The present invention relates to a sheet feeding apparatus for feeding sheets loaded in a bundle on a loading tray one by one.
As an image formation processing system such as a printer or a copier, there is known a system in which a sheet feeding apparatus is externally mounted to an image processing apparatus. As the sheet feeding apparatus, there is known one configured to successively convey sheets loaded on a loading tray provided in a storage one by one to the image processing apparatus. In the sheet feeding apparatus, the loading tray is lifted to a delivery position at which the upper surface of a sheet bundle on the loading tray contacts a delivery roller, and the sheets are delivered at the delivery position one by one by the delivery roller toward an image forming section.
The sheet feeding apparatus is provided with an upper surface detecting sensor that detects the position of the upper surface of a sheet. Based on a detection result from the upper surface detecting sensor, lifting of the loading tray is controlled such that the uppermost surface of the sheet bundle is moved to the delivery position. Sheets of a various sizes can be loaded on the loading tray. The positions of a sheet side regulating plate and a sheet rear end regulating plate can be moved according to the size of sheets loaded on the loading tray.
When setting small-sized sheets on the loading tray in such a sheet feeding apparatus, a user often erroneously moves the rear end regulating plate to a position different from the rear end position of the small-sized sheets. At this time, the upper surface detecting sensor is disposed at a position corresponding to all sheet sizes, so that if a sheet set position is a position that cannot be detected by the upper surface detecting sensor, the loading tray continues lifting even after the uppermost sheet of the set sheet bundle exceeds the delivery position, with the result that the upper surface of the uppermost sheet runs into a ceiling in the sheet supply apparatus, which may cause damage to the sheet, breakage of parts, or the like.
First and second detecting members that detect a sheet or an object lifted beyond a delivery position at which the sheet is delivered is provided, and the second detecting member is configured to be activated in conjunction with activation of the first detecting member. Thus, with a simple configuration, it is possible to detect, over a wide area above a sheet loading section, a sheet or an object placed at a wrong position.
Hereinafter, a sheet feeding apparatus according to the present invention will be described based on an embodiment while referring to the accompanying drawings. The drawings schematically illustrate the sheet feeding apparatus, members constituting the sheet feeding apparatus, and peripheral members of the sheet feeding apparatus, so that actual dimensions and actual dimensional ratios of the members do not necessarily coincide with those in the drawings. Further, unless otherwise specified, the direction (vertical direction, etc.) of the sheet feeding apparatus is defined based on the direction of the sheet feeding apparatus illustrated in
A sheet bundle composed of a plurality of stacked sheets S is loaded on the loading tray 28. The loading tray 28 is lifted with the sheet bundle loaded thereon by the lifting mechanism. A sheet feed path 32 from the loading tray 28 is connected to the conveying mechanism 26 of the image forming apparatus 12, thereby allowing image formation processing to be carried out. The detecting mechanism (detecting section) 30 is provided above the loading tray 28 and configured to detect a foreign matter in the loading tray 28 during lifting of the loading tray 28. In the present specification, a sheet having a size different from that of a sheet intended to be loaded on the loading tray 28 and a sheet placed in a position different from an appropriate loading position are also included in the foreign matter (abnormal object). That is, not only an object other than the sheet loaded on the loading tray 28, but also the sheet itself can be counted as a foreign matter.
The sheet feeding apparatus 14 includes a sheet feeding section constituted of a delivery roller 36 and a sheet separation mechanism 38 and a conveying roller pair 40. The lifting mechanism 70 is constituted of a pinion 72 provided at a side portion of the loading tray 28 and a rack 73 provided along a side plate of the sheet feeding apparatus 14. The pinion 72 is driven by a lifting motor to be rotated forward and backward, whereby the loading tray 28 is lifted and lowered. In the present embodiment, the lifting mechanism 70 is constituted of the rack 73 and the pinion 72; however, it may have a configuration commonly used. For example, wires may be used to suspend the loading tray. In this case, the wires are attached to the side portion of the loading tray 28, and the wires are wound up to lift the loading tray 28.
When the loading tray 28 is lifted, the uppermost sheet S of the sheet bundle loaded on the loading tray 28 contacts the delivery roller 36 at a delivery position where the sheet S is delivered. When delivery roller 36 is moved up by contact between the sheet S and the delivery roller 36, a delivery position detecting sensor 37 which is a sheet upper surface detecting section provided near the delivery roller and configured to detect the uppermost sheet S of the sheet bundle loaded on the loading tray 28 detects that the uppermost sheet S is located at a predetermined position where it contacts the delivery roller 36, and the control section recognizes the detection. The delivery position detecting sensor 37 is an optical sensor including a light-receiving element and a light-emitting element and is attached to an upper plate 58. The delivery position detecting sensor 37 detects swinging of a flag provided in a holder of the delivery roller 36 to thereby detect the contact between the uppermost sheet S and the delivery roller 36. Based on a detection result from the delivery position detecting sensor 37, the lifting mechanism 70 lifts the loading tray 28 so as to move the uppermost sheet S to the delivery position.
An upper limit detecting sensor 41 is provided at a position higher than the delivery position detecting sensor 37. The upper limit detecting sensor 41 is an optical sensor including a light-receiving element and a light-emitting element and is attached to the upper plate 58 of the apparatus casing. The upper limit detecting sensor 41 detects that the flag provided in the holder of the delivery roller 36 is swung by an upward movement of the delivery roller 36 due to contact between the uppermost sheet S of the sheet bundle loaded on the loading tray 28 and the delivery roller 36. The upper limit detecting sensor 41 prevents breakage of the sheet feeding apparatus 14 due to malfunction of the delivery position detecting sensor 37 or control section. The upper limit detecting sensor 41 detects the uppermost sheet S of the sheet bundle at a position higher than the position of the uppermost sheet S of the sheet bundle detected by the delivery position detecting sensor 37.
The detecting mechanism 30 is disposed above the delivery position and configured to detect a sheet or an object (object other than the sheet) on the loading tray 28. The upper surface position of the sheet at which the delivery roller 36 abuts against the upper surface of the uppermost sheet S is lower than the upper surface position of the sheet S detected by the delivery position detecting sensor 37. The upper surface position of the sheet S detected by the delivery position detecting sensor 37 is lower than the upper surface position (delivery position) of the sheet S to be delivered. The upper surface position (delivery position) of the sheet S to be delivered is lower than the upper surface position of the sheet S detected by the upper limit detecting sensor 41. The upper surface position of the sheet S detected by the upper limit detecting sensor 41 is lower than the upper surface position of a foreign matter detected by the detecting mechanism 30.
The sheet separation mechanism 38 is constituted of a feeding roller 42 and a separating roller 44 and is provided on the upstream side of the sheet feed path 32 directed toward the image forming apparatus 12. In the sheet separation mechanism 38, the sheets S delivered from the loading tray 28 by the delivery roller 36 are pinched one by one by the feeding roller 42 and the separating roller 44 and conveyed toward the conveying roller pair 40. A separation guide plate 48 for guiding the sheet S delivered by the delivery roller 36 between the feeding roller 42 and the separating roller 44 is provided between the delivery roller 36 and the sheet separation mechanism 38.
The second swing member 52 is moved at least partially in conjunction with movement of the first swing member 50. For example, the second swing member 52 is swung due to abutment with the sheet S or an object (foreign matter F) and in conjunction with the swinging of the first swing member 50. The regulating member 54 is provided so as to regulate lowering of the first swing member 50 from a predetermined position. The regulating member 54 can be moved up together with the first swing member 50. The detecting sensor 56 detects movement of the second swing member 52. For example, the detecting sensor 56 detects swinging of the second swing member 52.
The operation of the detecting mechanism 30 will be described in detail. The first swing member 50 is partially moved up with upward movement of the foreign matter F. More specifically, with the upward movement of the foreign matter F, the first swing member 50 is rotated upward within a certain angle range about a rotary shaft provided in one end part 50a. The first swing member 50 is turnably axially supported at the one end part 50a, and the other end part 50b thereof is a free end suspended downward. That is, the first swing member 50 has the axially supported one end part 50a and the other end part 50b which is a free end extending in the delivery direction of the sheet S from the one end part 50a. The first swing member 50 has a V-shaped, U-shaped, or laid-down U-shaped bar-like member (wire, etc.) having an opening part 50p. Thus, the first swing member 50 can be widened in its detection range and can have a light-weight and rigid structure.
In the opening part 50p, end portions of the bar-like member protrude so as to be opposed to each other, and the protruding portions serve as the rotary shaft. Thus, it is possible to easily produce the first swing member 50 capable of smoothly rotating. Further, as illustrated in
As illustrated in
The second swing member 52 is rotated in conjunction with upward rotation of the first swing member 50. For example, one end part 52a of the second swing member 52 is turnably axially supported, and the other end part 52b is a free end suspended downward. The first swing member 50 functions as a second regulating member 50 that regulates movement of the suspended second swing member 52 at a predetermined position. That is, the second swing member 52 has the axially supported one end part 52a and the other end part 52b which is a free end extending in the delivery direction of the sheet S from the one end part 52a. The first and second swing members 50 and 52 are disposed such that the one end part 52a of the second swing member 52 overlaps the other end part 50b of the first swing member 50 as viewed from above.
The second swing member 52 is provided with a rotary shaft 53 and a sensor flag 55. The second swing member 52 has the first end part 52a and the second end part 52b positioned on the side opposite to the first end part 52a with the rotary shaft 53 interposed therebetween. The sensor flag 55 is provided at the second end part 52b. The first end part 52a is rotated upward within a certain angle range in conjunction with upward movement of the first swing member 50. The sensor flag 55 is rotated downward in a certain angle range in conjunction with the upward movement of the first swing member 50. The detecting sensor 56 detects upward movement of the first end part 52a of the second swing member 52, i.e., downward rotation of the sensor flag 55.
The second swing member 52 is formed of a resin plate-like member elongated in the width direction of the sheet S. When the detecting mechanism 30 is not activated, the second swing member 52 is put in a state where the first end part 52a is positioned downward, and the sensor flag 55 is positioned upward so as not to be detected by the sensor 56, as illustrated in
As illustrated in
The first end part (contact part) 52a of the second swing member 52 and the other end part (contact part) 50b of the first swing member 50 are moved up in conjunction with each other. In the present embodiment, the first end part 52a of the second swing member 52 is placed on the other end part 50b of the first swing member 50. That is, when the first swing member 50 is moved up, the other end part 50b of the first swing member 50 contacts and moves up the first end part 52a of the second swing member 52. The mechanism for moving up the second swing member 52 together with the first swing member 50 is not limited to the above configuration where the first end part 52a of the second swing member 52 is placed on the other end part 50b of the first swing member 50. For example, a link mechanism may be adopted, in which a shaft is inserted through elongated holes formed in the other end part 50b of the first swing member 50 and the first end part 52a of the second swing member 52 to link upward and downward movement between the first and second swing members 50 and 52.
The regulating member 54 regulates downward movement of the second swing member 52 at a position higher than the delivery position at which the sheet S is delivered by the delivery roller 36. The regulating member 54 regulates movement of the suspended first swing member 50 at a predetermined position. The regulating member 54 that regulates movement of the first swing member 50 also serves as the third swing member extending in a direction crossing the delivery direction of the sheet S. The regulating member 54 is swung due to abutment with the sheet S or an object (foreign matter F) to contact and swing the first swing member 50.
In the present embodiment, the regulating member 54 is formed of a bar-like member (wire, etc.) rotated within a certain angle range about an opening part 54p. The bar-like member supports the first swing member 50 from below. As illustrated in
With reference to
When the foreign matter F contacts the second swing member 52 to rotate the second swing member 52 so as to move up the first end part 52a, the sensor flag 55 is rotated downward, and the downward movement of the sensor flag 55 is detected by the detecting sensor 56. Based on a detection signal from the detecting sensor 56, the control section stops lifting of the loading tray 28. When the foreign matter F contacts the regulating member 54 to rotate it upward, downward movement of the sensor flag 55 is detected by the detecting sensor 56 through rotations of the respective first and second swing members 50 and 52, as described above. Based on a detection signal from the detecting sensor 56, the control section stops lifting of the loading tray 28. In this manner, the foreign matter F in the loading tray 28 is detected by the detecting mechanism 30, and the lifting of the loading tray 28 is stopped. That is, the sheet feeding apparatus 14 stops the lifting mechanism 70 according to a detection result from the detecting sensor 56.
The delivery roller 36, the first swing member 50, the second swing member 52, and the regulating member 54 are arranged such that the sheet S of an intended size loaded on an appropriate position or foreign matter F contacts at least one of the delivery roller 36, the first swing member 50, the second swing member 52, and the regulating member 54 when the loading tray 28 is lifted. In the present embodiment, the delivery roller 36 is disposed frontmost, and the first swing member 50 is disposed at the rear of the delivery roller 36. The regulating member 54 is disposed in the middle of the first swing member 50 in the front-rear direction so as to overlap the first swing member 50. The second swing member 52 is disposed at the rear of the first swing member 50 such that the first end part 52a of the second swing member 52 overlaps the other end part 50b of the first swing member 50 from above.
In the present embodiment, the length of the first swing member 50 from the one end part 50a to the other end part 50b is made larger than the length of the second swing member 52 from the first end part 52a to second end part 52b. The length of the first swing member 50 from the one end part 50a to the other end part 50b refers to the horizontal distance of the first swing member 50 in the front-rear direction in a state where the detecting mechanism 30 is not activated. Similarly, the length of the second swing member 52 from the first end part 52a to the second end part 52b refers to the horizontal distance of the second swing member 52 in the front-rear direction in a state where the detecting mechanism 30 is not activated. In other words, the length of the second swing member 52 in the delivery direction is made smaller than the length of the first swing member 50 in the delivery direction.
As illustrated in
Operation of the loading tray 28 will be described based on the flowchart of
When the delivery position detecting sensor 37 is not activated even after the lifting of the loading tray 28, but, instead, the upper limit detecting sensor 41 is activated (ON), it is determined that the delivery position detecting sensor 37 cannot detect the uppermost sheet S due to a failure thereof even though the uppermost sheet S contacts the delivery roller 36, and the lifting of the loading tray 28 is stopped. This can prevent breakage of the sheet feeding apparatus 14.
As illustrated in
In the above embodiment, when the presence of the foreign matter F is determined, the loading tray 28 is lowered by a predetermined amount. However, the type of the foreign matter F is not known. Thus, when the sheet feeding apparatus 14 is made to perform some action (lowering of the loading tray 28, etc.) without confirming the type of the foreign matter F, serious breakage of the sheet feeding apparatus 14 may be caused. In such a case, the control section performs processing so as not to allow a user of the image formation processing system 100 to recover the sheet feeding apparatus 14 but to allow only an administrator or a repair agent to recover the sheet feeding apparatus 14.
With reference to
This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2016-251779, filed Dec. 26, 2016, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2016-251779 | Dec 2016 | JP | national |