Aug 1989 | A |
5129642 | Svyatsky et al. | Jul 1992 | A |
5316285 | Olson et al. | May 1994 | A |
5386983 | Ando | Feb 1995 | A |
5648807 | Saito et al. | Jul 1997 | A |
5655762 | Yergenson | Aug 1997 | A |
5697603 | Kato | Dec 1997 | A |
5725208 | Miyauchi | Mar 1998 | A |
5738453 | Tsuburaya et al. | Apr 1998 | A |
5882004 | Padget | Mar 1999 | A |
5899613 | Koike et al. | May 1999 | A |
5901951 | Yamaguchi | May 1999 | A |
5902058 | Koike et al. | May 1999 | A |
5947465 | Kato et al. | Sep 1999 | A |
5984300 | Nishiberi | Nov 1999 | A |
5996990 | Kawashima | Dec 1999 | A |
6000689 | Furuki et al. | Dec 1999 | A |
6059281 | Nakamura et al. | May 2000 | A |
6142467 | Funada | Nov 2000 | A |
6217017 | Yamazaki | Apr 2001 | B1 |
6224052 | Nagano | May 2001 | B1 |
6331002 | Yoshino et al. | Dec 2001 | B1 |
6378858 | Suga | Apr 2002 | B1 |
6382857 | Yanagi et al. | May 2002 | B1 |
6467767 | Yano | Oct 2002 | B1 |
6536759 | Takada | Mar 2003 | B1 |
6547237 | Sugino et al. | Apr 2003 | B1 |
6824132 | Asai et al. | Nov 2004 | B1 |
6877738 | Sonoda et al. | Apr 2005 | B1 |
6896253 | Hanabusa | May 2005 | B1 |
20010030763 | NIshiberi et al. | Oct 2001 | A1 |
20020171193 | Asai et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
0 271 844 | Jun 1988 | EP |
0 466 171 | Jan 1992 | EP |
0 495 109 | Jul 1992 | EP |
0 529 538 | Mar 1993 | EP |
0 888 989 | Jan 1999 | EP |
1 053 961 | Nov 2000 | EP |
1 215 147 | Jun 2002 | EP |
7-137872 | May 1995 | JP |
7-206198 | Aug 1995 | JP |
10-181904 | Jul 1998 | JP |
11-190410 | Jul 1999 | JP |
11-193141 | Jul 1999 | JP |
2001-302019 | Oct 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040041331 A1 | Mar 2004 | US |