1. Field of the Invention
The present invention relates to sheet feeding devices and image forming apparatuses, and in particular, relates to a sheet feeding device downsized without causing failure in sheet feeding and degradation in quality of printed matter and to an image forming apparatus downsized by being provided with the downsized sheet feeding device.
2. Description of the Related Art
Conventionally, image forming apparatuses, such as facsimile machines, copying machines, and laser beam printers, have been each provided with a sheet feeding device for feeding sheets, such as plain paper, coated paper, plastic sheets, and cloth, to an image forming portion in the image forming apparatus. In sheet feeding devices, it is very important to separate sheets one by one for their sending to image forming portions; therefore, to prevent multifeeding, i.e., feeding plural sheets from a sheet feeding device at one time, various sheet feeding methods have been proposed.
Moreover, in recent years, great importance has been placed on downsizing of sheet feeding devices as well as multifeeding prevention and stable sheet feeding. And further, with the widespread use of printers, facsimile machines and so on in ordinary households, it is demanded that image forming apparatuses be further downsized as well. In image forming apparatuses each provided with a sheet tray (sheet feeding cassette) in which sheets are stored, it is demanded that the dimension in the direction of the fitting of the sheet tray (hereinafter referred to as “the dimension of the fitting direction”) of the main body of the apparatus, in particular, do not exceed the dimension of the fitting direction of the sheet tray.
As an example of a sheet feeding device in which the dimension of the fitting direction of an image forming apparatus falls within the dimension of the fitting direction of a sheet tray, there is a sheet feeding device in which a sheet feeding roller is rotated forward and backward to separate sheets one by one (see Japanese Patent Laid-Open No. 5-147752). In such a sheet feeding device, when feeding sheets, the sheet feeding roller is rotated backward to begin with to feed the uppermost sheet in a sheet tray in the direction opposite to the direction of the sheet feeding. As a result, the uppermost sheet is bent once by being pressed on the back wall of the sheet tray for the separation of the sheet from the other sheets.
Thereafter, by rotating the sheet feeding roller forward, the sheet bent once goes up on a separation claw provided downstream in the direction of the sheet feeding of the sheet tray, whereby the sheets are separated one by one. By using such a mechanism, the function of feeding sheets separately can be provided within the dimension in the fitting direction of the sheet tray, and this enables the achievement of the dimension of the fitting direction of the image forming apparatus falling within the dimension of the fitting direction of the sheet tray.
Moreover, as another example, there is a sheet feeding device having a component that can be folded in a state of being stored with sheets, i.e., using a method in which sheets are put in the sheet tray in a state of being bent (see Japanese Patent Laid-Open No. 58-22224). Therefore, the provision of such a sheet feeding device enables the implementation of an image forming apparatus smaller than sheets used for image formation.
However, for such related art sheet feeding devices, in the case where, for example, a sheet is bent once to separate the sheet from the other sheets, it is necessary to provide a space for bending sheets above the sheet tray, and thus the height of the device increases. In the case where sheets are put in the sheet tray in a state of being curved, when the sheets have been held curved for a long time period, there is a possibility that the sheets curve at all times at their bent portions. Therefore, the feeding of such sheets curving at all times causes problems such as sheet feeding failures (paper jams, etc.) and transfer failures at the times of the transfer of an image onto sheets. And further, there is a possibility that only part of printed matter on which an image has been formed curves at all times, and thus a problem arises that the quality of the printed matter degrades.
In view of the present circumstances, the present invention provides a sheet feeding device capable of preventing the occurrence of failure in sheet feeding and degradation in quality of printed matter with downsizing achieved and an image forming apparatus provided with the downsized sheet feeding device.
According to one aspect of the present invention, a sheet feeding device includes a sheet storing portion, a feeding roller, a flexible member, and a pulling-up portion. In the sheet storing portion, sheets are stored. The feeding roller is placed above the sheet storing portion. The flexible member is placed along part of the peripheral surface of the feeding roller with one end of the flexible member fixed to the sheet storing portion at a position below the stored sheets. The pulling-up portion is connected to the other end of the flexible member above the sheet storing portion, and pulls up the flexible member to press the sheet on the feeding roller.
As described in the present invention, at the time of sheet feeding, the flexible member is pulled up to press a sheet on the feeding roller, and then the sheet is fed along the flexible member. Therefore, the occurrence of failure in sheet feeding and degradation in quality of printed matter can be prevented with downsizing achieved.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Several embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
The image forming portion 100B includes process cartridges 7 (7Y, 7M, 7C, and 7K) that form a four-color toner image, i.e., respectively form a yellow toner image, a magenta toner image, a cyan toner image, and a black toner image. The process cartridges 7Y, 7M, 7C, and 7K are detachably fit in the printer body 100A, and respectively include photosensitive drums 1, i.e., 1Y, 1M, 1C, and 1K as image bearing members that are rotatably driven in the direction of arrows A (clockwise) by driving units (driving sources) (not shown).
The image forming portion 100B includes a scanner unit 3 that is placed directly above the process cartridges 7 and that irradiates laser beams based on image information to form electrostatic latent images on the photosensitive drums 1. And further, the process cartridges 7Y, 7M, 7C and 7K respectively include development units 4 (4Y, 4M, 4C, and 4K) and charging rollers 2 (2Y, 2M, 2C, and 2K) in addition to the photosensitive drums 1. The development units 4 each adhere toner to the electrostatic latent image and then develop the image to form a toner image. The charging rollers 2 each evenly charge the peripheral surface of the corresponding photosensitive drum 1. Also, the process cartridges 7Y, 7M, 7C, and 7K respectively include cleaner units 6 (6Y, 6M, 6C and 6K).
As shown in
The first-order transfer rollers 8 press the intermediate transfer belt 5 on the photosensitive drums 1 to provide first-order transfer portions N1 where the intermediate transfer belt 5 and the photosensitive drums 1 abut on each other, and then apply first-order transfer biases to the intermediate transfer belt 5 by using bias applying units (not shown). Consequently, the toner images of the different colors on the photosensitive drums 1 are transferred onto the intermediate transfer belt 5 in order, whereby a full-color image is formed on the intermediate transfer belt 5.
At a position opposite to the second-order transfer counter roller 42 on the peripheral surface of the intermediate transfer belt 5, a second-order transfer roller 9 is provided: by pressing the second-order transfer roller 9 on the second-order transfer counter roller 42 via the intermediate transfer belt 5, a second-order transfer portion N2 is formed. To the second-order transfer roller 9, a bias having a polarity opposite to the normal charge polarity of the toner is applied by a second-order transfer bias power supply (a high-voltage power supply) as a second-order transfer bias applying unit (not shown). As a result, the toner image on the intermediate transfer belt 5 is transferred to a sheet 12 (is subjected to a second-order transfer to the sheet 12).
The sheet feeding device 200 includes a sheet tray 55 detachably fit to the printer body 100A and a sheet feeding roller (a feeding roller) 51 that feeds the sheets 12 stored in the sheet tray 55. At the time of feeding of the sheet 12, by rotating the sheet feeding roller 51 while pressing the sheet 12 on the roller 51, the sheet 12 is sent off.
Next, image forming operation of the full-color laser printer 100 having such a structure will now be described. To begin with, an image signal is input from an image scanning device (not shown) connected to the printer body 100A, a host apparatus, such as a personal computer, or the like to the scanner unit 3, following which the scanner unit 3 irradiates the peripheral surfaces of the photosensitive drums 1 with laser light corresponding to the image signal. At that time, the peripheral surfaces of the photosensitive drums 1 are already electrically charged by the charging rollers 2 evenly such that the peripheral surfaces have predetermined polarities and potentials, and therefore electrostatic latent images are formed on the peripheral surfaces by the laser light irradiation by the scanner unit 3. Thereafter, the electrostatic latent images are developed by the development units 4 to generate visible images.
For example, to begin with, the scanner unit 3 irradiates the photosensitive drum 1Y with laser light generated based on an image signal carrying yellow components to form a yellow electrostatic latent image on the peripheral surface of the photosensitive drum 1Y. Then the development unit 4Y develops the yellow electrostatic latent image by using yellow toner to make the image visible as a yellow toner image. Thereafter, the photosensitive drum 1Y is rotated so that the toner image reaches the first-order transfer portion N1 at which the photosensitive drum 1Y and the intermediate transfer belt 5 abut on each other, where the yellow toner image on the photosensitive drum 1Y is transferred onto the intermediate transfer belt 5 by applying a first-order transfer bias to the first-order transfer roller 8Y.
Then the part bearing the yellow toner image of the intermediate transfer belt 5 is moved to the next first-order transfer portion N1, where a magenta toner image, which has been formed on the peripheral surface of the photosensitive drum 1M by using the same method as that described above, is transferred to the part of the intermediate transfer belt 5 such that the magenta toner image is superimposed on the yellow toner image. Likewise, when the intermediate transfer belt 5 has been turned to the next two first-order transfer portions N1, a cyan toner image and a black toner image are transferred in order such that both the images are superimposed on the yellow toner image and the magenta toner image, whereby a full-color toner image is formed on the intermediate transfer belt 5. Note that, the toner remaining on the peripheral surface of each photosensitive drum 1 after the toner image transfer is cleared away by the cleaner unit 6.
The sheet 12 in the sheet tray 55 as a sheet storing portion is sent off by the sheet feeding roller 51, and conveyed to a resist roller 15 concurrently with the toner image forming operation. Then the sheet 12 conveyed to the resist roller 15 is conveyed to the second-order transfer portion N2 with timing provided by the resist roller 15.
At the second-order transfer portion N2, the four-color toner image on the intermediate transfer belt 5 is subjected to a second-order transfer to the conveyed sheet 12 by applying a positive bias to the second-order transfer roller 9. Note that, the toner remaining on the intermediate transfer belt 5 after the second-order transfer of the toner image is cleared away by a belt cleaner 11. After the toner image transfer, the sheet 12 is conveyed to a fixing portion 10, where the sheet 12 is heated under pressure to fix the full-color toner image, whereby a permanent image is generated. Thereafter, the sheet 12 is discharged outside the printer body 100A.
Next, the sheet feeding device 200 according to this embodiment will now be described. The sheet feeding device 200 includes the sheet tray 55 in which sheets are stored in a state of being stacked, the sheet feeding roller 51, and a sheet pulling-up unit 300 that pulls up the sheet and presses the sheet on the sheet feeding roller 51 at the time of feeding of the sheet by the sheet feeding roller 51.
Note here that, the sheet feeding roller 51 and the sheet pulling-up unit 300 are placed above the sheet tray 55. Therefore, the dimension in the direction of fitting of the sheet tray 55 of the printer body 100A can be made smaller than or equal to the dimension in the sheet fitting direction of the sheet tray 55.
Now, as shown in
As shown in
The sheet pulling-up unit 300 includes a sheet member 53 as a flexible member, a sheet running shaft 70 and a sheet taking-up shaft 71 both provided in parallel with the sheet feeding shaft 51a, a torque limiter 72, and a conveyance guide 16. Note here that, the sheet member 53 is a member to hold up the front end portions of the sheets 12, i.e., the downstream end portions in the feeding direction of the sheets 12 and to press the sheet 12 on the sheet feeding roller 51 by using a method in which the sheet member 53 is pulled up by being taken up by the sheet taking-up shaft 71.
In the sheet member 53, a low end portion, i.e., an upstream end portion in the sheet feeding direction is joined via a sheet member joining portion 59 to a sheet fixing member 56 provided to the printer body 100A. Further, the sheet member 53 is routed on the sheet running shaft 70, and the other end, i.e., the high end of the sheet member 53 is fixed via the torque limiter 72 to the sheet taking-up shaft 71 that is a rotating member that rotates in conjunction with the rotation of the sheet feeding roller 51 to take up the sheet member 53.
The sheet running shaft 70 is a member to control the direction of a movement of the sheet member 53, i.e., serve as a guide to assist the sheet member 53 in guiding the sheet 12 in a predetermined direction. The conveyance guide 16 is provided along the sheet feeding roller 51: between the conveyance guide 16 and the sheet feeding roller 51, the sheet member 53 is routed. To one end of the sheet taking-up shaft 71 that takes up the sheet member 53, a taking-up gear 82 is fixed in a state of engaging with the sheet feeding roller gear 81. The sheet taking-up shaft 71 rotates with a driving force from the sheet feeding motor 61 transferred via the sheet feeding roller gear 81 and the taking-up gear 82, whereby the sheet member 53 is taken up.
The sheet member 53 can be made of a flexible resin sheet such as a polyester film, a polyphenylene-sulfide film, or a polycarbonate film: the thickness of the sheet member 53 is preferably 50 to 250 μm. Note that, as the sheet member 53 according to this embodiment, a 150-μm-thick polyester film is used.
Now, the sheet feeding roller 51 and the sheet pulling-up unit 300 are fitted to the printer body 100A, and the sheet tray 55 is detachably fitted to the printer body 100A.
Now, in this embodiment, at the time of feeding of sheets 12, the sheet feeding motor 61 is rotated to take up the sheet member 53 by the sheet taking-up shaft 71, whereby the sheet member 53 is pulled up to press the sheet 12 on the sheet feeding roller 51. Note here that, the time for the rotation of the sheet feeding motor 61 is set by a CPU 60 of
Note that, when feeding a sheet, the solenoid 63 is turned on to transfer the rotation of the sheet feeding motor 61 to the sheet feeding roller 51. The time between the above turning-on and the next turning-off of the solenoid 63 can be set as a sufficient time for the front end of the sheet to reach the resist roller 15. In other words, the time between the start and halt of the driving of the sheet feeding roller 51 can be set as a sufficient time for the front end of a sheet to reach the resist roller 15 without respect to the size of the sheet. Therefore, the CPU 60 drives the sheet feeding roller 51 only for a predetermined fixed time, i.e., only for a sufficient time for the front end of a sheet to reach the resist roller 15. Note that, the timer 65 measures elapsed time based on a count by a CPU internal clock.
Next, sheet feeding operation of the sheet feeding device 200 according to this embodiment will now be described. Before the start of sheet feeding operation, the sheet feeding roller 51 and the sheets 12 are in a state of being out of contact with each other as shown in
Further, the rotational driving force from the sheet feeding motor 61 is transferred from the sheet feeding roller gear 81 to the taking-up gear 82, the sheet taking-up shaft 71 rotates in the direction of an arrow U, and the torque limiter 72 provided to the sheet taking-up shaft 71 also rotates in the direction of the arrow U. As a result, the sheet member 53 is taken up by the sheet taking-up shaft 71, whereby the sheet member 53 is pulled up, and then pressed on the sheet feeding roller 51.
Note that, at the step of pressing the sheet member 53 on the sheet feeding roller 51 like this, a force assisting the taking-up of the sheet member 53 is applied from the sheet feeding roller 51 to the sheet member 53. In addition, since the low end portion of the sheet member 53 is joined to the sheet fixing member 56, the apparent length of the sheet member 53 becomes short when having been taken up. Therefore, the sheet member 53 is pulled up, whereby the sheets 12 are pulled up in the direction of contact with the sheet feeding roller 51 as shown in
After further taking-up of the sheet member 53, among the sheets 12, the front end portions of which are on the sheet member 53, the uppermost sheet 12a is pressed on the sheet feeding roller 51 as shown in
Next, when the sheet feeding roller 51 has rotated further, the front end of the uppermost sheet 12a sent by the sheet feeding roller 51 comes into contact with the sheet member 53, following which the uppermost sheet 12a is fed along the sheet member 53, and then between the sheet feeding roller 51 and the sheet member 53. At that time, the feeding force generated by the rotation of the sheet feeding roller 51 is also transferred to the sheets 12 under the uppermost sheet 12a by friction between the sheets 12 stacked in the sheet tray 55. However, since the abutment pressure between the sheet feeding roller 51 and the uppermost sheet 12a is optimally set by the torque limiter 72, only the uppermost sheet 12a is separated from the other sheets 12 while being curved along the sheet member 53, and fed upward.
Note here that, the optimally set abutment pressure will now be described with reference to
At that time, the sheet 12 receives drag against the feeding force from the sheet member 53 due to the impingement; however, the abutment pressure between the sheet feeding roller 51 and the sheets 12 is set such that only the feeding force applied to the uppermost sheet 12a exceeds the drag and that the other sheets 12 remain as they are. Therefore, the uppermost sheet 12a is separated from the other sheets 12, and fed upward.
When the sheet feeding roller 51 has rotated further after the separation by the sheet feeding roller 51 at which the abutment pressure has been set like this, the uppermost sheet 12a reaches a nip portion at which the sheet feeding roller 51 and the sheet member 53 are in contact with each other. Thereafter, the uppermost sheet 12a passes through the nip portion between the sheet feeding roller 51 and the sheet member 53, and is sent to the resist roller 15 of
At a point in time when the uppermost sheet 12a has reached the resist roller 15, the solenoid 63 is turned off, and the transfer of the driving force from the sheet feeding motor 61 to the sheet feeding roller 51 is halted; however, even when the transfer of the driving force from the sheet feeding motor 61 has been halted like this, the sheet feeding roller 51 drags (runs idle) by the movement of the uppermost sheet 12a while the uppermost sheet 12a is in contact with the sheet feeding roller 51.
Next, the control of the sheet feeding operation of the sheet feeding device 200 will now be described with reference to a flowchart of
Then a rotation time (a duration in time) t2 for the sheet feeding motor 61 corresponding to the sheet size is selected from the data table preloaded in the memory 64 in the CPU 60 (step S101). In the data table are presented rotation times for the sheet feeding motor 61 necessary for the back ends of various-size sheets to pass through the nip portion between the sheet feeding roller 51 and the sheet member 53. For example, in cases where A4-size sheets are used, a rotation time tA4 for the sheet feeding motor 61 is selected for reasons of necessity for the back end of each sheet to pass through the nip portion between the sheet feeding roller 51 and the sheet member 53. Therefore, to feed the sheets 12, the timer 65 is set for a rotation time (t1+t2) for the sheet feeding motor 61 (step S102).
Then the timer 65 is started up (step S103), and the solenoid 63 is turned on (step S104), following which the sheet feeding motor 61 is started up (step S105). Since the sheet feeding motor 61 rotates forward at that time, the sheet feeding roller 51 also rotates forward. Thereafter, the timer 65 measures elapsed time based on a count by an internal clock. When the sheet 12 has been delivered to the resist roller 15 and the measured time T exceeds or equates with the delivery time t1 having been taken to deliver the sheet 12 to the resist roller 15 (T≧t1) (Y in step S106), the solenoid is turned off to halt the driving force transfer (step S107). Note that, even when the driving force transfer has been halted like this, the sheet feeding roller 51 does not interfere with the conveyance of the sheet 12 by the resist roller 15. This is because the sheet feeding roller 51 further rotates by the movement of the sheet 12.
When the back end of the sheet 12 has come out of the nip portion between the sheet feeding roller 51 and the sheet member 53 and the measured time T exceeds or equates with the rotation time (t1+t2) for the sheet feeding motor 61 (T≧t1+t2) (Y in step S108), the sheet feeding motor 61 is halted (step S109), whereby the feeding of the first sheet 12 is finished.
As shown in
On the other hand, when the forward rotation of the sheet feeding roller 51 has stopped, the sheet taking-up shaft 71 becomes free to rotate because the driving force transfer has been halted by the turning-off of the solenoid 63, whereby the force by which the sheet member 53 is held taken up is lost. As a result, the sheets 12 and the sheet member 53 naturally go down under their own weight in general. However, even when the sheet taking-up shaft 71 is in the state of being free to rotate like this, the sheets 12 and the sheet member 53 sometimes do not go down naturally. This is because a load heavier than the weight of the sheet 12 itself and the weight of the sheet member 53 itself is applied depending on the structures of sheet feeding devices.
To deal with such a case, the solenoid 63 is turned on and the sheet feeding motor 61 is rotated backward to rotate the sheet feeding roller 51 backward, i.e., in the direction of the arrow R shown in
Then the solenoid 63 is turned on (step S112), following which the backward rotation of the sheet feeding motor 61 is started (step S113). Since the solenoid 63 is turned on at that time, the sheet feeding roller 51 rotates backward, after which elapsed time is measured based on a count by the internal clock. When the measured time t exceeds or equates with the backward rotation time t3 (t≧t3) (Y in step S114), the solenoid 63 is turned off (step S115), and then the sheet feeding motor 61 is stopped (step S116). As a result of such control, that is, by performing such an initialization sequence, the sheet member 53 can be released and returned to the initial state shown in
In this embodiment, at the time of sheet feeding, the sheet member 53 is pulled up to press a sheet on the sheet feeding roller 51, and then the sheet is fed along the sheet member 53 as described above. By using such a mechanism, it is unnecessary to provide a bending forming space necessary in a method of pulling back a sheet to the upstream side of a sheet feeding direction once and then feeding the sheet to the downstream side, and therefore a further downsized sheet feeding device can be implemented.
Moreover, in this embodiment, unlike a method in which sheets are stored in a sheet tray with the sheets curved, sheets do not curve at all times, whereby failure in sheet feeding is prevented to a large extent, and degradation in quality of printed matter can also be prevented. Furthermore, there is no step portion, such as a junction portion for a conveyance guide, in the conveyance path along which sheets are picked up and separated, and thus the occurrence of a paper jam can also be reduced.
That is, in this embodiment, at the time of sheet feeding, the sheet member 53 is pulled up to press a sheet on the sheet feeding roller 51, and then the sheet is fed along the sheet member 53, whereby the occurrence of failure in sheet feeding and degradation in quality of printed matter can be prevented with the downsizing of the sheet feeding device 200 achieved. Note that, in this embodiment, after a sheet has reached the resist roller 15, the solenoid 63 is turned off to halt the driving force transfer to the sheet feeding roller 51, and thus the sheet feeding roller 51 runs idle; however, the sheet feeding roller 51 can be made to run idle without turning off the solenoid 63 or using other means by making the conveyance speed of the resist roller 15 higher than the conveyance speed of the sheet feeding roller 51 through the provision of a one-way clutch along the driving shaft 51a of the sheet feeding roller 51.
Next, a second embodiment of the present invention will now be described.
In contrast, as shown in
The impingement angle of the sheets 12 with respect to the sheet member 53 is an important parameter at the time when the sheets 12 are separated one by one. That is, when the impingement angle is too large, it becomes necessary to use a strong force for the feeding, and nonfeeding of sheets and folding of the end portions of sheets tend to occur. On the contrary, when the impingement angle is small, the drag at the time of the impingement of the sheet 12 on the sheet member 53 becomes low, whereby some of the sheets 12 other than the uppermost sheet 12a are prone to be fed, i.e., multifeeding of the sheets 12 tends to occur. Because of this, to exhibit high sheet feeding performance, it is preferable that the impingement angle fall within a fixed range so that the impingement angle of the sheets 12 with respect to the sheet member 53 does not change significantly. Hence, in this embodiment, the change in the impingement angle at the time of the impingement of the sheets 12 on the sheet member 53 is made small.
At the front end portion of the sheet pulling-up plate 54, the sheet member joining portion 59 is provided. To the sheet member joining portion 59, the low end of the sheet member 53 is fixed. That is, as members to pull up the sheets 12 to the side of the sheet feeding roller 51, the sheet pulling-up unit 300 according to this embodiment includes the sheet pulling-up plate 54 of a stiff plate material that supports the sheets 12 in addition to the sheet member 53 of a flexible material.
Next, sheet feeding operation of the sheet feeding device 200 having such a structure will now be described. Before the start of the sheet feeding operation, the sheet feeding roller 51 and the sheets 12 are in a state of being out of contact with each other as shown in
The rotational driving force of the sheet feeding motor 61 is transferred from the sheet feeding roller gear 81 to the taking-up gear 82. Then the sheet taking-up shaft 71 rotates in the direction of the arrow U, whereby the sheet member 53 is taken up by the sheet taking-up shaft 71. When the sheet member 53 is taken up, the sheet pulling-up plate 54 swings upward along with the sheet member 53 as shown in
After the sheet feeding roller 51 has further rotated, the front end of the uppermost sheet 12a comes in contact with the sheet member 53. Then the uppermost sheet 12a is fed along the sheet member 53, and then between the sheet feeding roller 51 and the sheet member 53 as shown in
In this embodiment, since the sheets 12 are held up by the sheet pulling-up plate 54, the curvature of the sheet 12 at an abutment portion at which abutment on the sheet feeding roller 51 is effected shown in
θ—1 max−θ—1 min>θ—2 max−θ—2 min
From the above, it can be seen that the change in the impingement angle is reduced by using the mechanism according to the second embodiment.
As described above, in the second embodiment, by holding up sheets through the use of the sheet pulling-up plate 54 formed of a stiff material, the amount of the change in the angle at which the sheets impinge on the sheet member 53 is reduced even when the quantity of the sheets stored in the sheet tray 55 has varied. Therefore, the sheets in the sheet tray 55 can be separated and fed reliably to the last sheet. Further, in the second embodiment as well, a reliable sheet feeding device that does not degrade the quality of printed matter and rarely causes paper jams and multifeeding can be provided with further downsizing implemented.
Next, a third embodiment according to the present invention will now be described. In the first and second embodiments described above, by pulling up the sheet member 53 while rotating the sheet feeding roller 51, the sheet 12 is pressed on the sheet feeding roller 51. In the above method, there are cases where a sheet feeding pressure does not rise sufficiently and the transfer of the feeding force to the sheet 12 is therefore started using such a low sheet feeding pressure. In that case, biased impingement of the sheet 12 on the sheet feeding roller 51 or the like occurs, and thus a sheet feeding failure, i.e., the skew feeding of the sheet 12 may occur. Therefore, to exhibit higher sheet feeding performance, it is preferable to start the driving of the sheet feeding roller 51 after the sheet feeding pressure has reached a predetermined value sufficiently. Hence, in the third embodiment, the driving of the sheet feeding roller 51 is started after the sheet feeding pressure has reached the predetermined value sufficiently like this.
As shown in
By swinging the sheet pressing-down member 74 downward, the upper portion of the sheet member 53, the high end of which is fixed to the fixing portion 73, is pressed down to obliquely below the sheet running shaft 70. By pressing down the upper portion of the sheet member 53 like this, the lower portion of the sheet member 53 is pulled up, and the sheet 12, the front end portion of which is held up by the sheet member 53, is pressed on the sheet feeding roller 51.
That is, in the sheet pulling-up unit 300 according to this embodiment, instead of taking up the sheet member 53, the sheet member 53 is bent downward by the sheet pressing-down member 74, for example, to pull up the sheet 12. Further, the sheet pressing-down member 74 is driven by the sheet pulling-up motor 62, i.e., the sheet feeding motor 51 and the sheet pressing-down member 74 are driven separately from each other.
The use of such a structure enables the free settings of the timings of contact and estrangement between the sheet 12 and the sheet feeding roller 51 and the timing of the rotational driving of the sheet feeding roller 51. Note that, in this embodiment, after the sheet 12 has been pressed on the sheet pressing roller 51 at a predetermined sheet feeding pressure by swinging down the sheet pressing-down member 74, the rotation of the sheet feeding roller 51 is started. Therefore, the rotation of the sheet feeding roller 51 can be started after the sheet feeding pressure has reached the predetermined value sufficiently, and higher sheet feeding performance can, therefore, be exhibited.
As shown in
Next, sheet feeding operation of the sheet feeding device 200 according to the third embodiment will now be described. Before the start of the sheet feeding operation, the sheet feeding roller 51 and the sheets 12 are in a state of being out of contact with each other as shown in
At the step of pressing the sheet member 53 on the sheet feeding roller 51 like this, a force for assisting with the taking up of the sheet member 53 is applied from the sheet feeding roller 51 to the sheet member 53. In addition, since the low end portion of the sheet member 53 is joined to the sheet fixing member 56, the apparent length of the sheet member 53 becomes short when the upper portion of the sheet member 53 has been pressed down. As a result, the sheet member 53 is pulled up, and thus the sheets 12 are pulled up in the direction of contact with the sheet feeding roller 51 as shown in
After further pressing down of the sheet member 53, of the sheets 12, the front end portions of which are held up by the sheet member 53, the uppermost sheet 12a is pressed on the sheet feeding roller 51 as shown in
Hence, the CPU 60 is designed to apply a preset motor driving voltage to the sheet pulling-up motor 62 to generate the predetermined sheet feeding pressure. Therefore, the rotation of the sheet pulling-up motor 62 is halted at a point in time when a fixed load torque has been reached. Further, by adjusting the driving voltage for the sheet pulling-up motor 62 like this, the sheet pressing-down member 74 can be held swung until a fixed load is applied, whereby an abutment pressure between the sheet 12 and the sheet feeding roller 51 can be managed.
After the sheet feeding roller 51 has further rotated, the front end of the uppermost sheet 12a sent by the sheet feeding roller 51 comes in contact with the sheet member 53, and then the sheet 12a is fed along the sheet member 53, and then between the sheet feeding roller 51 and the sheet member 53 as shown in
Next, the control of the sheet feeding according to the third embodiment will now be described with reference to a flowchart of
Then a rotation time (a period of time) t2 for the sheet feeding motor 61 corresponding to the size of the sheets 12 is selected from the data table preloaded in the memory 64 in the CPU 60 (step S201). In the data table are presented rotation times for the sheet feeding motor 61 necessary for the back ends of various-size sheets to pass through the nip portion between the sheet feeding roller 51 and the sheet member 53. For example, in cases where A4-size sheets are used, a rotation time tA4 for the sheet feeding motor 61 is selected. Then a sheet pulling-up time (t_wait), which is a sufficient pressing-down time for the sheet pressing-down member 74 to apply a predetermined load, is selected (step S202). Thereafter, the timer 65 is set for a rotation time (t1+t2) for the sheet feeding motor 61 and the sheet pulling-up time (t_wait) at the time of the feeding of the individual sheets 12.
Next, the timer 65, in which the rotation time (t1+t2) for the sheet feeding motor 61 is set, is started (step S203), and at the same time the timer 65, in which the sheet pulling-up time (t_wait) is set, is started (step S204). Note that, to set a rotation time (t1+t2) and a sheet pulling-up time (t_wait), two timers can be used; however, in this embodiment, both times are set using a single timer. Then the sheet pulling-up motor 62 is started (step S205), and the sheet pressing-down member 74 is swung in the pressing-down direction, i.e., downward, whereby the upper portion of the sheet member 53 is pressed down.
Thereafter, when a measured time T shown by the timer has exceeded or equated with the sheet pulling-up time (t_wait) (T≧t_wait) (Y in step S206), the uppermost sheet 12a, as shown in
By rotating the sheet feeding roller 51 forward, the feeding of the uppermost sheet 12a is started. The uppermost sheet 12a is fed along the sheet member 53, and then between the sheet feeding roller 51 and the sheet member 53 as shown in
Then the sheet 12a is delivered to the resist roller 15; when a measured time T shown at that time exceeds or equates with the delivery time t1 (T≧t1) (Y in step S209), the solenoid 63 is turned off to halt the driving force transfer (step S210). Thereafter, the back end of the sheet 12a passes through the nip portion between the sheet feeding roller 51 and the sheet member 53; when a measured time T shown at that time exceeds or equates with the rotation time (t1+t2) for the sheet feeding motor 61 (T≧t1+t2) (Y in step S211), the sheet feeding motor 61 is halted (step S212), whereby the feeding of the first sheet is finished.
At that time, there is a case where some of the sheets 12 other than the uppermost sheets 12a are fed partway together with the uppermost sheet 12a. Hence, in this embodiment, to return the sheet(s) 12 fed partway, the solenoid 63 is turned on, and the sheet feeding motor 61 is rotated backward to rotate the sheet feeding roller 51 backward in the direction of the arrow R shown in
Next, the solenoid 63 is turned on (step S215), and then the backward rotation of the sheet feeding motor 61 is started (step S216). Since the solenoid 63 is in the ON state at that time, the sheet feeding roller 51 rotates backward. Thereafter, elapsed time is measured based on a count by the internal clock. When the measured time t exceeds or equates with the backward rotation time t3 (t≧t3) (Y in step S217), the sheet feeding motor 61 is halted (step S218), following which the solenoid 63 is turned off (step S219), whereby the sheet(s) fed partway can be returned.
Then the backward rotation of the sheet pulling-up motor 62 is started (step S220), and the sheet pressing-down member 74 is swung upward, i.e., in the direction of its initial position shown by an arrow D in
Note here that, even in the case where the front edges of the sheets 12 are not evened up when the sheet member 53 goes done like this, the front edges are evened up when the sheets 12 returns into the sheet tray 55 with the movement of the sheet member 53. That is, even when some of the sheets 12 other than the uppermost sheet 12a are pulled in the nip portion between the sheet feeding roller 51 and the sheet member 53, the sheet(s) 12 pulled in slips down along the sheet member 53 when the sheet member 53 goes down, and then the sheets 12 return to their initial position with the front edges evened up. In this way, when the sheet member 53 has gone down at the time of the return of the sheet pressing-down member 74 to the initial position, the sheets 12 other than the uppermost sheet 12a, remaining on the sheet tray 55, are stacked up with the front edges evened up, whereby a preparation for the next sheet feeding operation can be made. Thereafter, the above job is repeated until printing job is finished (Y in step S222).
As described above, according to this embodiment, since the driving of the sheet pressing-down member 74 and the driving of the sheet feeding roller 51 can be controlled separately, the rotation of the sheet feeding roller 51 can be started after the application of the sufficient sheet feeding pressure. Therefore, rectilinearity of sheet feeding is increased, and the occurrence of feeding failures, such as skew feeding, can be reduced. Further, a reliable sheet feeding device, which does not degrade the quality of printed matter and rarely causes paper jams and skew feeding with downsizing achieved, can be provided in this embodiment as well.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-150965, field Jul. 7, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2011-150965 | Jul 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5419543 | Nakamura et al. | May 1995 | A |
6332608 | Tamura | Dec 2001 | B1 |
6516166 | Sakakibara et al. | Feb 2003 | B2 |
6520497 | Tamura | Feb 2003 | B2 |
6533263 | Tamura | Mar 2003 | B2 |
6804474 | Morita et al. | Oct 2004 | B2 |
6947679 | Kato et al. | Sep 2005 | B2 |
20040256789 | Hsu | Dec 2004 | A1 |
20100156033 | Lee | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
57-102444 | Jun 1982 | JP |
58-022224 | Feb 1983 | JP |
59-128145 | Jul 1984 | JP |
62-059008 | Dec 1987 | JP |
2-158541 | Jun 1990 | JP |
5-147752 | Jun 1993 | JP |
6-199439 | Jul 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20130009355 A1 | Jan 2013 | US |