The present invention relates to a sheet feeding device for feeding a sheet and an image forming apparatus.
The sheet size detecting device disclosed in Patent Literature 1 includes a pair of side fences, an end fence, a size detection switch, a side-fence rotating member, and an end-fence rotating member.
The size detection switch includes a plurality of push switches. The side-fence rotating member includes a plurality of first projections. The end-fence rotating member includes a plurality of second projections. The plurality of first projections and the plurality of second projections constitute a plurality of composite projections. Depending on the positions of the side fences and the end fence, different composite projections are located opposite to the push switches. Each composite projection pushes a push switch that is located opposite to the composite projection. Therefore, the size of a sheet (hereinafter “sheet size”) can be detected based on the state of the plurality of push switches. The state of the push switches refers to the combination of the states of the respective switches (ON and OFF).
Hereinafter, the side fences and the end fence are generally referred to as “fences”. The side-fence rotating member and the end-fence rotating member are generally referred to as “rotating members”.
Positions of the rotating members may slightly deviate from prescribed positions corresponding to a sheet size. The deviation from the prescribed positions may be caused by structural variation of the components, such as the size detection switch and the rotating members, or by variation in user operations of manipulating the fences. Securing the rotating members at deviated positions may result in error in sheet size detection.
To address the above, a means for correcting a securing position is provided. The securing position correcting means corrects the position of the rotating members to the prescribed positions immediately before the rotating members are secured (position correction). As a result, the positional accuracy of the rotating members improves and error in sheet size detection is prevented.
[Patent Literature 1]
Japanese Patent Application Laid-Open Publication No. 2006-188357
Unfortunately, the sheet size detecting device disclosed in Patent Literature 1 is associated with the following problems. That is, error in sheet size detection may occur due to variations in timing with which the plurality of push switches are pushed (hereinafter, “push timing”).
The variations in push timing of the plurality of push switches may result not only from the structural variation of the components such as the size detection switch and the rotating members but also often from variation in user operations of attaching a paper feed cassette. In addition, variation in user operations of attaching a paper feed cassette is assumed to be greater than variation in user operations of moving a fence.
Therefore, even though the positional accuracy of the rotating members is improved and the influence of the structural variation as well as the variation in user operations of moving a fence are reduced, push timing of the plurality of push switches may still vary due to variation in user operations of attaching a paper feed cassette. As a result, error in sheet size detection may occur.
The sheet size detection based on the state of the plurality of push switches is affected by the detection of attachment of the paper feed cassette and the settlement of the states of the plurality of push switches.
Typically, attachment of a paper feed cassette to the image forming apparatus is detected by the size detection switch. In other words, attachment of a paper feed cassette to the image forming apparatus is detected when one or more of the push switches are pushed by the paper feed cassette. Upon detection of attachment of the paper feed cassette to the image forming apparatus, a timer is activated. Upon expiry of a predetermined time period, the sheet size is detected based on the state of the plurality of push switches. Therefore, the states of the respective push switches are regarded as settled upon expiry of the predetermined time period.
However, the push timing of the plurality push switches varies. Naturally, variation also occur as to when attachment of the paper feed cassette is detected, i.e., when the timer is activated, which results in variations as to when the states of the plurality of push switches are settled. This may cause detection of the sheet size before the states of all the push switches are actually settled, which leads to error in sheet size detection. For example, the time taken from detection of attachment of the paper feed cassette to a push of the last one of the push switches may exceed a prescribed time period measured by the timer. In that case, the states of the plurality of push switches are not actually settled and thus error in sheet size detection may occur.
The present invention is made in view of the problems noted above and aims to provide a sheet feeding device and an image forming apparatus that can each restrict error in sheet size detection.
According to a first aspect of the present invention, a sheet feeding device includes a cassette receiving section, a cassette, a size detector, an attachment detector, and a controller. The cassette is detachably attached to the cassette receiving section and to be loaded with a plurality of sheets. The size detector detects a size of the sheets loaded in the cassette. The attachment detector detects attachment of the cassette to the cassette receiving section. The cassette includes a regulating member that is slidable relative to the cassette and aligns edges of the sheets. The size detector includes an interlocking member and a switch unit. The interlocking member is disposed on the cassette and includes a plurality of size-detection target portions. The interlocking member moves in conjunction with sliding of the regulating member. The switch unit is disposed on an inner wall of the cassette receiving section so as to be opposite to the cassette and includes a plurality of switches. The switch unit detects a position of the regulating member based on a state of the plurality of switches that detect the plurality of size-detection target portions. The attachment detector includes an attachment-detection target member and an attachment detecting member. The attachment-detection target member is disposed on the cassette. The attachment detecting member is disposed on the inner wall of the cassette receiving section so as to be spaced from the switch unit and opposite to the attachment-detection target member. The attachment detecting member detects the attachment-detection target member in response to attachment of the cassette to the cassette receiving section. The controller detects the size of the sheets based on a state of the switch unit in response to the attachment detector detecting attachment of the cassette to the cassette receiving section.
According to a second aspect of the present invention, an image forming apparatus includes the sheet feeding device according to the first aspect described above and an image forming section. The image forming section forms an image on a sheet fed from the sheet feeding device.
According to the present invention, the attachment detector detects attachment of the cassette independently of the size detector. Consequently, variations as to when attachment of the cassette is detected by the controller are reduced, which consequently reduces variations as to when the states of the plurality of switches are settled. This reduces the probability of the sheet size detection being carried out before the states of the plurality of switches are actually settled and therefore reduces occurrence of error in the sheet size detection.
The following describes embodiments of the present invention with reference to the accompanying drawings. In the figures, the same or corresponding parts are denoted by the same reference signs, and a description thereof is not repeated.
With reference to
The cassette 10 is detachably attached to the cassette receiving section 101. The cassette 10 is loaded with a plurality of sheets. The size detector 60 detects the size of the plurality of sheets loaded in the cassette 10. The attachment detector 30 detects attachment of the cassette 10 to the cassette receiving section 101.
The cassette 10 includes a rear-edge regulating member 11 (regulating member). The rear-edge regulating member 11 is slidable relative to the cassette 10 and aligns the rear edges of the plurality of sheets. The size detector 60 includes an interlocking member 61 and a switch unit 81. The interlocking member 61 is disposed on the cassette 10 and includes a plurality of protrusions 64 (detection target pieces). In the following description of the present specification, the protrusions 64 are referred to as the “size-detection target portions 64”. The interlocking member 61 moves in conjunction with sliding of the rear-edge regulating member 11. The switch unit 81 is disposed on an inner wall W of the cassette receiving section 101 so as to be opposite to the cassette 10.
The switch unit 81 includes a plurality of switches 82. The switch unit 81 detects the position of the rear-edge regulating member 11 by detecting the position of the interlocking member 61 based on the state of the plurality of switches 82 that detect the plurality of size-detection target portions 64. Each switch 82 is for example a microswitch. A microswitch is a miniature switch that includes a contact mechanism and an actuator. The contact mechanism is housed in a case. The contact mechanism has a short contact gap and a snap action mechanism. The actuator is located externally of the case.
The attachment detector 30 includes a detection target section 31 and a detecting section 41. In the following description of the present specification, the detection target section 31 is referred to as the “attachment-detection target member 31” and the detecting section 41 is referred to as the “attachment detecting member 41”. The attachment-detection target member 31 is disposed on the cassette 10. The attachment detecting member 41 is disposed on the inner wall W of the cassette receiving section 101 so as to be spaced from the switch unit 81 and opposite to the attachment-detection target member 31. The attachment detecting member 41 detects the attachment-detection target member 31 in response to attachment of the cassette 10 to the cassette receiving section 101. In response to the attachment detector 30 detecting attachment of the cassette 10 to the cassette receiving section 101, the controller 70 detects the sheet size based on the state of the switch unit 81.
According to Embodiment 1, the attachment detector 30 detects attachment of the cassette 10 independently of the size detector 60. Consequently, variations as to when attachment of the cassette 10 is detected by the controller 70 are reduced, which consequently reduces variations as to when the states of the plurality of switches 82 are settled. This reduces the probability of the sheet size detection being carried out before the states of the plurality of switches 82 are actually settled and therefore reduces occurrence of error in the sheet size detection.
[Structure of Cassette 10]
With reference to
The positive X axis direction is toward the front of the sheets, whereas the negative X axis direction is toward the rear of the sheets. The positive Y direction is toward the front of the cassette 10, whereas the negative Y direction is toward the rear of the cassette 10.
The cassette 10 is in a shape of a rectangular parallelepiped that is open at the top. The cassette 10 has a front end 18, a rear end 19, a pair of side ends 20, a bottom portion 21, and a panel 22. Note that
The cassette 10 includes a rear-edge regulating member 11 and a pair of side-edge regulating members 12. The cassette 10 includes a guide 23 formed therein. The guide 23 extends along the X axis. The rear-edge regulating member 11 is a plate-like member upstanding along the Z axis. The rear-edge regulating member 11 is movable along the guide 23.
The pair of side-edge regulating members 12 are plate-like members disposed opposite to each other. Each of the side edge regulating members 12 upstands along the Z axis and extends along the X axis direction. The side-edge regulating members 12 are in cooperative relation with each other and are movable toward or away from each other along the Y axis.
The cassette 10 includes a loading member 13. The loading member 13 is a plate-like member disposed on the upper surface of the bottom portion 21. The loading member 13 is in the shape of a letter U so as not to interfere with movement of the rear-edge regulating member 11. The loading member 13 has a pair of rectangular openings correspondingly to the pair of side-edge regulating members 12. The loading member 13 therefore does not interfere with movement of the pair of side-edge regulating members 12.
The loading member 13 is loaded with a plurality of sheets. More specifically, the plurality of sheets are loaded on a loading surface that is defined by the upper surface of the loading member 13 and the upper surface of the bottom portion 21. The rear-edge regulating member 11 aligns the rear edges of the plurality of sheets loaded on the loading surface. One of the side-edge regulating members 12 aligns the edges of the plurality of sheets loaded on the loading surface along one side, and the other one of the side-edge regulating members 12 aligns the edges of the plurality of the sheets loaded on the loading surface along the other side. Consequently, the size of sheets loadable into the cassette 10 is set by the rear-edge regulating member 11 and the pair of side-edge regulating members 12. The size of sheets loadable into the cassette 10 can be changed by moving the rear-edge regulating member 11 and the pair of side-edge regulating members 12.
[Lift Mechanism of Loading Member 13]
With reference to
The cassette 10 includes a shaft 16 and a plate-like lift member 17. The shaft 16 rotates according to the loading amount of a plurality of sheets. The lift member 17 abuts against the lower surface of the loading member 13, which is an opposite surface to the sheet loading surface, and rotates with the shaft 16 to lift up and down the loading member 13. More specific description is as follows.
The shaft 16 is located on the bottom portion 21 at a position downstream of the downstream end of the rear-edge regulating member 11 in terms of the feed direction B. The shaft 16 penetrates through the rear end 19 along the Y axis. The lift member 17 is located between the bottom portion 21 and the loading member 13. The lift member 17 is located downstream of the downstream end of the rear-edge regulating member 11 in terms of the feed direction B.
An upstream end of the lift member 17 in terms of the feed direction B is secured to the shaft 16. A downstream end of the lift member 17 is a free end. The lift member 17 thus rotates in conjunction with rotation of the shaft 16. The shaft 16 is coupled to a motor (not illustrated) as a driving source. The motor rotates the shaft 16 and the lift member 17 under control of the controller 70 (see
When the shaft 16 rotates in a rotation direction R (see
When the shaft 16 rotates in the reverse direction of the rotation direction R, the lift member 17 rotates in a direction corresponding to the reverse rotation direction. Consequently, the downstream end of the lift member 17 descends while in abutment against the lower surface of the loading member 13. In other words, the loading member 13 rotates on the shaft 15 to lift down the downstream end of the loading member 13.
When the loading amount of sheets is large, the lower surface of the loading member 13 is in contact with the upper surface of the bottom portion 21 and the loading member 13 is held substantially horizontal. As the loading amount of sheets decreases, the shaft 15 rotates in the rotation direction R. Consequently, the downstream end of the lift member 17, as well as the downstream end of the loading member 13, ascends to tilt the loading member 13. In other words, the tilt angle of the loading member 13 increases with a decrease in the loading amount of sheets.
[Structure of Attachment Detector 30]
With reference to
The attachment-detection target member 31 of the attachment detector 30 is disposed on the cassette 10. More specially, the attachment-detection target member 31 is disposed at the end of the shaft 16. The attachment-detection target member 31 rotates in conjunction with rotation of the shaft 16. In other words, the attachment-detection target member 31 rotates integrally with the shaft 16. The attachment detecting member 41 is disposed on the image forming apparatus 100. The attachment detecting member 41 detects the attachment-detection target member 31. According to Embodiment 1, the attachment detecting member 41 detects the attachment-detection target member 31 blocking an optical path. In other words, the attachment detecting member 41 detects blocking of the optical path by the attachment-detection target member 31 upon attachment of the cassette 10 to the cassette receiving section 101. Additionally, when detecting the loading amount of sheets, the attachment detecting member 41 detects that the optical path is blocked by the attachment-detection target member 31 being rotated in conjunction with rotation of the shaft 16. The following provides a more specific description.
As shown in
The attachment detecting member 41 includes a plurality of sensors, a sensor table 44, and a support table 45. The plurality of sensors 42 are arranged along the rotation direction of the attachment-detection target member 31. At least one of the sensors 42 detects blocking of a corresponding optical path by the attachment-detection target member 31 upon attachment of the cassette 10 to the cassette receiving section 101. Also, at least one of the sensors 42 detects blocking of a corresponding optical path by the attachment-detection target member 31 upon rotation of the attachment-detection target member 31 in conjunction with rotation of the shaft 16. According to Embodiment 1, two sensors are provided as the plurality of sensors 42. Each of the sensors 42 is for example a transmissive photointerrupter and includes a light emitter 43a and a light receiver 43b. Note that each sensor 42 may be a reflective photointerrupter. The sensors 42 are secured to the sensor table 44. The sensor table 44 is secured to the support table 45. The support table 45 is secured to the inner wall W of the cassette receiving section 101.
Each light emitter 43a emits light. Each light receiver 43b receives light emitted by the corresponding light emitter 43a. The distal end surface 33 of the attachment-detection target member 31 rotates with the shaft 16 to block or unblock the optical paths of light emitted by the individual light emitters 43a. Each of the light receivers 43b stays on while the corresponding optical path is left unblocked and goes off when the optical path is blocked.
The attachment detecting member 41 having the two sensors 42 can detect the rotation angle of the attachment-detection target member 31, that is, the rotation angle of the shaft 16, at four levels based on the state of the two sensors 42. The state of the two sensors 42 refers to the combination of the respective states of the sensors 42 (on or off). The shaft 16 rotates in conjunction with rotation of the lift member 17 and the rotation angle of the lift member 17 determines the tilt angle of the loading member 13. With a decrease in the loading amount of sheets on the loading member 13, the shaft 16 rotates in the rotation direction R to change the tilt angle of the loading member 13.
Therefore, the loading amount of sheets can be detected by detecting the rotation angle of the shaft 16. According to Embodiment 1, the rotation angle of the shaft 16 is detectable at four levels and therefore the loading amount of sheets can also be detected at four levels.
The signal indicating the state of the two sensors 42, that is, a state signal S1 indicating the state of the attachment detecting member 41, is output to the controller 70 (see
[Structure of Size Detector 60]
The structure of the size detector 60 is described with reference to
The interlocking member 61 is disposed on a lower surface 26 of the bottom portion 21 of the cassette 10. The lower surface 26 is an opposite surface of the bottom portion 21 to the upper surface (i.e., the loading surface). The interlocking member 61 has a sector portion 62 and an arm portion 63. The sector portion 62 has an arc-shaped end at which the plurality of size-detection target portions 64 are formed. The sector portion 62 has a root portion through which a shaft 65 penetrates. The shaft 65 is formed on the bottom portion 21 so as to be orthogonal to the lower surface 26.
The arm portion 63 is formed continuous with the root portion of the sector portion 62. A guide 66 is formed in the arm portion 63. The guide 66 has a slot and extends from the tip portion of the arm portion 63 in the direction of the shaft 65. The guide 66 loosely receives the bottom portion 11a of the rear-edge regulating member 11. When the rear-edge regulating member 11 moves along the guide 23, the bottom portion 11a of the rear-edge regulating member 11 moves along the guide 66. As a result, the interlocking member 61 (sector portion 62) rotates on the shaft 65.
The sector portion 62 rotates according to the position of the rear-edge regulating member 11. As a result, all or at least one of the three switches 82 are pushed by one or more of the plurality of size-detection target portions 64 or none of the three switches 82 is pushed by any of the plurality of size-detection target portions 64. The state of the three switches 82 therefore changes according to the position of the rear-edge regulating member 11. As a result, the sheet size corresponding to the position of the rear-edge regulating member 11, that is, the size of sheets loaded in the cassette 10, can be detected based on the state of the three switches 82. The state of the three switches 82 refers to the combination of the states of the respective switches 82 (pushed state or unpushed state).
A signal indicating the state of the three switches 82, i.e., a state signal S2 indicating the state of the switch unit 81, is output to the controller 70 (see
[Process of Detecting Sheet Size]
A process of detecting the size of sheets is described with reference to
In the standard state, the switch unit 81 is supported such that the distance between the abutting surface 87 of the switch unit 81 and the inner wall W of the cassette receiving section 101 is equal to a prescribed distance dl. The following provides a more specific description.
The size detector 60 has a support member 84, a pair of guide members 85, and a pair of elastic members 86 (first elastic members). Each guide member 85 is, for example, in a cylindrical shape and protrudes in the pulling direction A1 from the inner wall W. Each elastic member 86 is for example a spring. The elastic members 86 are fitted over the respective guide members 85. In other words, the elastic members 86 are disposed on the inner wall W of the cassette receiving section 101. The guide members 85 are loosely received on the support member 84 at the respective ends. Each elastic member 86 is located between the support member 84 and the inner wall W so as to be extendable and contractible in the pulling direction A1 and the insertion direction A2.
A restricting member (not shown) prohibits the support member 84 from moving beyond the prescribed distance dl in the pulling direction A1. The switch unit 81 is secured to the support member 84. In the standard state, the switch unit 81 is urged in the pulling direction A1 by the elastic members 86 while staying at the prescribed distance dl.
In
From the state shown in
The state signal S1 of the attachment detecting member 41 and the state signal S2 of the switch unit 81 are output to the controller 70 (see
After detection of attachment of the cassette 10 and the size of sheets, the controller 70 detects the loading amount of sheets based on the state signal S1 that is responsive to the amount of rotation of the attachment-detection target member 31. The plurality of switches 82, the plurality of size-detection target portions 64, the attachment-detection target member 41, and the attachment-detection target member 31 are disposed such that the attachment detecting member 41 detects the attachment-detection target member 31 after the size-detection target portions 64 push one or more of the switches 82 in the insertion direction A2 and then the outer wall 25 of the cassette 10 abuts against the abutting surface 87 upon attachment of the cassette 10 to the cassette receiving section 101.
As described with reference to
As described with reference to
As described with reference to
As described with reference to
The speed at which the cassette 10 is inserted is typically not the same for each user operation of attaching the cassette 10 and differs among individual users and environments. In addition, the speed at which the cassette 10 is inserted is often not constant and fluctuates. In addition, there may be a case where insertion of the cassette 10 is stopped temporarily after the interlocking member 61 pushes one switch 82 and then resumed to complete attachment of the cassette 10. In one such example, the cassette 10 bounces back due to initially being forcefully inserted and is then re-inserted. Typically, an attaching operation by a user affects the sheet size detection. However, Embodiment 1 can reduce the influence exerted by an attaching operation by a user on the sheet size detection.
With reference to
The sheet feeding device 1 according to Embodiment 2 differs from Embodiment 1 with respect to the structure of the attachment detector 30 and the size detector 60. According to Embodiment 1, the attachment detecting member 41 detects the attachment-detection target member 31 after at least one switch 82 among the plurality of switches 82 is pushed by the interlocking member 61 (see
[Structure of Attachment Detector 30]
The structure of the attachment detector 30 is described with reference to
[Structure of Size Detector 60]
With reference to
[Process of Detecting Sheet Size]
With reference to
In the standard state, the attachment detecting member 41 is supported such that the distance between a tip end edge 50 of the abutting portion 49 and the inner wall W of the cassette receiving section 101 is equal to a prescribed distance d3. The following provides a more specific description.
Each guide member 47 of the attachment detector 30 is, for example, in a cylindrical shape and protrudes in the pulling direction A1 from the inner wall W. Each elastic member 48 is a spring, for example. The elastic member 48 is fitted over the corresponding guide member 47. In other words, the elastic member 48 is disposed on the inner wall W of the cassette receiving section 101. The guide members 47 are loosely received on the support member 46 at the respective ends. Each elastic member 48 is located between the support member 46 and the inner wall W so as to be extendable and contractible in the pulling direction A1 and the insertion direction A2.
A restricting member (not shown) prohibits the support member 46 from moving beyond the prescribed distance d3 in the pulling direction A1. The attachment detecting member 41 is secured to the support member 46. In the standard state, the attachment detecting member 41 is urged in the pulling direction A1 by the elastic member 48 while staying at the prescribed distance d3.
In
The state signal S1 of the attachment detecting member 41 is output to the controller 70 (see
From the state shown in
The state signal S2 of the switch unit 81 is output to the controller 70 (see
After detecting attachment of the cassette 10 and the size of sheets, the controller 70 detects the loading amount of sheets based on the state signal S1 that is responsive to the rotation of the attachment-detection target member 31. The attachment detecting member 41, the attachment-detection target member 31, the plurality of switches 82, and the plurality of size-detection target portions 64 are disposed such that a size-detection target portion 64 pushes a switch 82 after the attachment detecting member 41 detects the attachment-detection target member 31 upon attachment of the cassette 10 to the cassette receiving section 101 and then the outer wall 25 of the cassette 10 abuts against the abutting portion 49 and the outer wall 25 abuts against the abutting portion 49.
As has been described with reference to
As has been described with reference to
In addition, as described with reference to
With reference to
The image forming apparatus 100 includes a sheet feeding device 1, a conveyance section 220, an image forming section 230, a fixing section 240, a discharging section 250, a document feeding section 260, an image reading section 270, an operation section 280, and a controller 70. The sheet feeding device 1 is similar to the sheet feeding device 1 according to Embodiment 1 or 2. Note that the controller 70 shown in
The operation section 280 outputs a control signal responsive to user operations to the controller 70. The user operations set various settings of the image forming apparatus 100.
The controller 70 includes for example a central processing unit (CPU) and a storage section (not shown). The storage section includes a main storage device (semiconductor memory, for example) and additionally includes an auxiliary storage device (semiconductor memory or hard disk drive, for example) depending on the specifications.
In accordance with control signals from the operation section 280 or a computer program, the controller 70 controls the sheet feeding device 1, the conveyance section 220, the image forming section 230, the fixing section 240, the discharging section 250, the document feeding section 260, the image reading section 270, and the operation section 280.
The document feeding section 260 feeds a document toward the image reading section 270. The image reading section 270 reads an image of the document to generate image data. The sheet feeding device 1 feeds a sheet P from the cassette 10 or the manual feed tray 210 to the conveyance section 220. Examples of sheets P include sheets of plain paper, recycled paper, thin paper, thick paper, coated paper, and overhead projector (OHP) film.
The conveyance section 220 conveys a sheet P to the image forming section 230. The image forming section 230 forms (prints) an image on a sheet S fed from the sheet feeding device 1 via the conveyance section 220. The image forming section 230 includes a photosensitive drum 231, a charging section 232, an exposure section 233, a development section 234, a transfer section 235, a cleaning section 236, and a static eliminating section 237. The following provides a more specific description.
The charging section 232 charges the surface of the photosensitive drum 231. The exposure section 233 exposes the surface of the photosensitive drum 231 to light based on the image data. As a result, an electrostatic latent image conforming to the image data is formed on the surface of the photosensitive drum 231. Examples of the image data include image data generated by the image reading section 270, image data stored in the storage section, and image data received via a network (not shown) from an external device (not shown).
The development section 234 causes toner to adhere to the electrostatic latent image to form a toner image on the surface of the photosensitive drum 231. The transfer section 235 causes the toner image to be transferred to a sheet P. The cleaning section 236 removes residual toner from the surface of the photosensitive drum 231. The static eliminating section 237 eliminates the residual charge on the surface of the photosensitive drum 231.
The sheet P having the toner image transferred thereto is conveyed toward the fixing section 240. The fixing section 240 applies heat and pressure to the sheet P to fix the toner image on the sheet P. The sheet P having the toner image transferred thereto is conveyed toward the discharging section 250. The discharging section 250 includes a pair of ejection rollers 251 and an ejection tray 252. The pair of ejection rollers 251 discharges the sheet P onto the ejection tray 252.
As has been described with reference to
The above have described the embodiments of the present invention with reference to the drawings (
(1) As shown in
(2) As shown in
(3) As shown in
(4) In
The present invention is applicable to the field of a sheet feeding device that feeds sheets or the field of image forming apparatuses having such a sheet feeding device.
Number | Date | Country | Kind |
---|---|---|---|
2014-042975 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/056193 | 3/3/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/133466 | 9/11/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8205875 | Kusumi | Jun 2012 | B2 |
20080117482 | Kusumi | May 2008 | A1 |
Number | Date | Country |
---|---|---|
2003-246495 | Sep 2003 | JP |
2006-188357 | Jul 2006 | JP |
2008-127110 | Jun 2008 | JP |
Entry |
---|
International Search Report, PCT/JP2015/056193, Jun. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20160075529 A1 | Mar 2016 | US |