Information
-
Patent Grant
-
6298778
-
Patent Number
6,298,778
-
Date Filed
Wednesday, November 3, 199925 years ago
-
Date Issued
Tuesday, October 9, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 101 216
- 101 232
- 271 41
- 271 403
- 271 901
- 271 906
- 271 909
- 271 913
- 271 1003
- 271 1005
- 271 110
- 271 111
- 271 114
- 271 161
- 271 259
- 271 26502
- 271 270
- 400 605
- 400 624
- 400 625
-
International Classifications
- B41F1324
- B41F500
- B41L1304
- B65H100
- B65H534
-
Abstract
A sheet feeding device for a printer, e.g., a stencil printer including an ink drum with a master wrapped therearound and a press drum one of which is pressed against the other during printing is disclosed. The sheet feeding device is capable of feeding a sheet at a preselected speed without regard to a print speed varying every moment due to various factors particular to an ink drum driveline, i.e., whether a set print speed is higher than a standard print speed or lower than the same. This successfully obviates the short loop of a sheet which would result in a skew or a feed failure. In addition, the device reduces noise at print speeds lower than the standard print speed and used more often than the other print speeds.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a sheet feeding device for a printer, particularly a stencil printer including an ink drum with a master wrapped therearound and a press drum one of which is pressed against the other during printing.
A thermal digital stencil printer or similar printer extensively used today includes an ink drum capable of rotating at a variable speed in accordance with an input print speed with a master wrapped therearound. A press roller, or pressing means, is pressed against the ink drum relatively to the ink drum with the intermediary of a sheet. A pair of registration rollers, or registering means, feed the leading edge of a sheet toward a print position between the ink drum and the press roller. A pair of separation rollers and a pickup roller, or sheet feeding means, pay out the leading edge of a sheet toward the registration rollers. The sheet abuts against the registration rollers and forms a loop. Japanese Patent Laid-Open Publication No. 8-59031, for example, discloses a sheet feeding device applicable to the above printer.
Japanese Patent Laid-Open Publication No. 6-40137, for example, teaches a sheet feeding device applicable to a stencil printer of the type including a sheet bank in addition to the ink drum, press roller, registration rollers, and sheet feeding means. The sheet bank is positioned below the print position for feeding a sheet toward the registration rollers. A pair of intermediate rollers, or sheet conveying means, convey the leading edge of a sheet paid out from the sheet bank and cause it to abut against the registration in rollers and form a loop. This sheet feeding device includes a plurality of trays loaded with sheets and allows the operator to pull out desired one of the trays for replenishing sheets, standing at the front of the printer (front loading system).
In any one of the conventional printers, a main motor capable of rotating at a variable speed in accordance with the input print speed drives the ink drum. Specifically, a print speed key, or print speed setting means, is positioned on, e.g., an operation panel for allowing the operator to input desired one of a plurality of print speeds. At the time of printing, the rotation speed of the ink drum is varied in accordance with the print speed input on the print speed key (set print speed hereinafter).
The press roller may be replaced with a press drum having substantially the same diameter as the ink drum and including a sheet clamper. The press drum is rotatable at substantially the same peripheral speed as the ink drum in the opposite direction to the ink drum with the sheet damper retaining the leading edge of a sheet, so that the leading edge of the sheet can be forcibly separated from the ink drum. With the press drum, it is possible to prevent the sheet from rolling up without being separated from the ink drum, to reduce noise, and to enhance the positional accuracy of an image on a sheet in the direction of sheet conveyance (registration accuracy hereinafter).
In the printer taught in the above Laid-Open Publication No. 8-59031, the main motor drives the separation rollers and pickup roller via a belt, gears and clutches or cams. This kind of driveline is undesirable because the peripheral speed of the separation rollers and that of the pickup roller are dependent on a print speed varying every moment in accordance with the set print speed or, e.g., the extension of the belt due to aging, backlashes of the gears, and so forth. As a result, the amount of the loop varies from one print speed to another print speed. It follows that particularly when the print speed is low, the slip of the sheet on the separation rollers and pickup roller is aggravated, making the amount of feed short. The short amount of feed causes the sheet to skew or prevents it from being fed. Further, when the print speed is high, the sheet produces noise when straightened, i.e., when its loop disappears because the lower separation roller does not rotate and increases the load on sheet conveyance.
On the other hand, in the printer proposed in Laid-Open Publication No. 6-40137, the trays of the sheet bank each are provided with a respective separation roller, a pickup roller and other rollers for conveyance. A sheet feed motor implemented by a stepping motor drives such rollers of the sheet bank. The sheet feed motor is so controlled as to increase the sheet conveying speed of, e.g., the separation roller by 0% to 25% in accordance with five consecutive print speeds by way of example, taking account of, e.g., the slip of a sheet being conveyed toward the registration rollers. However, when the sheet conveying speed of, e.g., the separation roller is simply increased, a stable loop is not achievable. Therefore, at a low print speed, the slip of the sheet on the separation roller and other rollers is aggravated and makes the amount of feed short, resulting in the skew or the feed failure of the sheet.
At a high print speed, a sheet forms an excessive loop and produces noise when the loop disappears because the separation pad is fixed and increases the load on sheet conveyance. Moreover, as the above document shows in
FIG. 1
, transport paths extending from the top and bottom trays of the sheet bank are sharply curved. Therefore, when the print speed is high, the sheet produces noise when sliding on guides forming the above transport paths. The above document therefore does not set a sheet conveying speed in consideration of noise of the entire printer.
The conventional sheet bank does not include registering means independent of the registration rollers of the printer body for conveying the leading edge of a sheet toward the registration rollers at a preselected timing. The present invention applies the above problems discussed in relation to the formation of a loop to the exclusive registering means of the bank also.
Technologies relating to the present invention are also disclosed in, e.g., Japanese Patent Laid-Open Publication No. 9-216448, Japanese Patent Publication No. 5-32296, Japanese Utility Model Publication No. 5-18342, Japanese Patent Laid-Open Publication Nos. 9-30714, 5-124737, 5-221536, 6-40137, 6-144600, 7-137851, 2-265825 and 10-35911, and U.S. patent application Ser. No. 09/025,037 which issued as U.S. Pat. No. 6,098,536 and Ser. No. 09/042,615 which issued as U.S. Pat. No. 5,931,090.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a sheet feeding device for a printer capable of feeding a sheet at a preselected speed without regard to a print speed varying every moment due to various factors particular to an ink drum driveline or a set print speed, i.e., whether a set print speed is higher than a standard print speed or lower than the same, thereby obviating the short loop of a sheet which would result in the skew or feed failure of a sheet and reducing noise at print speeds lower than the standard print speed and used more often than the other print speeds.
It is another object of the present invention to provide a sheet feeding device for a printer capable of stably forming a preselected amount of loop and surely obviating the skew and feed failure of a sheet by recognizing the position of the leading edge of the sheet without regard to a load on sheet conveyance dependent on the configuration of a transport path and sheet size or even when the slip of the sheet on sheet conveying means increases.
It is still another object of the present invention to provide a sheet feeding device for a printer capable of preventing a sheet from rolling up, reducing noise, and increasing registration accuracy.
It is yet another object of the present invention to provide a sheet feeding device for a printer capable of reducing the skew, lateral misregistration and crease of a sheet fed from a sheet bank, feeding a sheet toward the registering means of a printer body at a constant timing, and correcting the variation of the amount of sheet feed ascribable to the slip of a sheet occurring between the sheet bank and the registering means.
It is a further object of the present invention to provide a sheet feeding device for a printer capable of enhancing the stability and reliability of a sheet feed timing toward registering means.
In accordance with the present invention, a sheet feeding device for a printer includes an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, a pressing member pressed against the ink drum relative to the ink drum with the intermediary of a sheet, a registering device for feeding the leading edge of the sheet toward a print position between the ink drum and the pressing member, a bank sheet feeding section positioned below the print position, and a sheet conveying device for conveying the sheet fed from the bank sheet feeding section toward the registering device. A print speed setting device sets a print speed such that the ink drum rotates in accordance with a set print speed included in the plurality of print speeds. A sheet conveyance drive source independent of a driveline assigned to the ink drum for driving the sheet conveying device. The sheet conveyance drive source drives the sheet conveying device in such a manner as to set up a constant sheet conveying speed without regard to the set print speed set via the print speed setting device.
Also, in accordance with the present invention, a sheet feeding device for a printer includes an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, a pressing member pressed against the ink drum relative to the ink drum with the intermediary of a sheet, a registering device for feeding the leading edge of the sheet toward a print position between the ink drum and the pressing member, and a bank sheet feeding section for conveying the sheet toward the registering device. A bank registering device is included in the bank sheet feeding section independently of the registering device for feeding the leading edge of the sheet toward the registering device. A bank sheet conveying device feeds the leading edge of the sheet toward the bank registering device such that the leading edge of the sheet abuts against the bank registering device and forms a loop. A bank sheet conveyance drive source independent of a driveline assigned to the ink drum drives the bank sheet conveying device. A print speed setting device sets a print speed such that the ink drum rotates in accordance with a set print speed included in the plurality of print speeds. The bank sheet conveyance drive source drives the bank sheet conveying device in such a manner as to set up a constant sheet conveying speed without regard to the set print speed set via the print speed setting device.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description taken with the accompanying drawings in which:
FIG. 1
is a front view showing a stencil printer and a bank sheet feeding section embodying the present invention;
FIG. 2
is a fragmentary enlarged front view of the illustrative embodiment;
FIG. 3
is a plan view showing an auxiliary sheet feeding section included in the illustrative embodiment;
FIG. 4
is a fragmentary sectional front view of the auxiliary sheet feeding section;
FIG. 5
is a fragmentary sectional view showing a portion where a sheet fed from the auxiliary sheet feeding section forms a loop;
FIG. 6
is a fragmentary sectional view showing a portion where a sheet fed from the bank sheet feeding section forms a loop;
FIG. 7
is a fragmentary exploded isometric view showing a structure for mounting control parts around a press drum included in the illustrative embodiment;
FIG. 8
is a plan view of the structure shown in
FIG. 7
;
FIG. 9
is an isometric view showing a home position sensor responsive to the home position of an ink drum included in the illustrative embodiment;
FIG. 10
is an isometric view showing a structure for mounting control parts around a pair of registration rollers included in the illustrative embodiment;
FIG. 11
is an exploded isometric view showing a structure for mounting control parts around an arm associated with a press drum included in the illustrative embodiment;
FIG. 12
is a front view showing the angular position of a sheet damper included in the illustrative embodiment and varying in accordance with the rotation of the press drum;
FIGS. 13A and 13B
are views each showing a particular angular position of the press drum;
FIG. 14
is a fragmentary isometric view showing a sheet size sensing mechanism associated with, e.g., an auxiliary tray included in the illustrative embodiment;
FIG. 15
is a fragmentary front sectional view showing the bank sheet feeding section;
FIG. 16
is a fragmentary isometric view showing a sheet feed drive mechanism included in the bank sheet feeding section;
FIG. 17
is a fragmentary plan view of an operation panel included in the illustrative embodiment;
FIG. 18
is a plan view showing specific pictures to appear on an LCD (Liquid Crystal Display) mounted on the operation panel;
FIG. 19
is a block diagram schematically showing a sheet feed control system with which a first to a third embodiment of the present invention are practicable;
FIG. 20
is a timing chart demonstrating the sheet feeding operation of the entire printer representative of the first embodiment;
FIG. 21A
is a timing chart representative of the feed of a sheet from the auxiliary sheet feeding section in accordance with the first embodiment;
FIGS. 21B and 21C
are views associated with FIG.
21
A and showing the auxiliary sheet feeding section;
FIG. 22
is a chart showing how the number of pulses and the pulse width are varied in the first embodiment;
FIG. 23
is a front view showing how sheet feeding means and intermediate rollers convey a sheet at the beginning of drive;
FIG. 24
is a fragmentary front view demonstrating how a sheet is caused to form a loop between registration rollers and the sheet feeding means or between the registration rollers and the intermediate rollers in the first embodiment;
FIG. 25
is a front view showing how the registration rollers convey a sheet at the beginning of drive or how the intermediate rollers convey it during assist rotation in the first embodiment;
FIG. 26
is a fragmentary front view demonstrating the conveyance of the leading edge of a sheet toward a sheet damper included in the first embodiment;
FIG. 27
is a fragmentary front view representative of the conveyance of a sheet at the initial stage of printing in accordance with the first embodiment;
FIGS. 28 and 29
are flowcharts demonstrating a specific sheet feeding operation available with the first embodiment;
FIGS. 30 and 31
are flowcharts representative of the feed of a sheet in the bank sheet feeding section in accordance with the first embodiment; and
FIG. 32
is an exploded isometric view showing a structure for mounting parts around the ink drum in accordance with a modification of the first embodiment.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the printer in accordance with the present invention and modifications thereof will be described hereinafter with reference to the accompanying drawings. In the embodiments and modifications thereof, parts and elements identical in function and configuration are designated by identical reference numerals, and a repetitive description thereof will not be made in order to avoid redundancy. As for parts or elements provided in pairs, but not needing distinction, only one of them will be described.
Referring to
FIG. 1
of the drawings, a printer to which the present invention is applicable is shown and implemented as a stencil printer by way of example. As shown, the stencil printer, generally
100
, includes a bank sheet feeding section
200
positioned below a printing section, which will be described, included in the printer
100
. A printer frame
100
A and a bank frame
200
A constitute the body of the printer
100
and the body of the bank
200
, respectively.
As shown in
FIGS. 1 and 2
, the printer
100
includes a hollow cylindrical ink drum
1
around which a master or cut stencil
2
is to be wrapped. A master discharging section
18
is arranged at the left-hand side of the ink drum
1
for peeling off a used master existing on the ink drum
1
. A master making section
19
is located at the right-hand side of the ink drum
1
for making the master
2
while conveying it. A document reading section
3
is arranged above the master discharging section
18
, ink drum
1
and master making section
19
in order to read a document image. An ink feeding device
22
is disposed in the ink drum
1
for feeding ink to the master
2
wrapped around the drum
1
. A press drum
20
is positioned below the ink drum
1
and includes a sheet damper or sheet retaining means
21
for retaining the leading edge of a sheet P. The press drum
20
presses the sheet P against the master
2
existing on the ink drum
1
. A sheet feeding device embodying the present invention is located at the right-hand side of the press drum
20
and includes an auxiliary sheet feeding section
28
representative of a plurality of sheet feeding sections. The sheet feeding device feeds the leading edge of a sheet P toward the sheet damper
21
of the press drum
20
. A sheet discharging section
80
is arranged at the left-hand side of the press drum
20
.
As shown in
FIGS. 1
,
2
,
9
and
12
, the ink drum
1
is made up of a porous hollow cylinder and a laminate mesh screen, not shown, wrapped around the cylinder. The ink drum
1
is rotatably mounted on a shaft
11
. A main motor
150
causes the ink drum
1
to rotate at a speed variable in accordance with a print speed via a drive transmission mechanism which will be described specifically later. The main motor
150
implemented by a DC motor by way of example does not transmit its rotation to the sheet feed driveline and sheet conveyance driveline of the auxiliary sheet feeding section
28
or those of the bank sheet feeding section
200
. The main motor
150
is therefore smaller in size than the conventional main motor.
As shown in
FIG. 2
, an encoder
151
is mounted on the output shaft
150
a
of the main motor
150
and implemented by an incremental photo-rotary encoder. An encoder sensor
152
is mounted on the a printer frame
100
A in the vicinity of the encoder
151
. Specifically, the encoder sensor
152
is implemented by a transmission type optical sensor including a light emitting portion and a light-sensitive portion which sandwich the encoder
151
at a preselected distance from the encoder
151
. The encoder
151
rotates together with the main motor
150
while outputting preselected pulses. The encoder sensor
152
senses the pulses representative of the rotation speed of the ink drum
1
. The resulting output of the encoder sensor
152
is used to control the rotation speed of the ink drum
1
.
A master damper
12
is mounted on the outer periphery of the ink drum
1
and angularly movable about a shaft
12
a
for clamping the leading edge of the master
2
produced from the master making section
19
. A stage, not shown, is also mounted on the outer periphery of the ink drum
1
and extends in the direction axial direction of the ink drum
1
. The stage is formed of a ferromagnetic material. The master clamper
12
is positioned to face the stage and has a magnet adhered to its surface facing the stage. When the ink drum
1
reaches a preselected angular position, an opening and closing device, not shown, causes the master clamper
12
to open and then close.
As shown in
FIG. 9
, a home position sensor
72
is mounted on the printer frame
100
A to face the rear end wall
1
a
of the ink drum
1
. The home position sensor
72
is responsive to a home position H.P (see
FIG. 13A
) assigned to the ink drum
1
. The home position sensor
72
is implemented by a transmission type optical sensor including a light emitting portion and a light-sensitive portion. An interrupter
73
protrudes outward from the rear end wall
1
a
so as to selectively interrupt the optical path of the home position sensor
72
.
As shown in
FIG. 2
, the master making section
19
includes a shaft
10
b
supporting a stencil roll
10
such that a stencil, also labeled
2
, can be paid out from the roll
10
. The stencil roll
10
includes a core
10
a
. A platen roller
9
conveys the stencil
2
while paying it out from the roll
10
. A thermal head
17
is movable into and out of contact with the platen roller
9
. A pair of cutter members
4
are located downstream of the platen roller
9
in the direction in which the stencil
2
is paid out, and cuts the stencil
2
at a preselected length. A pair of rollers
5
a
and
5
b
convey the leading edge of the stencil or master
2
toward the master clamper
12
.
The platen roller
9
has its shaft rotatably supported. A pulse motor
6
causes the platen roller
9
to rotate at a preselected peripheral speed, so that the platen roller
9
conveys the stencil
2
while pressing it against the thermal head
17
.
The thermal head
17
includes a plurality of heating elements arranged in an array in the widthwise direction of the stencil
2
. A conventional moving mechanism, not shown, moves the head
17
into and out of contact with the platen roller
9
. The head
17
selectively perforates, or cuts, the stencil
2
with heat in accordance with an image signal digitized by an analog-to-digital converter included in the document reading section
3
and processed by a master making control section not shown. As a result, an image corresponding to a document image is formed in the stencil
2
. A cutter drive motor
7
moves the upper cutter member
4
up and down via an eccentric cam
8
. When the upper cutter member
4
is moved downward, it cuts the stencil
2
in cooperation with the lower cutter member
4
.
As shown in
FIG. 2
, the ink feeding device
22
includes an ink roller
13
rotatable in synchronism with and in the same direction as the ink drum
1
for feeding ink to the inner periphery of the ink drum
1
. A doctor roller
15
is positioned in parallel to the ink roller
13
and spaced from the roller
13
by a small gap, forming an ink well
16
. The shaft
11
mentioned earlier is tubular and feeds ink to the ink well
16
via apertures formed therein. The ink roller
13
and doctor roller
15
are journalled to a front and a rear side wall affixed to the shaft
11
. The ink drum
1
and ink roller
13
are spaced from each other by a small gap to allow ink transferred from the ink well
16
to the ink roller
13
to be fed to the inner periphery of the ink drum
1
by the ink roller
13
. The ink is fed under pressure from an ink pack to the hollow shaft
11
by an ink pump, although not shown specifically.
In the illustrative embodiment, the press drum
20
with the sheet clamper
21
is used as pressing means in order to increase registration accuracy relative to the sheet P, to stabilize image density, and to reduce noise during printing. As shown in
FIG. 12
in detail, the press drum
20
has an outside diameter D equal to the outside diameter D of the ink drum
1
. Therefore, when the ink drum
1
completes one rotation, the press drum
20
also completes one rotation. This allows the sheet clamper
21
for clamping the sheet P to be mounted on the press drum
20
. By feeding the sheet P while causing its leading edge to abut against the sheet clamper
21
, it is possible to increase registration accuracy relative to the sheet P. In the illustrative embodiment, the press drum
20
has an outside diameter D of 180 mm and a length of 300 mm.
If the above advantage attainable with the press drum
20
is not of primary importance, the pressing means may be implemented by, e.g., a press roller smaller than the ink drum
1
and movable into contact with the ink drum
1
with the intermediary of the master
2
.
Another advantage achievable with the press drum
20
is as follows. As shown in
FIG. 12
, the leading edge of the sheet P abuts against the sheet clamper
21
when the clamper
21
is brought to an angular position {circumflex over (1)} (sometimes referred to as a clamp position hereinafter). Then, the sheet clamper
21
is closed to clamp the leading edge of the sheet P. As the clamper
21
clamping the paper P is moved to a position {circumflex over (2)}, the ink is transferred from the ink drum
1
to the sheet P. As the sheet clamper
21
is further moved to a position {circumflex over (3)} (sometimes referred to as an unclamp position hereinafter) past of the position {circumflex over (2)}, the clamper
21
is opened to release the leading edge of the sheet P. This prevents the sheet P from rolling up on the ink drum
1
due to the adhesion force of the ink.
As shown in
FIGS. 2
,
7
and
8
, the press drum
20
includes end walls
20
b
affixed to a shaft
23
. As shown in
FIGS. 7 and 11
, arms
25
a
and
25
b
are respectively positioned outside of the opposite end walls
20
b
, and each includes a bearing support portion
25
c
and a cam follower
27
implemented by a bearing. The shaft
23
is rotatably supported by the bearing support portions
25
c
via bearings
23
A mounted on its axially opposite ends, allowing the press drum
23
to rotate. The printer frame
100
A includes a front and a rear side wall although not shown specifically. A shaft
24
a
is affixed to the front side wall. The arm
25
a
has its one end supported by the shaft
24
a
via a bearing not shown. Likewise, the arm
25
b
has its one end supported by a shaft
24
b
supported by the rear side wall via a bearing not shown. The shafts
24
a
and
24
b
are coaxial with each other.
A drive gear, not shown, is affixed to the end portion of the shaft
24
b
inside of the arm
25
b
for transmitting rotation to the press drum
20
. A driven gear, not shown, is affixed to the end of the shaft
23
adjoining the arm
25
b
and held in mesh with the drive gear. A toothed pulley, not shown, is affixed the shaft
24
b
outside of the arm
25
b
for transmitting the rotation of the ink drum
1
. A toothed belt, not shown, is passed over the above toothed pulley and a toothed pulley affixed to the end wall
1
a
of the ink drum
1
. Another pulley is mounted on the above end plate
1
a
coaxially with the toothed pulley. In this configuration, the rotation of the main motor
150
is transmitted to the driven gear via the pulleys, belt and drive gear. The press drum
20
is therefore rotated in the same direction (counterclockwise) as and in synchronism with the ink drum
1
.
The press drum
20
has a contour made up of a cylindrical portion capable of contacting the ink drum
1
and a generally D-shaped recess
20
a
capable of preventing the drum
20
from interfering with the master clamper
12
of the drum
1
. In the illustrative embodiment, the press drum
20
consists of a core formed of synthetic resin for a light weight configuration and a nitrile rubber layer covering the core. The nitrite rubber layer reduces the irregular rotation of the press drum
20
.
The sheet clamper
21
is positioned in the recess
20
a
of the press drum
20
and includes a magnet not shown. A shaft
21
a
is disposed in the recess
20
a
and supports the base end of the clamper
21
. A spring
21
A constantly biases the clamper
21
in a direction in which the clamper
21
tends to close. A cam, not shown, causes the clamper
21
to open at a preselected timing and then close after clamping the leading edge of the sheet P, thereby retaining the sheet P on the press drum
20
.
When the sheet P is, e.g., a plain paper or a thin paper, the sheet clamper
21
clamps the leading edge portion of the sheet P over about 2 mm. On the other hand, when the sheet P is, e.g., a relatively thick paper, the clamper
21
does not clamp the leading edge of the sheet P. Should the clamper
21
clamp, e.g., a relatively thick paper, it would fail to fully close due to the elasticity of the sheet P and would thereby cause the leading edge of the sheet P to hit against the master
2
or the mesh screen present on the ink drum
1
, causing the ink to fly about.
The press drum
20
is selectively moved into or out of contact with the ink drum
1
by the following moving means. The moving means includes a pair of springs
26
a
and
26
b
and a pair of cams, not shown, in addition to the two arms
25
a
and
25
b
and two cam followers
27
stated earlier. The arms
25
a
and
25
b
are angularly movable about the shafts
24
a
and
24
b
, respectively, moving the press drum
20
toward or away from the ink drum
1
. The two cam followers
27
are rotatably mounted on the ends of the arms
25
a
and
25
b
, respectively. The springs
26
a
and
26
b
constantly bias the arms
25
a
and
25
b
, respectively, toward the ink drum
1
. The cams each contact one of the two cam followers
27
.
The above two cams each are connected to the ink drum
1
and main motor
150
by a toothed belt, not shown, and rotated in synchronism with the ink drum
1
. Each cam has a contour contacting the associated cam follower such that the outer periphery of the press drum
20
except for the recess
20
a
is pressed against the preselected porous region of the ink drum
1
where the master clamper
12
is absent. A pressure canceling mechanism, not shown, is mounted on the printer frame
100
A and includes a solenoid not shown. When an error occurs in the conveyance of the sheet P or during master making operation, the pressure canceling mechanism releases the cams and cam followers
27
and therefore the ink drum
1
and press drum
20
. In this manner, the press drum
20
is movable about the shafts
24
a
and
24
b
between a position where it is pressed against the ink drum
1
and a position where it is spaced from the ink drum
1
.
The springs
26
a
and
26
b
generate a force for pressing the press drum
20
against the ink drum
1
. The springs
26
a
and
26
b
are respectively anchored to the arms
25
a
and
25
b
in order to cause the above force to evenly act on the ink drum
1
.
The driveline including the main motor
150
, the moving means and so forth described above are shown in, e.g.,
FIGS. 1-5
of Japanese Patent Laid-Open Publication No. 9-216448 mentioned earlier.
The sheet discharging section
80
adjoining the left end of the press drum
20
includes a peeler
81
for peeling off the sheet P from the press drum
20
. A belt
85
is passed over two rollers
83
and
84
for conveying the sheet removed by the peeler
81
. A suction fan, not shown, holds the sheet P on the belt
85
by suction. The belt
85
is driven by, e.g., a motor at a speed higher than the peripheral speed of the ink drum
1
. A tray
82
is positioned at the left-hand side of the sheet discharging section
80
for receiving the sheet or printing P.
The sheet feeding device including the auxiliary sheet feeding section
28
is arranged at the right-hand side of the press drum
20
. As shown in
FIGS. 1-4
, the sheet feeding device includes an upper and a lower registration roller
33
a
and
33
b
, respectively. The registration rollers, or registering means,
33
a
and
33
b
cause the leading edge portion of the sheet P to form a loop and then convey the leading edge toward a print position between the ink drum
1
and the press drum
20
. The auxiliary sheet feeding section
28
feeds the sheets P toward the registration rollers
33
a
and
33
b.
A substantially vertical transport path RZ extend between the registration rollers
33
a
and
33
b
and the bank sheet feeding section
200
and includes a pair of intermediate rollers or conveying means
55
a
and
55
b
. The intermediate rollers
55
a
and
55
b
drive the leading edge of the sheet P fed from the sheet feeding section
200
toward the registration rollers
33
a
and
33
b
. On abutting against the registration rollers
33
a
and
33
b
, this sheet P forms a loop. A sheet feed motor or conveyance drive means
74
drives the intermediate rollers
55
a
and
55
b
. A substantially horizontal transport path RX extends between the auxiliary sheet feeding device
28
and the registration rollers
33
a
and
33
b
. Guides
38
,
39
and
40
are arranged in the transport path RX for guiding the leading edge of the sheet P to the registration rollers
33
a
and
33
b
and then to the sheet clamper
21
of the press drum
20
.
A leading edge sensor
51
is positioned in the vicinity of a position where the above two transport paths RZ and RZ join each other for sensing the leading edge of the sheet P fed from the intermediate rollers
55
a
and
55
b
. A registration sensor
52
is positioned on the transport path RX between the registration rollers
33
a
and
33
b
and the press drum
20
for sensing the leading edge of the sheet P. The leading edge sensor
51
is also responsive to the leading edge of the sheet P fed from the auxiliary sheet feeding section
28
via the transport path RX.
As shown in
FIGS. 1-4
, the auxiliary sheet feeding section
28
includes an elevatable tray
31
on which the sheets P are stacked. Sheet feeding means picks up the sheets P on the tray
31
one by one while feeding them toward the registration rollers
33
and
33
b
. The front end of the sheet stack P on the tray
31
is positioned by a front plate
35
.
In the illustrative embodiment, a registration motor
58
independent of the main motor
150
drives the registration rollers
33
and
33
b
in place of the conventional sector gear system.
The sheet feeding means includes a pickup roller
30
for paying out the sheets P stacked on the tray
31
and a separation roller
32
and a separation pad
34
(
FIG. 5
) cooperating to separate the top sheet P from the under lying sheets P. The sheet feeding means
29
is driven by the previously mentioned sheet feed motor
74
independent of the main motor
150
in place of the conventional sector gear system.
The tray
31
is elevatable such that the pickup roller
30
constantly contacts the top sheet P with a preselected pressure capable of conveying the sheet P. The tray
31
allows sheets to be fed even by hand, i.e., allows a broad range of sheets to be used. Up to 500 sheets of size A
3
or A
4
can be stacked on the tray
31
. A structure for implementing manual sheet feed is taught in, e.g., Japanese Utility Model Laid-Open Publication No. 5-18342 by way of example.
As shown in
FIGS. 3 and 14
, a pair of side fences
43
a
and
43
b
are positioned on the tray
31
and movable toward and away from each other in the widthwise direction Y of the sheets P. The side fences
43
a
and
43
b
position the opposite sides of the sheets P in accordance with the size of the sheets P.
FIG. 14
shows a sheet size sensing mechanism specifically. The sheet size sensing mechanism determines the size of the sheets P in interlocked relation to the movement of the side fences
43
a
and
43
b
in the widthwise direction Y. The mechanism includes a pinion
46
rotatably mounted on a stationary member positioned on the bottom of the tray
31
. A rack
45
is formed at one edge of the lower portion of the side fence
43
a
and held in mesh with the pinion
46
. Likewise, a rack
44
is formed at one end of the lower portion of the side fence
43
a
and held in mesh with the pinion
46
. The racks
45
and
44
face each other, as illustrated. An interrupt wall
44
a
protrudes downward from the other edge of the lower portion of the side fence
43
b
opposite to the rack
44
and is formed with a plurality of notches. Two lateral size sensors
48
a
and
48
b
are mounted on the above stationary member at a preselected distance from each other such that the interrupt wall
44
a
selectively aligns with the sensor
48
a
or
48
b
. Longitudinal size sensors
49
are also mounted on the stationary member and spaced from each other at a preselected distance in a direction of sheet feed X.
The lateral size sensors
48
a
and
48
b
each are implemented by a transmission type optical sensor having a light emitting portion and a light-sensitive portion. The size of the sheets P in the widthwise direction Y is determined on the basis of the outputs of the sensors
48
a
and
48
b
with which the interrupt portion
44
a
selectively aligns. The lengthwise size sensors
49
each are implemented by a reflection type optical sensor responsive to the size of the sheets P in the direction of sheet feed X. The sensors
48
a
,
48
b
and
49
constitute a sensor group
50
. A sheet feed control unit, which will be described later, includes a CPU (Central Processing Unit) which determines the size of the sheets P on the basis of the combination of size data output from the sensor group
50
. This kind of sheet size sensing system is taught in, e.g., Japanese Patent Laid-Open Publication No. 9-30714 mentioned earlier. Of course, the illustrative embodiment is practicable with any other suitable sheet size sensing system.
The bank sheet feeding section
200
includes trays
143
and
145
, as will be described specifically later. Sheet size sensing mechanisms similar to the above sheet size sensing mechanism are also arranged on the trays
143
and
145
and include sensor groups
50
-
1
and
50
-
2
, respectively. The sensor groups
50
-
1
and
50
-
2
will not be described specifically in order to avoid redundancy.
As shown in
FIGS. 2. 4
and
6
, the substantially horizontal transport path RX is delimited by the guides
38
,
39
and
40
. The upstream end of the guide
38
in the direction of sheet feed X is curved upward. In this configuration, the sheet P fed by the sheet feeding means in the direction X abuts against the portion of the guide
38
just upstream of the nip between the registration rollers
33
a
and
33
b
, forming a loop PA shown in FIG.
5
.
The guide
40
is bent obliquely downward from the portion of the horizontal transport path RX adjacent to the registration rollers
33
a
and
33
b
. The guide
40
forms the upper portion of the substantially vertical transport path RZ in combination with intermediate guides
41
and
42
facing the guide
40
. The end portions of intermediate guides
41
and
42
facing each other are curved away from the guide
40
, as illustrated. The bank
200
sheet feeding section includes sheet feeding means
29
-
1
and
29
-
2
. When the sheet feeding means
29
-
1
or
29
-
2
feeds the sheet P to the downstream side in a direction of sheet feed Z via a plurality of rollers, which will be described later, the leading edge of the sheet P abuts against the above portion just upstream of the nip between the registration rollers
33
a
and
33
b
and forms a loop PA, as shown in FIG.
6
.
The intermediate rollers
55
a
and
55
b
mentioned earlier are positioned in the upper portion of the vertical transport path RZ for causing the leading edge of the sheet P fed from the bank
200
to abut against the registration rollers
33
a
and
33
b
. More specifically, the rollers
55
a
and
55
b
cause the leading edge of the sheet to abut against the portion just upstream of the nip between the registration rollers
33
a
and
33
b
and form the loop PA. As shown in
FIGS. 3 and 4
, the right intermediate roller
55
a
, as viewed in
FIGS. 2 and 4
, is implemented as a drive roller made up of three roller elements. The roller elements are mounted on a single shaft
55
c
for reducing the crease of a thin sheet. The other intermediate roller
55
b
is implemented as a driven roller constantly pressed against the intermediate roller
55
a
by a spring or similar biasing means. The intermediate roller
55
b
is also made up of three roller elements although not shown in FIG.
3
. The shaft
55
c
and a shaft, not shown, on which the roller
55
b
is mounted are rotatably supported by a front panel and a rear panel included in the printer body via roller bearings
86
.
A drive system for selectively driving the intermediate rollers
55
a
and
55
b
or the sheet feeding means
29
will be described with reference to
FIGS. 3 and 4
together with a more detailed configuration of the feeding means
29
. One-way clutches
67
are interposed between the separation roller
32
and a shaft
32
a
on which the roller
32
is mounted and between the pickup roller
30
and a shaft
30
a
on which the roller
30
is mounted. Toothed pulleys
32
A and
30
A are mounted on the shafts
32
a
and
30
a
, respectively. A timing belt
37
is passed over the pulleys
32
A and
30
A. When the one-way clutches
67
are coupled, the pickup roller
30
and separation roller
32
are rotated clockwise, as indicated by an arrow in
FIG. 4
for feeding the sheets P one by one. That is, the pickup roller
30
and separation roller
32
are rotatable only in the clockwise direction.
The shafts
30
a
and
32
a
supporting the pickup roller
30
and separation roller
32
, respectively, are rotatably supported by a generally U-shaped arm
35
A whose bottom is open. The pickup roller
30
is angularly movable about the shaft
32
a
over a preselected angle due to its own weight and the weight of the arm
35
A. The shaft
32
a
protrudes outward from the rear side panel
89
b
and rotatably supported by the panel
89
b
via the roller bearing
86
. A toothed driven pulley
56
is mounted on the end of the end of the shaft
32
a
protruding from the rear panel
89
b
. A one-way clutch
56
A is interposed between the driven pulley
56
and the shaft
32
a
and allows the shaft
32
a
to rotate only in the clockwise direction, as viewed in
FIG. 4
, when coupled.
The sheet feed motor
74
is implemented by a stepping motor and independent of the driveline assigned to the ink drum
1
and including the main motor
150
. The operator of the printer
100
is capable of setting a desired print speed on print speed keys
96
(see FIG.
17
). When the desired print speed is higher than a standard print speed, the motor
74
drives the intermediate rollers
55
a
and
55
b
at a speed matching with the desired print speed. When the desired print speed is lower than the standard print speed, the motor
74
drives the rollers
55
and
55
b
at a speed matching with the standard print speed. The motor
74
therefore serves not only as sheet feed drive means for driving the separation roller
32
and pickup roller
30
, but also as sheet conveyance drive means for driving the intermediate rollers
55
a
and
55
b.
As shown in
FIGS. 3 and 4
, the sheet feed motor
74
is mounted on a motor bracket
74
A affixed to the rear panel
89
b
by screws. Toothed drive pulleys
75
a
and
75
b
are mounted on the output shaft of the motor
74
. A timing belt
57
is passed over the driven pulley
56
and drive pulley
75
b.
A drive gear
78
and a toothed driven pulley
76
are mounted on a shaft
76
a
in the vicinity of the drive pulley
75
a
. A timing belt
77
is passed over the driven pulley
76
and drive pulley
75
a
. A driven gear
79
is mounted on one end of the shaft
55
c
of the intermediate roller
55
a
and held in mesh with the drive gear
78
. A one-way clutch
79
A is interposed between the shaft
55
c
and the driven gear
79
. The one-way clutch
79
A causes the intermediate roller
55
a
to rotate clockwise for conveying the sheet P via the driven gear
79
when coupled.
When the auxiliary sheet feeding section
28
is to feed a sheet P, the sheet feed motor
74
is rotated clockwise or forward in FIG.
4
. The rotation of the motor
74
is transferred to the shaft
32
a
via the drive pulley
75
b
, timing belt
57
, driven pulley
56
and one-way clutch
56
A which is coupled then. The rotation of the shaft
32
a
is transmitted to the separation roller
32
via the one-way clutch
67
, which is coupled then, causing the roller
32
to rotate clockwise. At the same time, the rotation of the shaft
32
a
is transferred to the pulley
32
A and then to the shaft
30
a
via the timing belt
37
, pulley
30
A and one-way clutch
67
which is coupled then, causing the pickup roller
30
to rotate clockwise. The separation roller
32
and pickup roller
30
both rotating clockwise feed the top sheet P from the auxiliary tray
31
toward the registration rollers
31
. Although the rotation of the motor
74
is transferred from the drive pulley
75
a
to the driven gear
79
via the timing belt
77
, driven pulley
76
and drive gear
78
, the one-way clutch
79
A is not coupled and causes the driven gear
79
to simply idle. Therefore, the rotation of the motor
74
is not transmitted to the intermediate rollers
55
and
55
b.
On the other hand, when the bank sheet feeding section
200
is to feed a sheet P, the motor
74
is reversed, i.e., rotated in the counterclockwise direction in FIG.
4
. This rotation of the motor
74
is transmitted to the shaft
55
c
via the drive pulley
75
a
, timing belt
77
, driven pulley
76
, drive gear
78
, driven gear
79
and one-way clutch
79
A which is coupled then. As a result, the intermediate roller
55
a
is rotated clockwise while the intermediate roller
55
b
contacting the roller
55
a
is rotated counterclockwise. The intermediate rollers
55
a
and
55
b
cooperate to convey the sheet P fed from the sheet feeding section
200
toward the registration rollers
33
a
and
33
b
. In this case, although the rotation of the motor
74
is transferred to the driven pulley
56
via the drive pulley
75
b
and timing belt
57
, the one-way clutch
56
A is not coupled and causes the driven pulley
56
to simply idle. The rotation of the motor
74
is therefore not transferred to the shaft
32
a
, so that the separation roller
32
and pickup roller
30
do not rotate.
As stated above, a single motor
74
implements both of the conveyance drive means assigned to the intermediate rollers
55
a
and
55
b
and sheet feed drive means. That is, the motor
74
is reversibly driven to selectively rotate the intermediate rollers
55
a
and
55
b
or the separation roller
32
and pickup roller
30
. This obviates the need for two drive motors respectively assigned to a pair of intermediate rollers and a separation roller and a pickup roller, as taught in, e.g., Japanese Patent Laid-Open Publication No. 6-40137. It follows that the illustrative embodiment is free from layout limitations ascribable to two motors and therefore saves space and cost.
An upper intermediate sensor
53
is mounted on the intermediate guide
42
between the leading edge sensor
51
and the intermediate rollers
55
a
and
55
b
for sensing the leading edge of the sheet P. The bank sheet feeding section
200
includes a pair of bank registration rollers
106
a
and
106
b
. A lower intermediate sensor
54
is mounted on the lower portion of the intermediate guide
42
on the vertical transport path RZ between the intermediate rollers
55
a
and
55
b
and the bank registration rollers
106
a
and
106
b
. The lower intermediate sensor
54
is also responsive to the leading edge of the sheet P. The intermediate sensors
53
and
54
each are implemented by a reflection type optical sensor including a light emitting portion and a light-sensitive portion. As partly shown in
FIG. 5
, the intermediate guide
42
is formed with holes for passing light issuing from the light emitting portions of the sensors
53
and
54
.
A sheet jam occurred on the upstream portion of the vertical transport path RZ including the intermediate rollers
55
a
and
55
b
is detected on the basis of the output of the intermediate sensor
53
. The lower intermediate sensor
54
determines whether or not the sheet P is fed from the bank sheet feeding section
200
within a preselected period of time, and senses a sheet jam occurred on the path RZ upstream of the intermediate rollers
55
a
and
55
b.
The registration motor
58
for driving the registration roller
33
b
is also implemented by a stepping motor. As shown in
FIG. 4
, a drive pulley
58
A is mounted on the output shaft of the motor
58
. A timing belt
59
is passed over the drive pulley
58
A and a driven pulley
33
A mounted on the shaft
33
c
of the registration roller
33
b
. The drive pulley
58
A and driven pulley
33
A both are toothed pulleys engaged with the timing belt
59
without slipping.
As shown in
FIG. 10
, the upper registration roller
33
a
is made up of three roller elements mounted on the shaft
33
c
for reducing the crease of a thin sheet. While the upper guide
38
is formed with five holes
38
a
in an array, the three roller elements of the registration roller
33
a
are respectively rotatably received in three intermediate holes
38
a
. A moving mechanism, not shown, moves the registration roller
33
a
into and out of contact with the registration roller
33
b
which is implemented as five roller elements, not shown in FIG.
10
.
As shown in
FIGS. 1 and 10
, in the illustrative embodiment, the leading edge sensor
51
is mounted on the upper guide
38
at a position 19 mm upstream of the center of the shaft
33
c
in the direction of sheet feed X. Likewise, in the illustrative embodiment, the registration sensor
52
is mounted on the upper guide
38
at a position 19 mm downstream of the center of the shaft
33
c
in the above direction X. The sensors
51
and
52
both are reflection type optical sensors each including a light emitting portion and a light-sensitive portion. As shown in
FIGS. 5 and 6
, the guide
38
is formed with holes for passing light issuing from the light transmitting portions and light reflected from the sheet P.
The leading edge sensor
51
senses a jam occurred in the direction of horizontal sheet feed X including the sheet feeding means
29
or at the upstream side in the direction of vertical sheet feed Z. In addition, when the leading edge of the sheet P fed from the auxiliary sheet feeding section
28
or the bank sheet feeding section
200
abuts against the portion just upstream of the nip between the registration rollers
33
a
and
33
b
, the leading edge sensor
51
joins in the adjustment of the loop PA which the sheet P is expected to form. The registration sensor
52
also responsive to the leading edge of the sheet P senses a sheet jam occurred in the direction X including the registration rollers
33
a
and
33
b
or at the upstream side of the direction Z.
The moving mechanism assigned to the upper registration roller
33
a
includes a pair of roller arms
33
d
supporting the opposite ends of the shaft
33
c
at one end. The roller arms
33
d
are affixed at the other end to a shaft
36
rotatable by a preselected angle about its own axis. A cam follower, not shown, for canceling a pressure is mounted on the rear end of the shaft
36
and includes a bearing. A cam, not shown, is mounted on the printer frame
100
A and slidably contacts the cam follower. A spring, not shown, constantly biases the upper registration roller
33
a
toward the lower registration roller
33
b.
In the illustrative embodiment, the above cam is driven by the main motor
150
via gears or similar drive transmitting members. Alternatively, such a mechanism moving mechanism may be replaced with a solenoid, stepping motor or similar electrical mechanism in order to further reduce the load to act on the main motor
150
, as stated previously.
Assume that the ink drum
1
and press drum
20
each rotate via the positions to be described with reference to
FIGS. 13A and 13B
while the sheet P is conveyed.
FIG. 13
shows the ink drum
1
and press drum
20
held in their home positions H.P. When the press drum
20
is in its home position H.P, the recess
20
a
is positioned on the top of the drum
20
and faces the master clamper
12
of the ink drum
1
. The clockwise rotation of the ink drum
1
from the home position H.P is represented by an angle θ. The counterclockwise rotation of the press drum
20
from the home position H.P is represented by an angle θ′. It is to be noted that the ink drum
1
and press drum
20
each are removable from the printer body
100
A when held in the home position H.P.
The operation of the moving mechanism associated with the upper registration roller
33
a
is as follows. As shown in
FIG. 20
, in the illustrative embodiment, the pressure for pressing the upper registration roller
33
a
against the lower registration roller
33
b
is applied (ON) when the ink drum
1
is rotated to a position θ=257.5° and then canceled (OFF) when it is rotated to a position θ=57.5° (417.5°). After the sheet clamper
21
has clamped the leading edge of the sheet P, the registration roller cam is rotated such that the bearing of the cam follower contacts the projection of the cam. As a result, the registration roller
33
a
is raised away from the lower registration roller
33
b
against the action of the spring. The roller
33
a
is continuously spaced from the roller
33
b
until the trailing edge of the above sheet P fully moves away from the rollers
33
a
and
33
b.
Referring again to
FIG. 1
, the bank sheet feeding section
200
is removably positioned beneath the printer frame
100
A via its bank frame
200
A. The bank frame
200
A accommodates an upper and a lower sheet feeding section
201
and
202
therein. Guides, which will be described, form a lower portion of the vertical transport path RZ. A pair of bank registration rollers
106
a
and
106
b
, a bank registration sensor
135
, a pair of intermediate rollers
118
a
and
118
b
and a bank feed sensor
136
are sequentially arranged in this order toward the bottom of the bank frame
200
A.
As shown in
FIGS. 1 and 15
, the upper sheet feeding section
201
includes an upper tray unit
144
including a tray
143
and raising and lowering means. The raising and lowering means causes the tray
143
to move, in a horizontal position, up and down between an upper limit position locating the top of a sheet stack P loaded thereon at a sheet feed position and a lower limit position. An upper limit sensor
137
is responsive to the upper limit position of the top of the sheet stack P. A lower limit sensor
138
is responsive to the lower limit position of the tray
143
. Sheet feeding means
29
-
1
feeds the top sheet P from the tray
143
while separating it from the underlying sheets P. A sheet size sensing mechanism includes the sensor group
50
-
1
stated earlier.
The upper tray
143
is implemented by sheet metal and forms a part of the tray unit
144
which is removable from the bank frame
200
A via the front end of the frame
200
A in the direction perpendicular to a direction of sheet feed X
1
, i.e., perpendicular to the sheet surfaces of
FIGS. 1 and 15
. The upper tray unit
144
includes a casing
144
A on which the upper tray
143
is mounted together with other structural parts. The casing
144
A includes a front wall
144
a
for positioning the front edge of the sheet stack P below the sheet feeding means
29
-
1
.
In the illustrative embodiment, the tray
143
is expected to be loaded with sheets P of size A
3
or A
4
and up to 1,000 sheets in terms of plain papers. Of course, sheets of any other size can be stacked on the tray
143
, as needed.
Alternatively, the upper tray unit
144
may be implemented as a sheet feeding device taught in any one of Japanese Patent Laid-Open Publication Nos. 5-124737, 5-221536, 6-144600 and 7-137851 mentioned earlier. Sheet feeding devices disclosed in these documents each use a front loading system which allow the operator to perform various operations including a sheet replenishing operation, standing at the front of the device. In addition, the devices each selectively effect tandem sheet feed allowing sheets to be replenished without interrupting sheet feed under way or non-tandem sheet feed.
Use may also be made of a sheet feeding device taught in Japanese Patent Application No. 10-199188 and having the following construction. A first tray is movable up and down with a stack of sheets. Sheet feeding means sequentially feeds the sheets from the first tray in a preselected direction. A second tray is positioned substantially parallel to the first tray in the horizontal direction and loaded with a stack of sheets. Shifting means is capable of shifting the entire sheet stack from the second tray to the first tray. Sheets greater in size than at least the sheets to be stacked on the first tray or the second tray can be stacked over the first and second trays and fed by the above sheet feeding means. Raising and lowering means causes the first tray to move up and down in a horizontal position. When the sheets of great size are stacked over the first and second trays, interlocking means raises the second tray in a substantially horizontal position in interlocked relation to at least the elevation of the first tray. In
FIGS. 1 and 15
, the upper tray unit
144
and tray
143
are shown as being bisected by phantom lines in order to show the outline of the tandem sheet feed.
The sheet feeding means
29
-
1
includes a pickup roller
30
. The upper limit sensor
137
is responsive to the position of the pickup roller
30
where it contacts the top sheet P on the tray
143
with an adequate pressure and pays it out. The sensor
137
is implemented by an interruption type optical sensor made up of a light emitting portion and a light-sensitive portion. The sensor
137
includes a feeler, not shown, affixed to the arm
35
A,
FIG. 4
, and angularly movable to contact the top sheet P. An interrupter, not shown, is interlocked to the feeler and selectively interrupts the optical path between the light emitting portion and the light-sensitive portion. The sensor
137
is mounted on the bank frame
200
A in the vicinity of the pickup roller
30
. The sensor
137
may be identical in configuration with, e.g., an optical sensor PS
2
shown in
FIG. 3
of Laid-Open Publication No. 2-265825 mentioned earlier.
The lower limit sensor
138
is located at a preselected position in the bank frame
200
A and implemented by a reflection type optical sensor made up of a light emitting portion and a light-sensitive portion. While the light emitting portion emits light toward one side wall of the tray
143
, the light-sensitive portion receives the resulting reflection from the side wall.
As shown in
FIGS. 1 and 15
, a lower sheet feeding section
202
includes a lower tray unit
146
including a tray
145
and raising and lowering means. The raising and lowering means causes the tray
145
to move, in a horizontal position, up and down between an upper limit position locating the top of a sheet stack P loaded thereon at a sheet feed position and a lower limit position. An upper limit sensor
139
is responsive to the upper limit position of the top of the sheet stack P. A lower limit sensor
140
is responsive to the lower limit position of the tray
145
. Sheet feeding means
29
-
2
feeds the top sheet P from the tray
145
while separating it from the underlying sheets P. A sheet size sensing mechanism includes the sensor group
50
-
2
stated earlier.
The lower tray
145
is implemented by sheet metal and forms a part of the lower tray unit
146
which is removable from the bank frame
200
A via the front end of the frame
200
A in the direction perpendicular to a direction of sheet feed X
1
, i.e., perpendicular to the sheet surfaces of
FIGS. 1 and 15
. The lower tray unit
146
includes a casing
146
A on which the tray
145
is mounted together with other structural parts. The casing
146
A includes a front wall
146
a
for positioning the front edge of the sheet stack P be low the sheet feeding means
29
-
2
.
In the illustrative embodiment, the tray
145
is expected to be loaded with sheets P of size A
3
or A
4
and up to 500 sheets in terms of plain papers. Of course, sheets of any other size can be stacked on the tray
145
, as needed.
The sheet feeding means
29
-
2
also includes a pickup roller
30
. The upper limit sensor
139
, like the upper limit sensor
137
, is responsive to the position of the pickup roller
30
where it contacts the top sheet P on the tray
145
with an adequate pressure and pays it out. The sensor
139
is mounted on the bank frame
200
A in the vicinity of the pickup roller
30
.
The lower limit sensor
140
is located at a preselected position in the bank frame
200
A and senses the lower limit position of the tray
145
with the same configuration and operation with the lower limit sensor
138
.
The raising and lowering means included in the upper sheet feeding means
201
is driven by an upper up-down motor
141
shown only in FIG.
19
and may be implemented by a wire type elevation mechanism shown in, e.g.,
FIGS. 3 and 4
of Laid-Open Publication No. 6-40137 mentioned earlier. The raising and lowering means included in the lower sheet feeding means
202
is driven by a lower up-down motor
142
also shown only in
FIG. 19
via a wire type elevation mechanism. The up-down motors
141
and
142
are implemented by DC motors. Of course, use may be made of a pantograph type elevation mechanism using X arms and taught in Laid-Open Publication No. 10-199188 mentioned earlier.
The auxiliary sheet feeding section
28
also includes raising and lowering means similar to the above raising and lowering means and sensors similar to the upper limit sensor
139
and lower limit sensor
140
.
As shown in
FIG. 15
, the lower portion of the vertical transport path RZ includes a pair of guides
127
respectively connectable to the guide
40
and intermediate guide
42
of the printer body
100
A. A pair of upper guides
128
guide the sheet P paid out from the sheet feeding means
29
-
1
of the upper sheet feeding section
201
.
A pair of lower guides
129
are branched off the upper guides
128
and extend downward for guiding the sheet P paid out from the sheet feeding means of the lower sheet feeding section
202
.
The bank registration rollers
106
a
and
106
b
are positioned on the vertical transport path PZ downstream of the sheet feeding means
29
-
1
and
29
-
2
in the direction of vertical sheet feed Z. The rollers
106
a
and
106
b
feed the leading edge of the sheet P toward the registration rollers
33
a
and
33
b
disposed in the printer body at a preselected timing. The rollers
106
a
and
106
b
are unique to the bank sheet feeding section
200
and used to obviate the skew, crease and lateral misregistration of the sheet P ascribable to the long transport path to the registration rollers
33
a
and
33
b
. The rollers
106
a
and
106
b
are different from the rollers
33
a
and
33
b
in that they slightly bite the leading edge of the sheet P fed thereto in order to prevent it from falling due to its own weight. Another difference is that the rollers
106
a
and
106
b
are constantly held in contact with each other by a spring not shown.
The bank registration sensor
135
is positioned on the path RZ upstream of the bank registration rollers
106
a
and
106
b
and implemented by a reflection type sensor made up of a light emitting portion and a light-sensitive portion. The sensor
135
senses the leading edge and trailing edge of the sheet P to thereby determine whether or not the sheet P has reached the registration rollers
106
a
and
106
b
within a preselected period of time. Also, the sensor
135
serves to detect a sheet jam occurred on the path RZ upstream of the registration rollers
106
a
and
106
b
. In addition, the sensor
135
joins in the adjustment of a loop which the sheet P fed from the sheet feeding means
29
-
1
or the intermediate rollers
118
a
and
118
b
forms on abutting against the portion just upstream of the nip between the registration rollers
106
a
and
106
b.
The intermediate rollers
118
a
and
118
b
are positioned on the path RZ between the sheet feeding means
29
-
1
and
29
-
2
for conveying the sheet P paid out from the sheet feeding means
29
-
2
to the downstream side of the path RZ. The bank feed sensor
136
is positioned on the path RZ upstream of the intermediate rollers
118
a
and
118
b
and implemented by a reflection type optical sensor made up of a light emitting portion and a light-sensitive portion. By sensing the leading edge and trailing edge of the sheet P, the sensor
136
determines whether or not the leading edge of the sheet P has reached the intermediate rollers
118
a
and
118
b
within a preselected period of time. In addition, the sensor
136
detects a sheet jam occurred on the path RZ between the sheet feeding means
29
-
2
and the intermediate rollers
118
a
and
118
b.
As stated above, the sheet feeding means
29
-
1
and intermediate rollers
118
a
and
118
b
play the role of bank sheet feeding means for feeding the leading edge of the sheet P toward the bank registration rollers
106
a
and
106
b
and causing it to form a loop on abutting against the rollers
106
a
and
106
b.
FIG. 16
shows a bank sheet feed drive mechanism
125
for causing the sheets P to be sequentially fed from the bank sheet feeding section
200
. As shown, the sheet feed drive mechanism
125
includes a bank registration roller drive mechanism
125
A for driving the bank registration rollers
106
a
and
106
b
. A sheet feeding section drive mechanism
125
B selectively drives the pickup roller
30
and a separation roller
32
included in the upper sheet feeding means
29
-
1
, the intermediate rollers
118
a
and
118
b
or the pickup roller
30
and a separation roller
32
included in the lower sheet feeding means
29
-
2
. It is to be noted that the directions of rotation of the various structural elements to be described hereinafter are the directions as seen from the right in FIG.
16
.
The bank registration roller drive mechanism
125
A includes a reversible bank registration motor or bank registration drive means
101
for driving the bank registration rollers
106
a
and
106
b
. A gear train for transmitting the rotation of the motor
101
to the shaft
106
c
of the registration roller
106
b
includes a drive gear
102
mounted on the output shaft of the motor
101
, an idle gear
103
meshing with the drive gear
102
, and a driven gear
105
meshing with the idle gear
103
. A registration clutch
104
is interposed between the driven gear
105
and the above shaft
106
c
for selectively interrupting the transfer of the rotation of the motor
101
transmitted to the driven gear
105
.
The motor
101
is implemented by a stepping motor. The idle gear
103
is journalled to a bank side wall
126
. The shaft
106
c
of the registration roller
106
b
is rotatably supported by the side wall
126
via a roller bearing not shown. The registration clutch
104
is implemented by an electromagnetic clutch.
The sheet feeding section drive mechanism
125
B includes a reversible bank sheet feed motor
107
for selectively driving the separation roller
32
and pickup roller
30
of the upper sheet feeding means
29
-
1
or those of the lower sheet feeding means
29
-
2
or the intermediate rollers
118
a
and
118
b
. An upper gear train, which will be described later, transfers the forward rotation (clockwise) of the motor
107
to the shaft
32
a
of the separation roller
32
of the upper sheet feeding means
29
-
1
. A one-way clutch
110
A interposed between intermediate gears
109
a
and
109
b
and a drive pulley
110
coaxial with the gears
109
a
and
109
b
. The one-way clutch
110
A transfers clockwise rotation when coupled. An intermediate gear train, which will also be described later, transmits the reverse rotation (counterclockwise) of the motor
107
to the shaft
118
c
of the intermediate roller
118
b
. An intermediate clutch
117
is interposed between the shaft
118
c
of the intermediate roller
118
b
and the driven gear
116
for selectively interrupting the transfer of the rotation of the motor
107
. A timing belt
118
A is passed over the drive pulley
110
and driven pulley
119
. A lower gear train, which will also be described later, transmits the reverse rotation (counterclockwise) of the motor
107
to the shaft
32
a
of the separation roller
30
of the lower sheet feeding means
29
-
2
. A sheet feed clutch
123
is interposed between the shaft
32
a
of the separation roller
32
of the lower sheet feeding means
29
-
2
for selectively interrupting the transfer of the rotation of the motor
107
.
As stated above, the motor
107
selectively plays the role of bank sheet conveyance drive means or bank sheet feed drive means independent of the driveline assigned to the ink drum
1
. The bank sheet conveyance drive means drives the upper sheet feeding means
29
-
1
and intermediate rollers
118
a
and
118
b
. The bank sheet feed drive means drives the separation roller
32
and pickup roller
30
of the upper sheet feeding means
29
-
1
or those of the lower sheet feeding means
29
-
2
. In addition, the motor
107
drives the sheet feeding means
29
-
1
or the intermediate rollers
118
a
and
118
b
in accordance with the desired print speed input on the print speed keys
96
. Specifically, if the desired print speed is higher than the previously mentioned standard print speed, the motor
107
causes the upper sheet feeding means
29
-
1
or the intermediate rollers
118
a
and
118
b
to convey the sheet P at a speed matching with the desired print speed. If the desired print speed is lower than the standard speed, the motor
107
causes the sheet feeding means
29
-
1
or the rollers
118
a
and
118
b
to convey the sheet P at a speed matching with the standard print speed.
The upper gear train includes a drive gear
108
mounted on the output shaft of the motor
107
. An intermediate gear
109
a
is held in mesh with the drive gear
108
. A drive pulley
110
and an intermediate gear
109
b
are coaxial with the intermediate gear
108
. An idle gear
111
is held in mesh with the intermediate gear
109
b
. A small diameter idle gear
112
a
is held in mesh with the idle gear
111
. A large diameter idle gear
112
b
is coaxial with the idle gear
112
a
. A driven gear
113
is mounted on the end of the shaft
32
a
of the separation roller
32
included in the upper sheet feeding means
29
-
1
and held in mesh with the above idle gear
112
b.
The intermediate gears
109
a
and
109
b
, idle gear
111
, small diameter idle gear
112
a
and large diameter idle gear
112
b
each are journalled to the bank side wall
126
via a respective shaft. The shaft
32
a
of the separation roller
32
of the upper sheet feeding means
29
-
1
is journalled to the bank side wall
1265
via a roller bearing not shown.
The intermediate gear train includes a small diameter idle gear
114
a
meshing with the drive gear
108
, a large diameter idle gear
114
b
coaxial with the idle gear
114
a
, an idle gear
115
meshing with the idle gear
114
b
, and a driven gear
116
mounted on the end of the shaft
118
c
of the intermediate roller
118
b
and meshing with the idle gear
115
. The small diameter idle gear
114
a
, large diameter idle gear
114
b
and idle gear
115
each are journalled to the bank side wall
126
via a respective shaft. The shaft
118
c
of the intermediate roller
118
b
is journalled to the bank side wall
1265
via a roller bearing not shown.
The lower gear train includes an intermediate gear
120
coaxial with the driven pulley
119
, a small diameter idle gear
121
a
meshing with the intermediate gear
120
, a large diameter idle gear
121
b
coaxial with the idle gear
121
a
, and driven gear
122
mounted on the end of the shaft
32
a
of the separation roller
32
of the lower sheet feeding means
29
-
2
and meshing with the idle gear
121
b
. The intermediate gear
120
, small diameter idle gear
121
a
and large diameter idle gear
121
b
each are journalled to the bank side wall
126
via a respective shaft. The shaft
32
a
of the separation roller
32
of the lower sheet feeding means
29
-
2
is journalled to the bank side wall
126
via a roller bearing not shown.
The intermediate clutch
117
and sheet feed clutch
123
are electromagnetic clutches.
The sheet feeding section drive mechanism
125
B is operated as follows. To feed the sheet P from the upper sheet feeding means
29
-
1
, the motor
107
is rotated, e. g., clockwise in FIG.
16
. The rotation of the motor
107
is transferred to the shaft
32
a
of the separation roller
32
of the upper sheet feeding means
29
-
1
via the upper gear train. As a result, the shaft
32
a
and therefore the separation roller
32
and pickup roller
30
are rotated clockwise, as described with reference to
FIGS. 3 and 4
. The separation roller
32
and pickup roller
30
cooperate to pay out only the top sheet P from the tray
143
. At this instant, the intermediate gear
109
a
is rotated counterclockwise, so that only the shafts of the intermediate gears
109
a
and
109
b
rotate counterclockwise due to the action of the one-way clutch
110
A. Therefore, the rotation of the motor
107
is not transmitted to the drive pulley
110
.
To feed the sheet P from the lower sheet feeding means
29
-
2
, the motor
107
is rotated in the opposite direction, e.g., counterclockwise in FIG.
16
. Then, the intermediate gear
109
a
is rotated clockwise with the result that the shafts of the intermediate gears
109
a
and
109
b
and drive pulley
110
are integrally rotated clockwise due to the action of the one-way clutch
110
A. In this condition, the rotation of the motor
107
causes the shaft
32
a
of the separation roller
32
of the lower sheet feeding means
29
-
2
to rotate clockwise via the lower gear train. Consequently, the separation roller
32
and pickup roller
30
rotate clockwise, as described with reference to
FIGS. 3 and 4
. At the same time, the intermediate gears
109
a
and
109
b
are rotated clockwise with the result that the shaft
32
a
of the separation roller
32
of the upper sheet feeding means
29
-
1
tends to rotate counterclockwise via the upper gear train. However, the one-way clutch
67
causes only the shaft
32
a
to rotate and prevents the rotation from being transferred to the pulley
32
A. This prevents the rotation of the motor
107
from being transmitted to the separation roller
32
or the pickup roller
30
.
Arrangements for sheet feed control included in the illustrative embodiment in addition to the above sensors and motors will be described hereinafter with reference to
FIGS. 2-19
. As shown in
FIG. 2 and 7
, interrupters
68
and
69
for printer sheet feed and printer registration, respectively, are fastened to the outer surface of the rear end wall
20
b
of the press drum
20
by screws. The interrupters
68
and
69
are spaced by a preselected distance in the circumferential direction of the ink drum
20
. In addition, interrupters
70
and
71
for bank sheet feed and bank registration, respectively, are fastened to the above surface of the rear end wall
20
b
by screws and spaced by a preselected distance from each other. The interrupters
70
and
71
are positioned on a circle radially inward of a circle on which the interrupters
68
and
69
are positioned. The interrupters
68
-
71
each are formed of, e.g., stainless steel or similar sheet metal or synthetic resin and is generally L-shaped in a front view and a side elevation; the end of the letter “L” protrudes to the rear.
As shown in
FIGS. 2
,
7
and
11
, a sheet feed start sensor
65
and a bank sheet feed start sensor
66
are fastened to a sensor bracket
64
by screws
63
. The sheet feed start sensor
65
faces the circle of the press drum
20
on which the printer sheet feed interrupter
68
and printer registration interrupter
69
are positioned. The bank sheet feed start sensor
66
faces the circle of the press drum
20
on which the bank sheet feed interrupter
70
and bank registration interrupter
71
are positioned. The sensors
65
and
66
are transmission type optical sensors each having a light emitting portion and a light-sensitive portion.
The printer sheet feed interrupter
68
interrupts the optical path of the sheet feed start sensor
65
when the press drum
20
i s rotated counterclockwise to a preselected position. These interrupter
68
and sensor
65
constitute sheet feed timing sensing means for determining the time when the sheet feeding means
29
of the auxiliary sheet feeding section
28
should pay out the leading edge of the top sheet P toward the registration rollers
33
a
and
33
b
. As shown in
FIG. 20
, in the illustrative embodiment, the above preselected position of the press drum
20
, i.e., the position of the interrupter
68
on the press drum
20
is such that the sensor
65
turns on when the press drum
20
is rotated counterclockwise to an angular position θ′ of 194°. At this instant, the registration roller moving mechanism stated earlier moves the upper registration roller
33
a
away from the lower registration roller
33
b
. In this condition, the bias of the spring does not act on the sheet P.
The printer registration interrupter
69
interrupts the optical path of the sheet feed sensor
65
when the press drum
20
is rotated counterclockwise to a preselected position. These interrupter
69
and sensor
65
constitute timing sensing means for determining the time when the registration rollers
33
a
and
33
b
should drive the leading edge of the sheet P toward the sheet clamper
21
of the press drum
20
. The above preselected position of the press drum
20
, i.e., the position of the interrupter
69
on the press drum
20
is such that the sensor
65
turns on when the press drum
20
is rotated counterclockwise to an angular position θ′ of 307°.
The bank sheet feed interrupter
70
interrupts the optical path of the bank sheet feed start sensor
66
when the press drum
20
is rotated counterclockwise to a preselected position. These interrupter
70
and sensor
66
serve as bank sheet feed timing sensing means for determining the time when the upper sheet feeding means
29
-
1
or the lower sheet feeding means
29
-
2
should pay out the leading edge of the sheet P. As shown in
FIG. 20
, in the illustrative embodiment, the above preselected position of the press drum
20
, i.e., the position of the interrupter
70
on the press drum
20
is such that the sensor
66
turns on when the press drum
20
is rotated counterclockwise to an angular position θ′ of 0° (home position of the press drum
20
).
The bank registration interrupter
71
interrupts the optical path of the bank sheet feed start sensor
66
when the press drum
20
is rotated counterclockwise to a preselected position. These interrupter
71
and sensor
66
constitute bank registration timing sensing means for determining the time when the registration rollers
106
a
and
106
b
should drive the leading edge of the sheet P toward the registration rollers
33
a
and
33
b
. In the illustrative embodiment, the above preselected position of the press drum
20
, i.e., the position of the interrupter
71
on the press drum
20
is such that the sensor
66
turns on when the press drum
20
is rotated counterclockwise to an angular position θ′ of 104°.
As shown in
FIGS. 2
,
7
and
8
, an encoder
60
is fastened to the rear wall
20
b
of the press drum
20
by screws
63
via two spacers
62
. In the illustrative embodiment, the encoder
60
is implemented by a single channel, incremental photoencoder formed with a number of radial slits, as illustrated. As shown in
FIGS. 2
,
8
and
11
, an encoder sensor
61
is fastened to the inner surface of the arm
25
b
in the vicinity of the encoder
60
via the previously mentioned sensor bracket
64
. The encoder sensor
61
sandwiches the peripheral portion of the encoder
60
at a preselected distance. The encoder
60
and encoder sensor
61
constitute a pulse encoder for sensing a change in the rotation speed of the press drum
20
in order to control the time when the registration rollers
33
a
and
33
b
should feed the leading edge of the sheet P toward the sheet clamper
21
of the press drum
20
.
As shown in
FIGS. 7 and 8
, the encoder
60
has the same outside diameter as the press drum
20
although it is shown in a reduced scale in, e.g.,
FIG. 2
for the sake of illustration. The encoder
61
is not shown in
FIG. 7
for the same reason, and the center bracket
64
is not shown in, e.g.,
FIGS. 2 and 8
.
Reference will be made to
FIG. 19
for describing an operation panel
90
in detail. The operation panel
90
is mounted above the reading section
3
. As shown, the operation panel
90
includes a perforation start key
91
for setting and inputting the start of a sequence beginning with the reading of a document image and ending with the perforation of the stencil
2
. Numeral keys
93
allow, e.g., a desired number of printings to be input thereon. A print start key
92
is used to start printing the desired number of printings. An LCD
94
displays various information set or sensed during a procedure beginning with the reading of a document image and ending with printing. A tray selection and sheet size key (sheet size key hereinafter)
98
is used to select and input the sheet size of the auxiliary tray
31
, upper tray
143
or lower tray
145
. A set key
95
is used to set the above sheet size selected and input or any other information input. A left arrow key
99
B is used to select job information appearing on the LCD
94
by shifting it to the left. A right arrow key
99
C is used to select the job information by shifting it to the right. Cursor keys
99
A, i.e., four shift keys
99
A
c
,
99
A
a
,
99
A
b
and
99
A
d
are used to select the job information appearing on the LCD
94
by shifting it rightward, leftward, upward or downward. The print speed keys or print speed setting means
96
mentioned earlier are made up of an UP key
96
b
and a DOWN key
96
a
. A speed indicator
97
is implemented by a group of LEDs (Light Emitting Diodes) for displaying a print speed input on the UP key
96
b
or the DOWN key
96
a
. A kind-of-sheet key or kind-of-sheet setting means
190
is used to set the kind of sheets. LEDs
191
display the kind of sheet input on the key
190
or the kinds of sheets automatically sensed by kind-of-sheet sensors
195
,
195
-
1
and
195
-
2
which will be described later. The sensors
195
,
195
-
1
and
195
-
2
are indicated by phantom lines in FIG.
19
and constitute kind-of-sheet sensing means.
Every time the operator presses the sheet size input key
98
, “Sheet Size” appearing on the LCD
94
is replaced with “Cancel”. In this sense, the key
98
bifunctions as a cancel key
98
A for restoring the original picture of the LCD
94
.
A specific picture to appear on the LCD
94
is shown at the top of FIG.
18
. As shown, a rectangle appearing at the top of the picture shows a job to be selected by the operator, i.e., a message “Ready to make a master and print.” When the operator watching this picture presses the sheet size key
98
, the top picture is replaced with a second specific picture shown just below the top or first picture. In the second picture, “Automatic” highlighted is automatically selected, i.e., a sheet size matching with a document size is automatically set; the operator watching this picture may press any desired key. For example, when the operator presses the cancel key
98
A, the original picture at the top of
FIG. 18
again appears. When the operator presses the right arrow key
99
C or the right cursor key
99
A
a
, the above second picture is replaced with a third picture shown below the second picture; this picture shows “(*A
4
E)”, i.e., that the sheets P of size A
4
stacked on the “Upper Tray (tray
143
)” are selected. As the operator watching this picture presses the set key
95
, a fourth picture shown below the third picture appears.
In the speed indicator
97
, the center LED indicated by hatching is representative of “set print speed: third” which is the standard print speed usually used. This print speed is automatically set if the operator does not press the DOWN key
96
a
or the UP key
96
b
. In the illustrative embodiment, the leftmost LED to the rightmost LED, as viewed in
FIG. 17
, are respectively representative of “set print speed: first” which is the lowest speed of 60 printings/min or 60 rpm (revolutions per minute), “set print speed: second” which is a speed of 75 printings/min or 75 rpm, “set print speed: third” which is a speed of 90 printings/min or 90 rpm, “set print speed: fourth” which is a speed of 105 printings/min or 105 rpm, and “set print speed: fifth” which is the highest speed of 120 printings/min or 120 rpm.
A print speed assigned to trial printing and which does not appear on the speed indicator
97
(trial print speed hereinafter) will be briefly described. Trial printing, as distinguished from regular printing to occur just after master making, is effected to fill up the perforations of the master
2
wrapped around the ink drum
1
with ink and cause the master
2
to closely adhere to the ink drum
1
. A printing produced by the trial printing is not dealt with or counted as a regular printing. The LEDs of the speed indicator sequentially turn on every time the DOWN key
96
a
or the UP key
96
b
is pressed, sequentially showing the first to fifth consecutive print speeds. The DOWN key
96
a
and UP key
96
b
adjoin the above LEDs. This allows the operator to surely see the print speed input and set.
The lamps
191
, i.e., three lamps
191
a
,
191
b
and
191
c
are respectively representative of plain papers selected, relatively thick sheets selected, and relatively thin sheets selected. Every time the operator presses the kind-of-sheet input key
190
, one of the lamps
191
a
-
191
c
turns on; the lamp
191
a
turns on when the operator presses the key
190
one time, the lamp
191
b
turns on when the operator presses the key
190
two times, or the lamp
191
c
turns on when the operator presses the key
190
three times. The lamps
191
therefore indicate the kind of sheets selected by the operator or the kinds of sheets sensed by the kind-of-sheet sensors
195
,
195
-
1
and
195
-
2
.
There are shown in
FIG. 19
sheet a printer feed controller
88
and a bank sheet feed controller
148
mainly assigned to the printer
100
and bank sheet feeding section
200
, respectively. The sheet feed controllers
88
and
148
each are implemented by a microcomputer including a CPU, I/O (Input/Output) ports, a ROM (Read Only Memory), a RAM (Random Access Memory) and a timer interconnected by a signal bus, although not shown specifically. The sheet feed controllers
88
and
148
interchange ON/OFF signals, data signals and command signals with each other by serial communication.
The printer sheet feed controller
88
, more specifically its CPU, is electrically connected to the various keys of the operation panel
90
via the input port for receiving key signals therefrom. The controller
88
is electrically connected to the displays and indicators of the operation panel
80
via the output ports for controlling them by sending command signals.
The controller
88
is electrically connected to the leading edge sensor
51
via the input port and receives from the sensor
51
a signal for rotating the sheet feed motor
74
in either one of opposite directions to cause the sheet P to form a loop. Also, the controller
88
is electrically connected to the registration sensor
52
via the input port and receives from the sensor
52
a signal for compensating for the slip of the sheet P on the registration rollers
33
a
and
33
b.
The controller
88
is electrically connected to the sheet feed start sensor
65
via the input port and receives from the sensor
65
a signal (start signal) for starting driving the sheet feed motor
74
and registration motor
58
.
The controller
88
is electrically connected to the bank sheet feed start sensor
66
via the input port and receives from the sensor
66
a signal (start signal) for starting driving the bank sheet feed motor
107
and bank registration motor
101
. This signal is transferred from the controller
88
to the other or bank sheet feed controller
148
. The sheet feed controller
88
is electrically connected to the upper and lower intermediate sensors
53
and
54
via the input port and receives from the sensors
53
and
54
data signals relating to the leading edge of the sheet P fed from the bank sheet feeding section
200
.
The controller
88
is electrically connected to the encoder sensor
61
via the input port and receives from the sensor
61
a pulse signal relating to a change in the rotation speed of the press drum
20
. The sheet feed controller
88
is electrically connected to the sensor group
50
(not shown in
FIG. 19
for the simplicity of illustration) responsive to the sheet size of the auxiliary tray
31
via the input port. The controller
88
receives from the sensor group
50
data signals relating to the sheet size of the auxiliary tray
31
.
The controller
88
is electrically connected to the sheet feed motor
74
via the output port. In response to the output (start signal) of the sensor
65
representative of alignment of the interrupter
68
with the sensor
65
, the controller
88
drives the sheet feed motor
74
in the forward direction to thereby feed the leading edge of the sheet P toward the registration rollers
33
a
and
33
b
. In this sense, the controller
88
serves as sheet feed drive control means.
In response to the above signal or ON signal output from the sheet feed start sensor
65
, the sheet feed controller
88
so controls the registration motor
58
as to feed the leading edge of the sheet P in synchronism with the arrival of the sheet clamper
21
at its clamp position. Subsequently, in response to the output of the registration sensor
52
, the controller
88
so controls the registration motor
58
as to increase the speed and amount of rotation of the registration rollers
33
a
and
33
b
for compensating for the slip of the sheet P on the rollers
33
a
and
33
b
(slip correction hereinafter). In this sense, the controller
88
plays the role of registration drive control means. Specifically, the controller
88
controls the registration motor
58
by varying the number of drive pulses to be sent to the motor
58
as well as their width. After the slip correction, the controller
88
further varies the above pulse width in accordance with the output pulses of the encoder sensor
61
in order to control the motor
58
by feedback control.
Assume that the sheet P is fed from the auxiliary sheet feeding section
28
, and that the print speed input on the print speed key
96
(DOWN key
96
a
or UP key
96
b
) is the fourth or fifth speed higher than the standard print speed. Then, in response to a signal representative of the input speed, the sheet feed controller
88
drives the sheet feed motor
74
in the forward direction such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
feed the sheet P at a speed matching with the input print speed. Assume that the print speed input on the key
96
or the print speed automatically set is lower than the standard speed (third, second or first speed or trial print speed). Then, in response to a signal representative of the print speed, the controller
88
drives the motor
74
in the forward direction such that the above separation roller
32
and pickup roller
30
feed the sheet P at a speed matching with the third or standard speed.
Assume that the sheet P is fed from the bank sheet feeding section
200
. If the print speed input on the DOWN key
96
a
or the UP key
96
b
is higher than the standard speed (fourth or fifth speed), then, in response to a signal representative of the input speed, the controller
88
drives the motor
74
in the reverse direction such that the intermediate rollers
55
a
and
55
b
convey the sheet P at a speed matching with the input print speed. If the print speed input on the key
96
a
or
96
b
or the automatically set print speed is lower than the standard speed (third, second or first speed or trial print speed), then, in response to a signal representative of the above speed, the controller
88
drives the motor
74
in the reverse direction such that the rollers
55
a
and
55
b
convey the speed P at a speed matching with the standard or third speed.
When the sheet P is fed from the auxiliary sheet feeding section
28
, the controller
88
drives the sheet feed motor
74
in the forward direction in response to the output of the leading edge sensor
51
. The motor
74
causes the leading edge of the sheet P to abut against the registration roller pairs
33
a
and
33
b
and form a preselected loop.
Further, when the sheet P is fed from the bank sheet feeding section
200
, the controller
88
drives the above motor
74
in the reverse direction in response to the output of the leading edge sensor
51
. The motor
74
causes the leading edge of the sheet P to abut against the registration rollers
33
a
and
33
b
and form a preselected loop.
On the other hand, the bank sheet feed controller
148
assigned to the bank sheet feeding section
200
is electrically connected to the upper and lower size sensor groups
50
-
1
and
50
-
2
of the bank
200
via its input port. The controller
148
transfers size signals output from the sensor groups
50
-
1
to
50
-
2
to the sheet feed controller
88
assigned to the printer
100
.
The controller
148
is electrically connected to the bank registration sensor
135
and bank feed sensor
136
via the input port and receives therefrom data signals relating to the leading edge of the sheet P.
The controller
148
is electrically connected to the upper limit sensor
137
and lower limit sensor
138
associated with the upper the sheet P at a speed matching with the third or standard speed.
Assume that the sheet P is fed from the lower sheet feeding section
202
, and that the print speed input on the key
96
a
or
96
b
is higher than the standard speed (fourth or fifth speed). Then, in response to a signal representative of the above speed and transferred from the printer sheet feed controller
88
, the controller
148
drives the motor
107
in the reverse direction such that the separation roller
32
and pickup roller
30
of the lower sheet feeding means
29
-
2
and intermediate rollers
118
a
and
118
b
convey the sheet P at a speed matching with the input print speed. If the input print speed or the automatically set print speed is lower than the standard speed (third, second or first speed or trial print speed), then, in response to a signal representative of the above speed and transferred from the printer sheet feed controller
88
, the controller
148
drives the motor
107
in the reverse direction such that the above separation roller
32
, pickup roller
30
and intermediate rollers
118
a
and
118
b
convey the sheet P at a speed matching with the third or standard speed.
Assume that the sheet P is fed from the tray
143
of the upper sheet feeding section
201
. Then, in response to the output of the bank registration sensor
135
, the controller
148
drives the motor
107
in the forward direction. The motor
107
causes the leading edge of the sheet P fed by the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
to abut against the registration rollers
106
a
and
106
b
and form a preselected loop. Assume that the sheet P is fed from the tray
145
of the lower sheet feeding section
202
. Then, sheet feeding section via the input port and receive therefrom ON/OFF signals relating to the upper and lower limit positions of the upper tray
143
. Likewise, the controller
148
is electrically connected to the upper limit sensor
139
and lower limit sensor
140
associated with the lower sheet feeding section via the input port and receive therefrom ON/OFF signals relating to the upper and lower limit positions of the lower tray
145
. With the signals received from the sensors
139
and
140
, the controller
148
controls the lower up-down motor
142
.
The controller
148
is electrically connected to the bank sheet feed motor
107
via the output port. Assume that the sheet P is fed from the upper sheet feeding section
201
, and that the print speed input on the DOWN key
96
a
or the UP key
96
b
is higher than the standard speed (fourth or fifth speed). Then, in response to a signal representative of the input print speed and transferred from the printer sheet feed controller
88
, the controller
148
drives the bank sheet feed motor
107
in the forward direction such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
convey the sheet P at a speed matching with the input print speed. Assume that the input print speed or the automatically set print speed is lower than the standard speed (third, second or first speed or trial print speed). Then, in response to a signal representative of the above speed and transferred from the printer sheet feed controller
88
, the controller
148
drives the motor
107
in the forward direction such that the above separation roller
32
and pickup roller
30
convey in response to the output of the registration sensor
135
, the controller
148
drives the motor
107
in the reverse direction. The motor
107
causes the leading edge of the sheet P fed by the intermediate rollers
118
a
and
118
b
to abut against the registration rollers
106
a
and
106
b
and form a preselected loop.
In response to the output of the bank sheet feed start sensor
66
received via the printer sheet feed controller
88
, the controller
148
so drives the motor
107
as to feed the leading edge of the sheet P toward the registration rollers
106
a
and
106
b
. In this sense, the controller
148
plays the role of bank sheet feed drive control means.
The controller
148
is electrically connected to the bank registration motor
101
via the output port. In response to a signal (start signal) transferred from the printer sheet feed controller
88
, the controller
148
so controls the motor
101
as to feed the leading edge of the sheet P toward the registration rollers
33
a
and
33
b
. The controller
148
therefore serves as bank registration drive control means.
The controller
148
is electrically connected to the upper up-down motor
141
via the output port. In response to ON/OFF signals received from the upper limit sensor
137
and lower limit sensor
138
of the upper sheet feeding section, the controller
148
drives the motor
141
so as to move the upper tray
143
up or down. Likewise, the controller
148
is electrically connected to the lower up-down motor
142
. In response to ON/OFF signals output from the upper limit sensor
139
and lower limit sensor
140
of the lower sheet feeding section, the controller
148
drives the lower up-down motor
142
so as to move the lower tray
145
up or down.
The controller
148
is electrically connected to the registration clutch
104
via the output port and selectively couples or uncouples it, i.e., sets up or interrupts the transmission of the output of the bank registration roller
101
. Likewise, the controller
148
is electrically connected to the intermediate clutch
117
via the output port and selectively couples or uncouples it, i.e., sets up or interrupts the transmission of the output of the bank sheet feed motor
107
. Further, the controller
148
is electrically connected to the sheet feed clutch
123
and selectively turns couples or uncouples it, i.e., sets up or interrupts the transmission of the output of the motor
107
.
The ROM of the printer sheet feed controller
88
stores the following various data and operation programs.
FIGS. 20 and 21
are timing charts showing the contents of control determined by, e.g., experiments beforehand.
FIG. 22
shows the contents of variable control over drive pulses to be fed to the registration motor
58
and also determined by, e.g., experiments beforehand.
FIGS. 28-31
are flowcharts demonstrating operation programs. The fixed distance between the leading edge sensor
51
and the nip between the registration rollers
33
a
and
33
b
is also stored in the above ROM in terms of the number of pulses of the sheet feed motor
74
. In addition, the fixed distance between the nip between the registration rollers
33
a
and
33
b
and the nip between the press drum
20
and the ink drum
1
is stored in the ROM in terms of the number of pulses of the registration motor
58
.
Further, some different tables are stored in the above ROM. The tables include a control pattern table for controlling the sheet feed motor
74
on the basis of the set print speed and a control data table for controlling, in response to the output of the leading edge sensor
51
, the motor
74
such that the leading edge of the sheet P abuts against the registration rollers
33
a
and
33
b
and forms a preselected loop. Alternatively, the above data may suitably be stored in the ROM of the bank sheet feed controller
148
.
The ROM of the bank sheet feed controller
148
stores a control pattern table for controlling the bank sheet feed motor
107
on the basis of the set print speed. In addition, the ROM stores a control data table for controlling, in response to the output of the bank registration sensor
135
, the bank sheet feed motor
107
such that the leading edge of the sheet P abuts against the registration rollers
106
a
and
106
b
and forms a preselected loop.
The RAM of the printer sheet feed controller
88
is a work area used to temporarily store the results of calculations performed by the CPU. Also, the RAM is used to store data signals output from the sensors
51
,
52
,
65
,
66
,
53
and
54
, a data signal output from the encoder sensor
61
or data signals output from the sensor groups
50
-
1
and
50
-
2
or sensors
135
and
136
of the bank sheet feed controller
148
. The RAM of the bank sheet feed controller
148
temporarily stores data signals transferred from the printer sheet feed controller
88
or the results of calculations performed by the CPU.
The timer included in the printer sheet feed controller
88
sets delay times Da. Db, Dc, Dd, De and Df shown in
FIGS. 20 and 21
while variably counting time.
It is to be noted that
FIG. 19
does not show the structural elements of the drive sections to be controlled specifically. In this connection, the print speed set on the DOWN key
96
a
or the UP key
96
b
or automatically set is input not only to the CPU of the printer sheet feed controller
88
but also to, e.g., the CPU of a drum drive control unit, not shown, independent of the controller
88
. The encoder sensor
152
and home position sensor
72
are electrically connected to the drum drive control unit via an I/O port. Also, the main motor
150
and a device for braking it, not shown, are electrically connected to the drum drive control unit via a main motor driver and the above I/O port. The drum drive control unit constantly monitors the output of the encoder sensor
152
representative of the rotation speed of the ink drum
1
and press drum
20
. The control unit controls, based on the set print speed, the rotation speed of the main motor via the output port and main motor driver such that the ink drum
1
and press drum
20
rotate at the set print speed. Such a function of the control unit may, of course, be partly assigned to the printer sheet feed controller
88
.
The operation of the stencil printer
100
with the auxiliary sheet feeding section
28
will be described first. When the operator lays a document on the document reading section
3
and then presses the perforation start key
91
, the ink drum
1
held in its home position starts rotating. The master discharging section
18
peels of a used master wrapped around the ink drum
1
and discharges it. When the master clamper
12
on the ink drum
1
is brought to the substantially rightmost position in
FIG. 2
, the ink drum
1
stops rotating. Then, the shaft
12
a
supporting the master clamper
12
is rotated to open the master clamper
12
away from the stage. In this condition, the ink drums
1
waits for a new master
2
.
Subsequently, the stepping motor
6
of the master making section
19
is driven to rotate the platen roller
9
. The platen roller
9
conveys the stencil
2
while paying it out from the roll
10
. In the document reading section
3
, a scanner, not shown, reads the document laid thereon and outputs an image signal representative of a document image. The image signal is digitized by the analog-to-digital converter and then processed by the master making control section to turn out a digital image signal. The heating elements of the thermal head
17
are selectively energized in accordance with the digital image signal, selectively perforating the stencil
2
with heat.
The platen roller
9
in rotation conveys the leading edge of the stencil
2
being perforated toward the master clamper
12
held in its open position. When the number of steps of the pulse motor
6
reaches a preselected number, the shaft
12
a
is rotated to close the master clamper
12
toward the stage. As a result, the master clamper
12
clamps the leading edge of the perforated part of the stencil
2
.
At the same time as the master clamper
12
clamps the stencil
2
, the ink drum
1
and press drum
20
start rotating at a peripheral speed substantially equal to the speed at which the stencil
2
is conveyed. The perforated part of the stencil
2
is therefore sequentially wrapped around the ink drum
1
. When the stencil
2
is wrapped around the ink drum
1
by a preselected length, the ink drum
1
, press drum
20
and platen roller
9
stop rotating. At the same time, the cutter motor
7
is energized to lower the upper cutter member
4
via the eccentric cam
8
, thereby cutting off the perforated part of the stencil
2
, i.e., the master
2
. Subsequently, the ink drum
1
again rotates clockwise to pull the trailing edge of the master
2
out of the master making section
19
. Consequently, the entire master
2
is wrapped around the ink drum
1
.
The conveyance of the sheet P will be described with reference made to
FIGS. 20
,
21
A,
23
,
27
and
28
.
FIG. 20
shows both of the sheet feed timing of the auxiliary sheet feeding section
28
and that of the bank sheet feeding section
200
. The sheet feed timings particular to the printer
100
and bank
200
are respectively shown at the left-hand side and right-hand side of
FIG. 20
with respect to the angular position θ′ of 0°.
FIG. 21A
shows the sheet feed timing of the auxiliary sheet feeding section in detail together with the sheet feed timing substantially common to both of the sheet feeding sections
28
and
200
and following the start of rotation of the registration rollers
33
a
and
33
b
. The timing chart of
FIG. 21
therefore partly overlaps with the timing chart of FIG.
20
.
As shown in
FIG. 28
, first, whether or not the printer
100
is ready to start feeding a sheet P is determined (step S
1
). More specifically, whether or not the ink well
16
adequate for printing has been formed by the ink feeding device
22
and whether or not the printer
100
with such an ink well
16
can start printing when the perforation start key
91
is pressed are determined. If the answer of the step S
1
is positive (YES), whether or not a sheet P is to be fed from the bank sheet feeding section
200
is determined (step S
2
). This decision is made on the basis of the auxiliary tray
31
or the upper tray
143
or the lower tray
202
of the bank sheet feeding section
200
and a sheet size selected and set the sheet size key
98
and set key
95
or automatically set. If the answer of the step S
2
is negative (NO), meaning that a sheet P is to be fed from the auxiliary sheet feeding section
28
, a routine for feeding a sheet from the auxiliary sheet feeding section
28
is executed (step S
3
). This routine will be described specifically before a routine for feeding a sheet P from the bank sheet feeding section
200
(step S
4
and successive steps).
In the event of trial printing, the main motor
150
causes the ink drum
1
and press drum
20
to rotate at a peripheral speed matching with the automatically set print speed (sixteen printings/min or 16 rpm) assigned to trial printing.
As shown in
FIGS. 20
,
21
A and
23
, when the press drum
20
reaches an angular position θ of 194°, the interrupter
68
interrupts the optical path of the sheet feed start sensor
65
. The resulting ON signal output from the sensor
65
is sent to the printer sheet feed controller
88
. Then, on the elapse of a preselected delay Da, the sheet feed motor
74
is driven in the forward direction to rotate the separation roller
32
clockwise. The separation roller
32
and pickup roller
30
rotated in the same direction as the roller
32
cooperate to feed only the top sheet P toward the registration rollers
33
a
and
33
b
. As shown in
FIG. 21B
, the leading edge sensor
51
is located on the horizontal transport path RX downstream of the separation roller
32
by Xa mm. When the sensor
51
senses the leading edge of the above sheet P, it sends an ON signal to the printer sheet feed controller
88
.
The trial print speed is lower than the standard print speed, as stated earlier. Therefore, the printer sheet feed controller
88
drives the sheet feed motor
74
such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
rotate at a conveying speed corresponding to the standard or third print speed (90 rpm), i.e., a peripheral speed of 847.8 mm/sec.
As shown in
FIGS. 5 and 24
, the printer sheet feed controller
88
outputs, based on the output of the leading edge sensor
51
, a command signal causing the leading edge of the sheet P to abut against the portion just upstream of the registration rollers
33
a
and
33
b
and form a preselected amount of loop PA. As a result, a preselected number of drive pulses are fed to the sheet feed motor
74
via the previously mentioned driver, so that the sheet P is fed by Xc mm (loop adjustment). When the leading edge of the sheet P forms the above loop PA convex upward, the sheet feed motor
74
and therefore the separation roller
32
and pickup roller
30
are caused to stop rotating.
The above loop PA is confined in an experimentally determined range which obviates the skew and feed failure ascribable to the rotation of the registration rollers
33
a
and
33
b
, and reduces noise because of the adequate amount of loop. To implement the adequate loop PA, the printer sheet feed controller
88
drives the sheet feed motor
74
such that the sheet feeding means
29
feeds the sheet P by a greater amount than the bank sheet feeding section
200
.
In the illustrative embodiment, the amount of feed Xc of the sheet P is the sum of the distance of 19 mm between the nip between the registration rollers
33
a
and
33
b
and the leading edge sensor
51
and 6 mm, i.e., 25 mm in total. The printer sheet feed controller
88
translates the above amount of feed into the number of steps and then controls the sheet feed motor
74
. As a result, the motor
74
causes the separation roller
32
to feed the sheet P such that the sheet P forms the loop PA.
As stated above, the printer sheet feed controller
88
controls the sheet feed motor
74
independently of the driveline assigned to the ink drum
1
in such a manner to effect the unique loop adjustment. This successfully obviates a short loop at low print speeds without resorting to the print speed varying every moment due to the aging of a belt included in the ink drum driveline and the backlashes of gears. In addition, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
33
a
and
33
b
, and can therefor stably form the expected loop.
As for the delay Da, the leading edge of a sheet having the maximum length of 447 mm moves away from the front wall
35
when the press drum
20
reaches an angular position θ′ of about 200°. The delay Da should therefore preferably be 10° or above in terms of the rotation angle of the press drum
20
including a margin. With the delay Da between the time when the leading edge sensor
65
turns on and the time when the sheet feed motor
74
starts rotating, it is possible to correct a scatter among machines and to implement control with software. Further, the delay Da is useful to define the operation timing of the sheet feed motor
74
by using the ON signal which the sheet feed start sensor
65
outputs at the angular position of 194° of the press drum
20
as a trigger.
As shown in
FIGS. 20
,
21
A and
25
, when the press drum
20
further rotates counterclockwise to an angular position θ′ of 307°, the interrupter
69
interrupts the optical path of the sheet feed start sensor
65
. As a result, the sensor
65
sends an ON signal to the printer sheet feed controller
88
. The controller
88
drives the registration motor
58
and sheet feed motor
74
on the elapse of a preselected delay Db since the arrival of the above ON signal. The registration motor
58
causes the registration roller
33
b
to start rotating counterclockwise and convey the leading edge of the sheet P toward the sheet clamper
21
of the press drum
20
. At the same time, the sheet feed motor
74
causes the separation roller
32
to rotate at a low speed for a short period of time, thereby reducing noise produced by the sudden disappearance of the loop of the sheet P.
The above delay Db is useful to define the operation timing of the registration motor
58
by using the ON signal of the sheet feed start sensor
65
output at the angular position θ′ of 307° of the press drum
20
as a trigger.
As shown in
FIG. 21C
, the registration rollers
33
a
and
33
b
convey the leading edge of the sheet P abutting against the portion just upstream of the nip between the rollers
33
a
and
33
b
to the downstream side of the transport path RX by a distance of Xb mm (19 mm in the illustrative embodiment). Then, the registration sensor
52
turns on and sends an ON signal to the printer sheet feed controller
88
. At this instant, the distance between the position where the sheet P abuts against the nip between the registration rollers
33
a
and
33
b
is fixed, and therefore the count of drive pulses fed to the registration motor
58
is expected to be constant. However, the sheet P is apt to slip, particularly in the initial stage of rotation of the registration rollers
33
a
and
33
b
. The count of drive pulses is therefore apt to vary from one sheet to another sheet until the registration sensor
52
turns on. In light of this, the printer sheet feed controller
88
determines a delay of the sheet P on the basis of the count of drive pulses having been output until the turn-on of the registration sensor
52
. The controller
88
increases, based on the determined delay, the speed and amount of the subsequent rotation of the registration motor
58
, thereby correcting the slip of the sheet P.
Stated another way, assume that the printer sheet feed controller
88
counts drive pulses needed to cause the registration motor
58
to convey the sheet P until the registration sensor
62
turns on, and delivers drive pulses necessary for conveying the leading edge of the sheet P by Xd mm to the registration motor
581
. Then, the controller
88
increases the number of drive pulses, i.e., the amount of rotation of the registration motor
58
in accordance with the slip of (Xd−Xb) mm of the sheet P on the registration rollers
33
a
and
33
b
. In addition, the controller
88
reduces the width of the drive pulses in order to increase the rotation speed (pps) of the registration motor
58
.
More specifically, the distance between the registration sensor
52
and the nip between the registration rollers
33
a
and
33
b
on the horizontal transport path RX is fixed, as stated earlier. It follows that the number of drive pulses necessary for the registration motor
58
to rotate the registration roller
33
b
by an amount corresponding to the above distance is fixed. For example, assume that when the quality of the sheet P is changed, the registration sensor
52
does not turn on even after a preselected number of drive pulses have appeared since the start of rotation of the registration roller
33
b
, meaning that the sheet P has slipped. Then, the printer sheet feed controller
88
sends to the registration motor
58
a command signal for conveying the sheet by an extra amount corresponding to the difference between the preselected number of pulses and the number of pulses actually caused the registration sensor
52
to turn on. In addition, the controller
88
reduces the pulse width in order to increase the rotation speed of the motor
58
.
As shown in
FIG. 22
, for the above slip correction, the printer sheet feed controller
88
varies the number of drive pulses (P
1
-P
4
) to be fed to the registration motor
58
and the pulse width (t
1
-t
4
) thereof.
After the slip correction, the printer sheet feed controller
88
controls, in accordance with the output pulses of the encoder sensor
61
, the registration motor
58
in such a manner as to convey the leading edge of the sheet P to the sheet clamper
21
brought to its clamp position. This is so-called feedback control (FBC, FIG.
21
A).
As stated above, the amount by which the sheet P is conveyed by the registration motor
58
in response to a single pulse and the amount by which the circumference of the press drum
20
is moved in response to a single pulse width of the encoder
60
are identical. For FBC, the printer sheet feed controller
88
counts a period of time necessary for a single pulse width of the encoder
60
with the timer thereof and decelerates the registration motor
58
if the above period of time increases due to, e.g., a change in the load acting on the press drum
20
. Conversely, when the period of time necessary for a single pulse of the encoder
60
decreases, the controller
88
accelerates the motor
58
.
Stated another way, the controller
88
constantly traces the irregular rotation, i.e., irregular peripheral speed of the press drum
20
in terms of changes in the pulses output from the encoder
61
. The controller
88
variably controls the rotation speed of the registration motor
58
in accordance with the variation of pulses output from the encoder
61
(FBC using the encoder
61
). At this instant, the controller
88
determines the angular position of the press drum
20
in terms of the number of pulses sensed by the encoder sensor
61
and determines the peripheral speed of the drum
20
in terms of the period of time t also sensed by the encoder sensor
61
. As shown in
FIG. 22
, the controller
88
further varies the drive pulse width (t1-t4) for the registration motor
58
in order to control the motor
58
by FBC. This is successful to reduce misregistration.
The press drum
20
is rotating at a speed matching with the automatically set trial print speed. The sheet P is conveyed at a speed 1.4 times higher than the peripheral speed of the press drum
20
. When the sheet clamper
21
of the press drum
21
is about to close, the sheet P reaches the clamper
21
and obtains a speed equal to the peripheral speed of the press drum
20
.
The sheet clamper
21
of the press drum
20
is opened at a preselected timing shown in
FIGS. 20 and 21A
, i.e., when the press drum
20
reaches an angular position θ′ of 350.5°.
Under the above encoder FBC of the controller
88
, the registration roller
33
b
is rotated counterclockwise to, in turn, rotate the upper registration roller
33
b
clockwise via the sheet P. As a result, as shown in
FIG. 26
, the loop PA (indicated by a phantom line) of the sheet P disappears. The separation roller
32
and pickup roller
30
simply follow the movement of the sheet P due to the action of the one-way clutches
67
. The leading edge of the sheet P is conveyed until it abuts against the sheet clamper
21
.
As shown in
FIGS. 21A
,
26
and
27
, as soon as the leading edge of the sheet P abuts against the sheet clamper
21
, the clamper
21
is closed to grip it. In the illustrative embodiment, this occurs when the press drum
20
reaches an angular position θ′ of 10° (370°). The press drum
20
therefore rotates while retaining the sheet P thereon and conveys it to the print position between the drum
20
and the ink drum
1
.
As shown in
FIG. 27
, the press drum
20
is raised toward the ink drum
1
under the action of the springs
26
a
and
26
b
, forming a nip with the intermediary of the sheet P. In this condition, the press drum
20
presses the sheet P against the ink drum
1
(print pressure ON). As the sheet P is pressed against the master
2
wrapped around the ink drum
1
, the master
2
is caused to closely adhere to the ink drum
1
. At the same time, the ink is transferred to the sheet via the porous portion of the ink drum
1
and the perforations of the master
2
, producing a printing. At this instant, the ink roller
13
rotates in the same direction as the ink drum
1
. Therefore, the ink in the ink well
16
is deposited on the ink roller
13
and conveyed thereby to the inner periphery of the ink drum
1
while being regulated in amount by the doctor roller
15
.
In the meantime, the printer sheet feed controller
88
continues the FBC using the encoder. When the controller
88
determines that the registration motor
58
has rotated by an amount stored in the ROM thereof (angular position θ′ of 75° (435°) in the illustrative embodiment), it deenergizes the registration motor
58
and ends FBC.
When the press drum
20
is further rotated to a sheet discharge position preceding the peeler
81
(angular position θ′ of 81.2° (441.2°) in the illustrative embodiment), the sheet clamper
21
is opened. Then, the peeler
81
peels off the sheet or trial printing P from the press drum
20
. The trial printing P is then conveyed by the belt
85
to the tray
82
. The press drum
20
is released from the ink drum
1
and held in its initial position.
The operator watching the above trial printing determines whether or not the quality and position of the image are adequate. If the trial printing acceptable, the operator inputs a desired number of printings on the numeral keys
93
and then presses the print start key
92
. In response, the printer
100
repeats the sheet feed, printing and sheet discharge a number of times corresponding to the desired number of printings. In this case, because the operator has not touched the print speed keys
96
, the standard or third print speed is automatically set. The main motor
150
drives the ink drum
1
and press drum
20
at a speed corresponding to the standard speed.
Because the set print speed is lower than the standard print speed (third, second or first speed or trial print speed), the printer sheet feed controller
8
causes the sheet feed motor
74
to rotate in the forward direction as during trial printing. Therefore, the separation roller
32
and pickup roller of the sheet feeding means
29
convey the consecutive sheets P at a speed corresponding to the standard or third print speed (90 rpm), i.e., at a peripheral speed of 847.8 mm/sec. Each sheet P has the amount of its loop adjusted in the same manner as during trial printing. After the lading edge of the sheet P has been moved away from the nip between the registration rollers
33
a
and
33
b
, the above unique conveyance and printing are effected at a conveyance speed and a printing speed corresponding to the third print speed.
Assume that the operator selects the second or first print speed lower than the standard speed on the print speed key
96
. Then, the separation roller
32
and pickup roller
30
of the sheet feeding means
29
are rotated at a conveying speed corresponding to the standard or third print speed ) (90 rpm), i.e., at a peripheral speed of 847.8 mm/sec as during trial printing or during standard speed operation. Again, the sheet P is fed by an amount subjected to loop adjustment. After the leading edge of the sheet P has been moved away from the nip between the registration rollers
33
a
and
33
b
, the above unique conveyance and printing are effected at a conveyance speed and a printing speed corresponding to the second or first print speed.
As stated above, the printer sheet feed controller
88
controls the sheet feed motor
74
independently of the driveline assigned to the ink drum
1
in such a manner as to effect the unique conveyance speed adjustment and loop adjustment. This successfully obviates a short loop at low print speeds without regard to the print speed varying every moment due to the aging of a belt included in the ink drum driveline and the backlashes of gears. Further, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
33
a
and
33
b
, and can therefor stably form the expected loop. In addition, there can be reduced noise at the standard print speed.
Assume that the operator selects the fourth print speed higher than the standard speed on the print speed key
96
. Then, the main motor
150
rotates the ink drum
1
and press drum
20
in such a manner as to implement a print speed corresponding to the set fourth speed. The printer sheet feed controller
88
determines that the set print speed is higher than the standard speed. Then, the controller
88
drives the sheet feed motor
74
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
convey the sheet P at a speed corresponding to the set fourth print speed, i.e., at a peripheral speed of 989.1 mm/sec. Again, the sheet P is fed by an amount subjected to the previously stated loop adjustment. After the leading edge of the sheet P has been moved away from the nip between the registration rollers
33
a
and
33
b
, the above unique conveyance and printing are effected at a conveyance speed and a printing speed corresponding to the fourth print speed.
Assume that the operator selects the fifth or highest print speed on the print speed key
96
. Then, the main motor
150
rotates the ink drum
1
and press drum
20
in such a manner as to implement a print speed corresponding to the set fifth speed. The printer sheet feed controller
88
determines that the set print speed is higher than the standard speed. Then, the controller
88
drives the sheet feed motor
74
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
convey the sheet P at a speed corresponding to the set fifth print speed (120 rpm), i.e., at a peripheral speed of 1,130.4 mm/sec. Again, the sheet P is fed by an amount subjected to the previously stated loop adjustment. After the leading edge of the sheet P has been moved away from the nip between the registration rollers
33
a
and
33
b
, the above unique conveyance and printing are effected at a conveyance speed and a printing speed corresponding to the fifth print speed.
As stated above, the printer sheet feed controller
88
controls the sheet feed motor
74
independently of the driveline assigned to the ink drum
1
in such a manner as to effect the unique conveyance speed adjustment and loop adjustment. This successfully obviates a short loop at low print speeds without regard to the print speed varying every moment due to the aging of a belt included in the ink drum driveline and the backlashes of gears. Further, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
33
a
and
33
b
, and can therefor stably form the expected loop.
The above delay Db between the time when the sheet feed start sensor
65
outputs an ON signal and the time when the registration motor
58
is actually driven is useful to correct scattering among machines and to facilitate control using software.
The routine including the step S
4
of FIG.
28
and successive steps and relating to the bank sheet feeding section
200
will be described with reference to
FIGS. 30 and 31
. The routine begins with the printer sheet feed controller
88
. In response, the controller
88
informs the bank sheet feed controller
148
of the turn-on of the sensor
66
by serial communication (step S
33
).
Subsequently, whether or not the bank feed sensor
136
has turned on is determined (step S
34
). Specifically, by determining whether or not the trailing edge of the sheet fed before the second sheet to be fed has moved away from the bank feed sensor
136
, it is possible to prevent the second sheet from catching up with the trailing edge of the preceding sheet and jamming the transport path. If the answer of the step S
34
is YES, meaning that the trailing edge of the preceding sheet P has not moved away from the sensor
136
yet, the preceding sheet P is continuously conveyed until its trailing edge moves away from the sensor
136
, i.e., until the sensor
136
turns on. If the answer of the step S
34
is NO, meaning that the trailing edge of the preceding sheet P is passing the sensor
136
, the sheet feed clutch
123
is coupled to allow the rotation of the bank sheet feed motor
107
to be transferred to the sheet feeding means
29
-
2
. At the same time, the intermediate clutch
117
is coupled to allow the rotation of the motor
107
to be transferred to the intermediate rollers
118
a
and
118
b
(steps S
35
and S
36
).
Subsequently, the bank sheet feed motor
107
is rotated in the reverse direction in order to rotate the intermediate rollers
118
a
and
118
b
to rotate in FIG.
15
. The rollers
118
a
and
118
b
convey the trailing edge of the preceding sheet P toward the registration rollers
106
a
and
106
b
arranged on the vertical transport path RZ. At the same a step S
30
of FIG.
30
. The following description will concentrate on the third, second or first print speed or the trial print speed lower than the standard speed and set by the operator on the key
96
or automatically set. The main motor
150
drives the ink drum
1
and press drum
20
at a speed matching with the above set print speed.
First, the tray
143
of the upper sheet feeding section
201
or the tray
145
of the lower sheet feeding section
202
and a paper size thereof are selected and set on the sheet size key
98
and set key
95
or automatically set. Whether or not the tray
143
of the upper sheet feeding means
201
is selected is determined (step S
30
). If the answer of the step S
30
is NO, the lower up-down motor
142
causes the tray
145
to rise until the top of the sheet stack P on the tray
145
reaches the sheet feed position, as determined by the lower limit sensor
139
(step S
31
). In this condition, the lower sheet feeding section
202
is ready to feed the sheet P thereof. It is to be noted that when the tray
145
of the lower sheet feeding section
202
and the sheet size thereof are selected and set either manually or automatically, the sheet size of the tray
145
is sensed by the sensor group
50
-
2
beforehand. This step, however, will not be described specifically in order to avoid redundancy.
Whether or not the press drum
20
is located at its home position is determined (step S
32
). Specifically, when the press drum
20
reaches the angular position θ′ of 0°, the interrupter
70
interrupts the optical path of the bank sheet feed start sensor
66
(YES, step S
32
). The resulting ON signal output from the sensor
66
is sent to time, the sheet feeding means
29
-
2
starts picking up the top sheet S. More specifically, the drive mechanism
125
B operates as described with reference to
FIG. 16
with the result that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
2
are rotated clockwise in
FIG. 16
(counterclockwise in FIG.
15
). As a result, only the top sheet P is paid out from the tray
145
in the direction X
1
(step S
37
).
The bank sheet feed controller
148
identifies the set print speed lower than the standard speed, i.e., the third, second or first speed or the trial print speed on the basis of the signal transferred from the printer sheet feed controller
88
. The controller
148
therefore drives the bank sheet feed motor
107
in the reverse direction such that the separation roller
32
and pickup roller
30
convey the sheet P at a speed corresponding to the third or standard speed (90 rpm), i.e., a peripheral speed of 847.8 mm/sec. As shown in
FIG. 20
, in the step S
32
, the controller
148
drives the motor
107
on the elapse of a delay Dc since the receipt of the ON signal output from the bank sheet feed sensor
66
(rotation angle θ′ of 0° of the press drum
20
).
After the step S
37
, whether or not the feed sensor
136
has turned on, i.e., whether or not the leading edge of the sheet P being paid out has reached the feed sensor
136
is determined (step S
38
). If the answer of the step S
38
is YES, meaning that the leading edge of the sheet P being paid out has moved away from the sensor
136
, the sheet feed motor
107
is driven by a designated number of steps in the reverse direction. As a result, the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
2
and intermediate rollers
118
a
and
118
b
are rotated by a distance of sheet conveyance corresponding to the reverse rotation of the motor
107
. Then, the motor
107
is deenergized. Thereafter, the sheet feed clutch
123
is uncoupled to interrupt the transfer of rotation from the motor
107
to the separation roller
32
and pickup roller
30
. As a result, so long as the trailing edge of the sheet P being paid out remains in contact with the two rollers
32
and
30
, the rollers
32
and
30
simply follow the movement of the sheet P (steps S
38
-S
40
).
The step S
40
is followed by a step S
41
for determining whether or not the trailing edge of the preceding sheet P has moved away from the registration sensor
135
. This is to obviate a jam stated earlier. If the answer of the step S
41
is NO, meaning that the trailing edge of the preceding sheet P
0
has not moved away form the registration sensor
135
, the registration clutch
104
is turned on while the sheet feed motor
107
is driven in the reverse direction (steps S
42
and S
43
).
After the step S
43
, whether or not the registration sensor
135
has turned on, i.e., whether or not the leading edge of the sheet P being conveyed has reached the registration sensor
135
is determined (step S
44
). If the answer of the step S
44
is YES, meaning that the leading edge of the sheet P being conveyed has moved away from the sensor
135
, the sheet feed motor
107
is rotated in the reverse direction by a designated number of steps so as to rotate the intermediate rollers
118
a
and
118
b
by a preselected amount. As a result, the leading edge of the sheet P abuts against the portion just upstream of the nip between the registration rollers
106
a
and
106
b
and forms an adequate loop. Then, the reverse rotation of the motor
107
is stopped (steps S
44
-S
46
).
In this manner, to cause the leading edge of the sheet P to form an adequate loop, the sheet feed motor
107
is driven by a designated number of steps in the reverse direction to rotate the intermediate rollers
118
a
and
118
b
by a preselected amount. In the illustrative embodiment, the sheet P is fed by an amount which is the sum of the distance of 19 mm between the upstream end of the nip between the registration rollers
106
a
and
106
b
and the registration sensor
135
on the vertical transport path RZ and 6 mm, i.e., 25 mm in total. The bank sheet feed controller
148
translates the above amount of feed into the number of steps and then controls the sheet feed motor
107
. As a result, the motor
107
causes the intermediate rollers
118
a
and
118
b
to feed the sheet P such that the sheet P forms the preselected loop.
Subsequently, the registration motor
101
is driven forward by several steps until the registration rollers
106
a
and
106
b
nip the leading edge of the sheet P. While the rollers
106
a
and
106
b
are nipping the leading edge of the sheet P, the intermediate clutch
117
is uncoupled (steps S
47
and S
48
).
The press drum
20
is caused to rotate counterclockwise. When the press drum
20
reaches an angular position θ′ of 104°, the interrupter
71
interrupts the optical path of the bank sheet feed start sensor
66
. The sensor
66
therefore sends an ON signal to the printer sheet feed controller
88
. In response, the sheet feed controller
88
informs the bank sheet feed controller
148
of the turn-on of the sensor
66
(θ′ of 104°) by serial communication (steps S
49
and S
50
). This is followed by a delay Dd which prevents the leading edge of the sheet P being conveyed from catching up with the trailing edge of the preceding sheet P (step S
51
). Subsequently, the registration motor
101
is rotated by a designated number of steps to feed the leading edge of the sheet P toward the intermediate rollers
55
a
and
55
b
and registration rollers
33
a
and
33
b
. After the motor
101
has been deenergized, the registration clutch
104
is uncoupled (see steps S
52
-S
55
). This is followed by a routine for managing the condition of sheet feed.
The delay Dd intervenes between the time when the sheet feed start sensor
66
turns on and the time when the registration motor
101
actually starts rotating. The delay Dd defines the operation timing of the motor
101
by using the ON signal of the sensor
66
appearing at the angular position θ′ of 104° of the press drum
20
as a trigger.
Assume that the tray
143
of the upper sheet feeding section
201
and its sheet size are selected and set (YES, step S
30
). Then, the upper up-down motor
141
raises the tray
143
until the upper limit sensor
137
senses the top sheet of the tray
143
(step S
56
).
When the press drum
20
is rotated to the angular position θ′ of 0°, the interrupter
70
interrupts the optical path of the sheet feed start sensor
66
as in the step S
33
(YES, step S
57
). The resulting ON signal output from the sensor
66
is sent to the printer sheet feed controller
88
. In response, the controller
88
informs the bank sheet feed controller
148
of the turn-on of the sensor
66
by serial communication (step S
58
). Subsequently, whether or not the trailing edge of the preceding sheet P has moved away from the registration sensor
135
is determined (step S
59
). This is to obviate the previously stated occurrence. If the answer of the step S
59
is NO, meaning that the trailing edge of the preceding sheet P has moved away from the sensor
135
, the sheet feed motor
107
is driven forward to cause the sheet feeding means
29
-
1
to start picking up the sheet P in
FIG. 15
(step S
60
). More specifically, the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
are rotated clockwise, as viewed in
FIG. 16
, by way of the operation of the drive mechanism
125
B. As a result, only the top sheet P is paid out in the direction X
1
.
Because the set print speed is lower than the standard print speed the third, second or first speed or the trial print speed lower than the standard speed, the sheet feed controller
148
causes the sheet feed motor
107
to rotate in the forward direction. Therefore, the separation roller
32
and pickup roller of the sheet feeding means
29
-
1
convey the sheet P at a speed corresponding to the standard or third print speed (90 rpm), i.e., at a peripheral speed of 847.8 mm/sec.
Subsequently, whether or not the registration sensor
135
has turned on, i.e., whether or not the leading edge of the sheet P being paid out has reached the registration sensor
135
is determined (step S
61
). If the answer of the step S
61
is YES, meaning that the above leading edge has reached the sensor
135
, the sheet feed motor
107
is driven forward by a designated number of steps to rotate the separation roller
32
and pickup roller
30
by a preselected amount. As a result, the leading edge of the sheet P abuts against the portion just upstream of the nip between the registration rollers
106
a
and
106
b
and forms an adequate loop. Thereafter, the sheet feed motor
107
is deenergized (steps S
62
and S
63
).
In the illustrative embodiment, to cause the leading edge of the sheet P to form an adequate loop, the above rotation of the separation roller
32
and pickup roller
30
conveys the sheet P by the same amount as the rotation of the separation roller
32
and pickup roller
30
of the lower sheet feeding means
29
-
2
. To control the sheet feed motor
107
in accordance with the above amount of sheet feed, the sheet feed controller
148
translates the amount of sheet feed into a number of steps and delivers the number of steps to the motor
107
. Consequently, the motor
107
causes the separation roller
32
and pickup roller
30
of the sheet feeding mean
29
-
1
to convey the sheet P by the amount for forming an adequate loop.
In the case of sheet feed from the bank sheet feeding section
200
, the bank sheet feed controller
148
controls the sheet feed motor
107
independently of the driveline assigned to the ink drum
1
in such a manner as to effect the unique loop adjustment. Specifically, the leading edge of the sheet P abuts against the portion just upstream of the nip between the registration rollers
106
a
and
106
b
and forms the preselected loop PA. This successfully obviates a short loop at low print speeds without regard to the print speed varying every minute due to the aging of a belt included in the ink drum driveline and the backlashes of gears. Further, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
106
a
and
106
b
, and can therefor stably form the expected loop.
Subsequently, the registration motor
101
is driven forward by several steps until the registration rollers
106
a
and
106
b
nip the leading edge of the sheet P (step S
64
). This is followed by the step S
49
stated earlier.
Assume that a sheet P is to be fed from the tray
145
of the lower sheet feeding section
202
, and that the operator selects and sets the fourth print speed on the print speed key
96
. Then, the main motor
150
drives the ink drum
1
and press drum
20
at a speed matching with the set fourth print speed. Because the set print speed is higher than the standard speed, the bank sheet feed controller
148
drives the sheet feed motor
107
such that the intermediate rollers
118
a
and
118
b
convey the sheet P at a speed corresponding to the fourth print speed (105 rpm), i.e., a peripheral speed of 989.1 mm/sec. Again, the sheet P is subjected to loop adjustment as during trial printing.
Assume that the operator selects the fifth or highest print speed on the print speed key
96
. Then, the main motor
150
rotates the ink drum
1
and press drum
20
in such a manner as to implement a print speed corresponding to the set fifth speed. Because the set print speed is higher than the standard speed, the bank sheet feed controller
148
drives the sheet feed motor
107
in the reverse direction such that the intermediate rollers
118
a
and
118
b
convey the sheet P at a speed corresponding to the set fifth print speed (120 rpm), i.e., a peripheral speed of 1,130.4 mm/sec. Again, the sheet P is fed by an amount subjected to the previously stated loop adjustment.
On the other hand, assume that a sheet P is to be fed from the tray
143
of the upper sheet feeding section
201
, and that the operator selects the fourth print speed higher than the standard speed. Then, the sheet feed controller
148
drives the sheet feed motor
107
forward such that the separation roller
32
and pickup roller
30
of the upper sheet feeding means
29
-
1
convey the sheet at a speed corresponding to the set fourth print speed (105 rpm), i.e., a peripheral speed of 989.1 mm/sec. Again, the sheet P is fed by an amount subjected to the loop control.
Assume that the operator selects the fifth or highest print speed. Then, because the set print speed is higher than the standard speed, the bank sheet feed controller
148
drives the sheet feed motor
107
in the forward direction such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
convey the sheet P at a speed corresponding to the set fifth print speed (120 rpm), i.e., a peripheral speed of 1,130.4 mm/sec. Again, the sheet P is fed by an amount subjected to the previously stated loop adjustment.
The bank sheet feed controller
148
controls the sheet feed motor
107
independently of the driveline assigned to the ink drum
1
in such a manner as to effect the unique loop adjustment, as stated above. Specifically, the leading edge of the sheet P abuts against the portion just upstream of the nip between the registration rollers
106
a
and
106
b
and forms the preselected loop PA. This successfully obviates a short loop at low print speeds without regard to the print speed varying every moment due to the aging of a belt included in the ink drum driveline and the backlashes of gears. Further, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
106
a
and
106
b
, and can therefore stably form the expected loop.
A step S
5
and successive steps shown in
FIG. 28
will be described with reference also made to
FIGS. 23-27
. In
FIGS. 23-27
, the sheet P fed from the bank
200
is indicated by a phantom line. Steps S
5
-S
7
are identical with the steps S
49
-S
51
of FIG.
31
and will not be described specifically in order to avoid redundancy. In a step S
8
, the registration motor
101
is driven to rotate the registration rollers
106
a
and
106
b
. When the intermediate sensor
54
senses the leading edge of the sheet P, the sheet feed motor
74
is driven in the reverse direction to rotate the intermediate rollers
55
a
and
55
b
(steps S
9
and S
10
).
As shown in
FIG. 20
, a preselected delay Df occurs between the time when the registration motor
101
is driven and the time when the sheet feed motor
74
is driven in the reverse direction. The delay Df serves to reduce the duration of drive of the sheet feed motor
74
as far as possible. Specifically, as
FIG. 20
suggests, the illustrative embodiment drives the sheet feed motor
74
over a relatively long period of time. For example, heat generated by a driver assigned to the motor
74
would result in, e.g., the loss of synchronism of the motor
74
. It is to be noted that the above delay Df is not necessary if the duration of drive of the motor
74
is short.
The intermediate sensor
53
senses the leading edge of the sheet P being conveyed by the intermediate rollers
55
a
and
55
b
. The rollers
55
a
and
55
b
further convey the sheet P to the downstream side of the vertical transport path RZ. When the leading edge sensor
51
senses the leading edge of the sheet P (YES, step S
11
), the sensor
51
sends an ON signal to the printer sheet feed controller
88
.
In the above condition, assume the set print speed is any one of the third, second, first and trail print speeds lower than the standard speed. Then, the sheet feed controller
88
drives the sheet feed motor
74
in the reverse direction such that the intermediate rollers
55
a
and
55
b
convey the sheet P at a speed corresponding to the standard or third speed (90 rpm), i.e., a peripheral speed of 847.8 mm/sec. If the set print speed is the fourth speed higher than the standard speed, the controller
88
drives the motor
74
in the reverse direction to cause the rollers
55
a
and
55
b
to convey the sheet P at a speed corresponding to the fourth speed (105 rpm), i.e., a peripheral speed of 989.1 mm/sec. Further, if the set print speed is the fifth or highest speed, the controller
88
drives the motor
74
in the reverse direction such that the rollers
55
a
and
55
b
convey the sheet at a speed corresponding to the fifth speed (120 rpm), i.e., a peripheral speed of 1,130.4 mm/sec.
As shown in
FIG. 6
, the above intermediate rollers
55
a
and
55
b
feed the sheet P by a preselected amount such that the leading edge of the sheet P abuts against the portion just upstream of the nip between the registration rollers
33
and
33
b
and forms the preselected loop PA. Specifically, the controller
88
sends particular drive pulses to the sheet feed motor
74
via the driver, depending on whether the sheets P is fed from the upper sheet feeding section
201
or whether it is fed from the lower feeding section
202
and on the sheet size. As a result, the rollers
55
a
and
55
b
convey the sheet P by a preselected amount (step S
12
).
The preselected loop PA is confined in an experimentally determined range capable of preventing the sheet P from skewing or being not fed due to the rotation of the registration rollers
33
and
33
b
, and capable of providing the loop PA with a size adequate enough to reduce noise. To implement such a loop PA, the controller
88
drives the sheet feed motor
74
in the reverse direction such that the sheet P paid out from the upper sheet feeding section
201
is conveyed by a greater amount than the sheet P paid out from the lower sheet feeding section
202
, taking account of a sheet conveyance load, among others.
As stated above, the printer sheet feed controller
88
controls the sheet feed motor
74
independently of the driveline assigned to the ink drum
1
in such a manner to effect the unique conveyance speed adjustment and loop adjustment. This successfully obviates a short loop at low print speeds without regard to the print speed varying every moment due to the aging of a belt included in the ink drum driveline and the backlashes of gears. Further, the sheet P is prevented from skewing or from being not fed due to the rotation of the registration rollers
33
a
and
33
b
, and can therefor stably form the expected loop. Further, noise can be reduced at the standard print speed. In addition, a short loop is obviated with consideration given to noise reduction at high print speeds.
Subsequently, as shown in
FIGS. 20 and 21A
, when the press drum
20
is further rotated counterclockwise to an angular position θ′ of 307°, the interrupter
69
interrupts the optical path of the sheet feed start sensor
65
. The sensor
65
therefore turns on and sends an ON signal to the printer sheet feed controller
88
. The controller
88
drives the registration motor
58
on the elapse of the delay Db since the receipt of the ON signal (steps S
13
and S
14
). The motor
58
rotates the registration roller
33
b
counterclockwise and causes it to start conveying the leading edge of the sheet P toward the sheet clamper
21
of the press drum
20
(step S
15
).
After the leading edge of the sheet P has moved away from the nip between the registration rollers
33
a
and
33
b
, it is subjected to conveyance and printing at a print speed and a conveyance speed matching with a set print speed by unique operations which will be described hereinafter.
Assume that the above sheet P is of size A
4
or greater. Then, the sheet feed motor
74
is driven in the reverse direction for a short period of time such that the intermediate rollers
55
a
and
55
b
perform unique assist or auxiliary rotation (step Sl
6
). This assist rotation successfully reduces a load acting on the registration rollers
33
a
and
33
b
and prevents the sheet P from slipping at the nip between the rollers
33
a
and
33
b.
More specifically, the sheet feed motor
74
is driven to vary the conveying speed of the intermediate rollers
55
a
and
55
b
in order to maintain the loop PA of the sheet just upstream of the nip between the registration rollers
33
a
and
33
b
adequate. This is done in accordance with the position of the sheet feeding section, sheet size and print speed while the rollers
33
a
and
33
b
are conveying the sheet P. The above conveying sheet of the rollers
55
a
and
55
b
is stored in the ROM beforehand in the form of a control table. With the control table, it is possible to prevent the loop PA formed at the upstream side of the rollers
33
a
and
33
b
in the direction Z from disappearing or growing excessively while the rollers
33
a
and
33
b
are conveying the sheet S toward the sheet clamper
21
. It was experimentally found that when the sheet size was B
5
or smaller, the assist rotation of the rollers
55
a
and
55
b
was not necessary.
The above control executed by the printer sheet feed controller
88
over the conveying speed of the intermediate rollers
55
a
and
55
b
is far more advantageous over the conventional sheet conveyance relying only on the registration rollers
33
a
and
33
b
. The conventional conveyance is apt to dislocate an image on the sheet S due to scattering in the amount of conveyance, to limit the kind of sheets to convey, or to fail to follow high speed conveyance. For high speed conveyance, the conveying speed of the registration rollers
3
a
and
33
b
would have to be lowered.
Further, the sheet feed motor
74
implemented by a stepping motor exhibits sharp response when caused to rotate. In addition, the above control reduces noise ascribable to the sudden disappearance of the loop PA and a load to act on the registration rollers
33
a
and
33
b
and ascribable to the same.
In
FIG. 20
, the assist rotation of the intermediate rollers
55
a
and
55
b
is indicated by a phantom line. As shown, on the elapse of the delay De since the start of rotation of the registration motor
58
, i.e., the registration rollers
33
a
and
33
b
, the sheet feed motor
74
causes the rollers
55
a
and
55
b
to perform the assist rotation. That is, the delay De intervenes between the time when the registration motor
58
starts its rotation and the time when the rollers
55
a
and
55
b
start their assist rotation. The delay De is therefore set for each of different conveying speeds (peripheral speeds or linear velocities) in order to define the operation timing of the sheet feed motor
74
, i.e., the operation timing of the rollers
55
a
and
55
b
(step S
17
).
As stated above, in the step S
18
, the intermediate rollers
55
a
and
55
b
start their assist rotation. Specifically, the printer sheet feed controller
88
so controls the sheet feed motor
74
as to vary the conveying speed of the rollers
55
a
and
55
b
in accordance with the position of the sheet feeding section selected as well as the sheet size and print speed. Further, in the illustrative embodiment, the registration rollers
106
a
and
106
b
disposed in the bank sheet feeding section
200
convey the leading edge of the sheet P toward the registration rollers
33
a
and
33
b
. These registration rollers
106
a
and
106
b
cause a minimum of skew, lateral misregistration and crease to occur during sheet feed form the sheet feeding section
200
. Moreover, the sheet conveyance control described above allows the sheets P to be fed toward the registration rollers
33
a
and
33
b
at a constant timing and therefore corrects the variation of the amount of sheet feed which may occur between the sheet feeding section
200
and the registration rollers
33
a
and
33
b
due to, e.g., the slip of the sheet P.
Assume the condition shown in
FIG. 21C
in which the registration rollers
33
a
and
33
b
convey the sheet P from the position where its leading edge abuts against the portion just upstream of the nip between the registration rollers
33
a
and
33
b
to the downstream side of the transport path RX by Xb mm (19 mm in the illustrative embodiment). Then, he registration sensor
52
turns on with the result that slip correction is effected in the same manner as during sheet feed from the auxiliary sheet feeding section
28
.
After the above slip correction, the printer sheet feed controller
88
receiving the output pulses of the encoder sensor
61
controls the registration motor
58
such that the leading edge of the sheet P meets the sheet clamper
21
brought to its clamp position (FBC, FIG.
21
A). In this case, the printer sheet feed controller
88
executes control different from the control described in relation to the auxiliary sheet feeding section
28
, as follows. The controller
88
executes feedback control meant for the sheet feed motor
74
in accordance with the output pulses of the encoder sensor
61
in addition to the feedback control meant for the registration motor
58
. By controlling the sheet feed motor
74
, it is possible to prevent the loop PA of the sheet P from becoming excessively great or disappearing on the basis of the rotation of the intermediate rollers
55
a
and
55
b.
As stated above, the amount in which the sheet P is conveyed by the registration motor
58
and sheet feed motor
74
in response to a single pulse and the amount in which the circumference of the press drum
20
is moved in response to a single pulse width of the encoder
60
are identical. For FBC, the printer sheet feed controller
88
counts a period of time necessary for a single pulse width of the encoder
60
with the timer thereof and decelerates the registration motors
58
and
74
if the above period of time increases due to, e.g., a change in the load acting on the press drum
20
. Conversely, when the period of time necessary for a single pulse of the encoder
60
decreases, the controller
88
accelerates the motors
58
and
74
.
Stated another way, the controller
88
constantly detects the advance or the delay of the leading edge of the sheet P being conveyed by the registration rollers
33
a
and
33
b
and corrects both of the conveying speed of the rollers
33
a
and
33
b
and the conveying speed of the intermediate rollers
55
a
and
55
b
. The controller
88
constantly traces the irregular rotation, i.e., irregular peripheral speed of the press drum
20
in terms of changes in the pulses output from the encoder
61
. The controller
88
variably controls the rotation speeds of the registration motor
58
and sheet feed motor
74
in accordance with the variation of pulses output from the encoder
61
(FBC using the encoder
61
). At this instant, the controller
88
determines the angular position of the press drum
20
in terms of the number of pulses sensed by the encoder sensor
61
and determines the peripheral speed of the drum
20
in terms of the period of time t also sensed by the encoder sensor
61
. As shown in
FIG. 22
, the controller
88
further varies the drive pulse width (t1-t4) for the registration motor
58
in order to control the motors
58
and
74
by feedback control. This reduces misregistration and thereby increases registration accuracy.
Under the above encoder feedback control executed by the printer sheet feed controller
88
, the upper registration roller
33
a
is rotated clockwise by the lower registration roller
33
b
rotating clockwise via the sheet P. This, coupled with the fact that the intermediate roller
55
b
is rotated clockwise via the sheet P, causes the loop PA of the sheet P to disappear little by little. When the intermediate sensor
53
turns off, i.e., when the trailing edge of the sheet P moves away from the sensor
53
, the sheet feed motor
74
is caused to stop rotating in the reverse direction, causing the intermediate rollers
55
a
and
55
b
to stop their assist rotation. When the ink drum
1
reaches an angular position θ′ of 75° (the press drum
20
also reaches the same angular position), the registration motor
58
is deenergized with the result that the registration rollers
33
a
and
33
b
stop rotating. This is followed by the routine for managing the sheet feed condition (steps S
22
-S
25
).
In the step S
16
, if the sheet size is B
5
or smaller which does not need the assist rotation of the intermediate rollers
55
a
and
55
b
, then the operation is transferred to the step S
23
in order to execute the steps described above. The operation to follow is identical with the sheet feeding and printing procedure relating to the auxiliary sheet feeding section
28
and will not be described in order to avoid redundancy.
The illustrative embodiment has the following various advantages in addition to the above advantages.
In a conventional sheet feeding device, a main motor assigned to the ink drum
1
and press drum
20
drives the separation roller
32
and pickup roller
30
via a sector gear system including belts and clutches. In this condition, the peripheral speeds of the separation rollers
32
and pickup rollers
30
of the sheet feeding means
29
,
29
-
1
and
29
-
2
are dependent on the print speed slightly varying every moment. Therefore, the amount of the loop PA varies in accordance with the varying print speed. This brings about the skew and feed failure of a sheet ascribable to a short loop or noise ascribable to an excessive loop.
By contrast, in the illustrative embodiment, the interrupter
68
and sheet feed sensor
65
are mounted on the press drum
20
for determining the time when the leading edge of the sheet P should be fed toward the registration rollers
33
a
and
33
b
. The amount of loop is controlled on the basis of the output of the leading edge sensor
51
while the sheet feed motor
74
implemented by a stepping motor and independent of the main motor
150
drives the separation roller
32
, pickup roller
30
and intermediate rollers
55
a
and
55
b
. With this configuration, the illustrative embodiment is capable of stably adjusting the amount of the loop and thereby reducing skew, feed failure and noise.
Generally, the coefficient of friction of the sheet P contacting the registration rollers
33
a
and
33
b
depends on the quality and thickness thereof. Even when sheets of the same quality and thickness are used, the slip of the sheet P increases due to the variation of conveying conditions (e.g. coefficient of friction between the sheet P and the registration rollers
33
a
and
33
b
or shape of the sheet P) ascribable to the varying environmental conditions including temperature and humidity. Also, the slip increases when the registration rollers
33
a
and
33
b
wear or is contaminated by, e.g., paper dust or deteriorated due to aging. The slip is greatest when the leading edge of the sheet P begins to be conveyed by the registration rollers
33
a
and
33
b
. In the illustrative embodiment, the registration sensor
52
is capable of determining the position of the leading edge of the sheet P. The interrupter
69
and sheet feed start sensor
65
are mounted on the press drum
20
for determining the time when the leading edge of the sheet P should be fed toward the sheet clamper
21
. The printer sheet feed controller
88
corrects the slip of the sheet P on the basis of the output of the registration sensor
52
while controlling the registration motor
58
by FBC using the pulse encoder (encoder
60
and encoder sensor
61
). The sheet clamper
21
can therefore clamp the sheet P surely and stably, preventing the sheet P from rolling up more positively. In addition, the sheet P can be fed toward the sheet clamper
21
with enhanced stability and reliability, so that accurate registration is further enhanced.
The driveline assigned to the registration rollers
33
a
and
33
b
is independent of the driveline including the main motor
150
and assigned to the ink drum
1
and press drum
20
. This reduces the load to act on the driveline including the main motor
150
and therefore power required of the main motor
150
. Therefore, the illustrative embodiment reduces the cost of the main motor
150
.
Because the registration drive means is implemented by the registration motor
58
which is a stepping motor, mechanical parts for braking the registration rollers
33
a
and
33
b
while regulating the direction of rotation thereof are not necessary. This not only reduces the cost of the sheet feeding device, but simplifies the programs of the control unit. In addition, calculations are sped up to provide FBC with an accurate following ability.
The sheet feed drive means and sheet conveyance drive means are implemented by the sheet feed motor
74
which is also a stepping motor
74
. Such means therefore exhibit sharp response at the time of drive and obviate the need for mechanical parts for regulating the direction of the separation roller
32
, thereby reducing the cost of the device. In addition, the driveline assigned to the separation roller
32
and pickup roller
30
is independent of the driveline including the main motor
150
and assigned to the ink drum
1
and press drum
20
. This reduces the load to act on the driveline including the main motor
150
and therefore further reduces power required of the main motor
150
. Therefore, the illustrative embodiment further reduces the cost of the main motor
150
.
The bank sheet conveyance drive means is implemented by the bank sheet feed motor
107
which is also a stepping motor. Such means therefore exhibit sharp response at the time of drive and obviate the need for mechanical parts for regulating the directions of rotation of the separation rollers
32
and pickup rollers
30
of the sheet feeding sections
29
-
1
and
29
-
2
, thereby reducing the cost of the device. In addition, the driveline assigned to the separation rollers
32
and pickup rollers
30
is independent of the driveline including the main motor
150
and assigned to the ink drum
1
and press drum
20
. This reduces the load to act on the driveline including the main motor
150
and therefore further reduces power required of the main motor
150
.
Therefore, the illustrative embodiment further reduces the cost of the main motor
150
.
The bank registration drive means is implemented by the bank registration roller
101
which is also a stepping motor. Such means therefore exhibits sharp response at the time of drive. Again, the driveline is independent of the driveline including the main motor
150
. This reduces the load to act on the driveline including the main motor
150
and therefore further reduces power required of the main motor
150
.
A second embodiment of the present invention will be described hereinafter. This embodiment differs from the above embodiment mainly in that a printer sheet feed controller
88
A and a bank sheet feed controller
148
A are substituted for the printer sheet feed controller
88
and bank sheet feed controller
148
, respectively.
The printer sheet feed controller
88
A differs from the printer sheet feed controller
88
in the following respect. Assume that a sheet is fed from the auxiliary sheet feeding section
28
, and that the operator inputs the fourth or fifth print speed higher than the standard speed on the DOWN key
96
a
or UP key
96
b
. Then, in response to a signal representative of the set print speed, the printer sheet feed controller
88
A drives the sheet feed motor
74
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
convey the sheet at a speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec. When the set print speed is the third, second, first or trial print speed lower than the standard speed, the sheet feed motor
74
operates in the same manner as in the first embodiment.
Assume that a sheet is fed from the bank sheet feeding section
200
, and that the operator inputs the fourth or fifth print speed higher than the standard speed on the DOWN key
96
a
or UP key
96
b
. Then, in response to a signal representative of the set print speed, the printer sheet feed controller
88
A drives the sheet feed motor
74
in the reverse direction such that the intermediate rollers
55
a
and
55
b
convey the sheet at a speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec. When the set print speed is the third, second, first or trial print speed lower than the standard speed, the sheet feed motor
74
operates in the same manner as in the first embodiment.
As for the bank sheet feed controller
148
A, assume that a sheet is fed from the upper sheet feeding section
201
, and that the operator inputs the fourth or fifth print speed higher than the standard speed on the DOWN key
96
a
or UP key
96
b
. Then, in response to a signal representative of the set print speed and transferred from the printer sheet feed controller
88
A, the bank sheet feed controller
148
A drives the bank sheet feed motor
107
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
convey the sheet at the highest speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec. When the set print speed is the third, second, first or trial print speed lower than the standard speed, the sheet feed motor
74
operates in the same manner as in the first embodiment.
Assume that a sheet is fed from the lower sheet feeding section
202
of the bank sheet feeding section
200
, and that the set print speed input on the DOWN key
96
a
or the UP key
96
b
is the fourth or fifth print speed higher than the standard speed. Then, the bank sheet feed controller
148
A drives the bank sheet feed motor
107
in the reverse direction such that the intermediate rollers
118
a
and
118
b
convey the sheet at a speed corresponding to the fifth print speed, i.e., a peripheral speed of 1,130.4 mm/sec.
The operation of the second embodiment will not be described in detail because it is analogous to the operation of the first embodiment.
A third embodiment of the present invention includes a printer sheet feed controller
88
B and a bank sheet feed controller
148
B in placed of the printer sheet feed controller
88
and bank sheet feed controller
148
of the first embodiment.
Assume that a sheet is fed from the auxiliary sheet feeding section
28
. Then, in response to a signal representative of a set print speed input on the DOWN key
96
a
or the UP key
96
b
, the printer sheet feed controller
88
B drives, without regard to the set print speed, the sheet feed motor
74
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
convey the sheet at a speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec.
Assume that a sheet is fed from the bank sheet feeding section
200
. Then, in response to a signal representative of the set print speed and input on the DOWN key
96
a
or the UP key
96
b
, the printer sheet feed controller
88
B drives, without regard to the set print speed, the sheet feed motor
74
in the reverse direction such that the intermediate rollers
55
a
and
55
b
convey the sheet at a speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec.
As for the bank sheet feed controller
148
B, assume that a sheet is fed from the upper sheet feeding section
201
. Then, in response to a signal representative of the set print speed input on the DOWN key
96
a
or the UP key
96
b
and transferred from the printer sheet feed controller
88
B, the bank sheet feed controller
148
B drives the bank sheet feed motor
107
forward such that the separation roller
32
and pickup roller
30
of the sheet feeding means
29
-
1
convey the sheet at a constant speed corresponding to the fifth or highest print speed, i.e., a peripheral speed of 1,130.4 mm/sec. When the set print speed is the third, second, first or trial print speed lower than the standard speed, the sheet feed motor
74
operates in the same manner as in the first embodiment.
Assume that a sheet is fed from the lower sheet feeding section
202
of the bank sheet feeding section
200
. Then, in response to a signal representative of the set print speed input on the DOWN key
96
a
or the UP key
96
b
and transferred from the printer sheet feed controller
88
B, the bank sheet feed controller
148
B drives the bank sheet feed motor
107
in the reverse direction such that the intermediate rollers
118
a
and
118
b
convey the sheet at a constant speed corresponding to the fifth print speed, i.e., a peripheral speed of 1,130.4 mm/sec.
The operation of the third embodiment will not be described in detail because it is also analogous to the operation of the first embodiment.
A first modification of the first embodiment will be described with reference to FIG.
19
. As shown in
FIGS. 17 and 19
, the modification differs from the first embodiment of
FIGS. 1-31
in that it uses the kind-of-sheet key
1
90 for inputting the kind of sheets to be used and includes a printer sheet feed controller
88
C in place of the printer sheet feed controller
88
.
Usually, a stencil printer, among others, is operated with various kinds of sheets including low quality sheets to high quality sheets, envelopes, and thin sheets to thick sheets. The slip on the registration rollers
33
a
and
33
b
noticeably differs from one kind of sheets to another kind of sheets. Therefore, should the registration motor
65
be simply driven on the basis of an ON signal output from the sheet feed start sensor
65
, the sheet P could not be stably conveyed. In light of this, the modification varies the timing for driving the registration motor
58
in accordance with the kind of sheets. For this purpose, the modification causes the printer sheet feed controller
88
C to additionally play the role of registration drive start varying means for varying the drive start point of the delay Db, FIG.
21
A.
Specifically, when the operator inputs the kind of sheets on the kind-of-sheet key
190
, the printer sheet feed controller
88
C varies the drive start point of the delay Db by using the ON output of the sheet feed start sensor
65
as a trigger. As a result, the timing for starting driving the registration motor
58
is varied in accordance with the kind of sheets. For example, as for thin sheets and thick sheets, the controller
88
C sequentially reduces the delay Db from the thin sheets to the thick sheets. As for low quality sheets and high quality sheets as well as envelopes, optimal delay DB ranges may also be determined by, e.g., experiments.
The above control is also applicable to the registration motor
101
assigned to the bank sheet feeding section
200
. Specifically, a bank sheet feed controller
148
C replacing the bank sheet feed controller
148
may vary the drive start point of the delay Db, i.e., the start timing of the bank registration motor
101
by using the ON output of the bank sheet feed start sensor
66
.
A second modification of the first embodiment will be described with reference to FIG.
19
. As shown, this modification differs from the first modification mainly in that it includes a kind-of-sheet sensor
195
, a bank upper kind-of-sheet sensor
195
-
1
and a bank lower kind-of-sheet sensor
195
-
2
(collectively kind-of-sheet sensing means) in place of the kind-of-sheet key
190
, and a printer sheet feed controller
88
D in place of the printer sheet feed controller
88
C.
The kind-of-sheet sensors
195
,
195
-
1
and
195
-
2
each may be of the type optically sensing the intensity of transmitted light representative of the thickness of the sheet P or of the type mechanically measuring a sheet thickness with an electrical sensor by increasing a gap between rollers. To vary the drive start point of the delay Db, the printer sheet feed controller
88
D additionally plays the role of registration drive start varying means for varying the drive start point of the delay Db, i.e., the start timing of the registration motor
58
. The control of the second modification will not be described in because it is analogous to the control of the first modification.
The above control is also applicable to the registration motor
101
assigned to the bank sheet feeding section
200
. Specifically, a bank sheet feed controller
148
D replacing the bank sheet feed controller
148
C may vary the drive start point of the delay Db, i.e., the start timing of the bank registration motor
101
by using the ON output of the bank sheet feed start sensor
66
.
In the first and second modifications, the delays Db and Dd may be set on the basis of time or on the basis of the rotation of the press drum
20
sensed by the pulse encoder including the encoder sensor
61
. Because the printer sheet feed controller
88
C or
88
D and bank sheet feed controller
148
C or
148
D each are implemented by a microcomputer, the delays Db and Dd may be set and counted by the timer included in the microcomputer and variably controlled.
A third modification of the first embodiment will be described with reference to
FIGS. 1-31
. The third modification does not include the interrupters
68
-
71
, sheet feed sensors
65
and
66
, incremental encoder
60
, and encoder sensor
61
. As shown in
FIG. 32
, the third embodiment includes an absolute pulse encoder mounted on the press drum
20
and capable of sensing the variation of the rotation speed and the position of the press drum
20
, i.e., an absolute amount of rotation.
Specifically, the absolute pulse encoder includes a multichannel photoencoder
220
mounted on the end wall
20
b
of the press drum
20
and formed with a number of concentric radial slits in its peripheral portion. A plurality of encoder sensors
221
are mounted on the arm
25
b
, and each sandwiches the peripheral portion of the photoencoder
220
. The control available with the third modification is identical with the control of the first embodiment except that a single absolute encoder replaces the interrupters
69
-
71
, sensors
65
and
66
, incremental encoder
60
, and encoder sensor
61
.
Again, the delay Da intervenes between the time when the encoder sensor
221
outputs an ON pulse representative of the preselected angular position of the press drum
20
and the time when the sheet feed motor
74
begins to be driven. The other delays Db, Dc, Dd, De and Df are also set in the same manner as in the first embodiment.
The third embodiment is capable of reducing the number of parts for control although the control may be expensive and sophisticated at the present stage of development, while achieving the same advantages as the first and second embodiments and first and second modifications.
Technical arrangements unique to the present invention may be summarized as follows.
(1) In a first technical arrangement, a stencil printer includes an ink drum for wrapping a master therearound, a press drum including clamping means for clamping the leading edge of a sheet fed thereto and having substantially the same outside diameter as the ink drum, and registering means for feeding the leading edge of the sheet toward the clamping means. The press drum is pressed against the ink drum relative to the ink drum at the time of printing. A pulse encoder is used to control a timing for feeding the leading edge of the sheet toward the clamping means and includes an encoder sensor responsive to the variation of at least the rotation speed of the press drum. Registration drive means drives the registering means. Leading edge sensing means is located on a transport path between the press drum and the registering means for sensing the leading edge of the sheet. Registration drive control means controls, based on a signal output from the leading edge sensing means, the registration drive means for compensating for a slip of the sheet on the registering means. Subsequently, the registration drive control means controls, in response to a pulse signal output form the encoder sensor, the registration drive means for feeding the leading edge of the sheet in synchronism with the rotation of the clamping means.
The pulse encoder is of the incremental type capable of sensing the variation of rotation speed to thereby determine a relative amount of rotation or of the absolute type capable of sensing the variation of rotation speed and a position to thereby determine an absolute amount of rotation. The pulse encoder included in the first arrangement senses at least the variation of rotation speed of the press drum and therefore includes both of the incremental type and absolute type pulse encoders. While the pulse encoder should preferably be implemented by a photoencoder from the stability and reliability standpoint, it may be implemented by, e.g., a magnetic encoder if stability and reliability are not of primary importance. The pulse encoder should preferably be mounted on the press roller or may be mounted on a main motor for driving the ink drum or on the ink drum.
In the first arrangement, a second technical arrangement is characterized in that the registration drive control means is implemented by a stepping motor and controls the registration drive means by varying the number of drive pulses to be fed thereto.
In the second arrangement, a third technical arrangement is characterized in that after compensating for the slip of the sheet, the registration drive control means controls the registration drive means by feedback control in accordance with the output pulse signal of the encoder sensor and by varying the pulse width.
In the second arrangement, a fourth technical arrangement is characterized in that a delay time is provided between the time when the encoder sensor starts outputting the pulse signal and the time when the registration drive means begins to be driven (drive start point). Registration drive start varying means varies the drive start point and therefore the delay time in accordance with the kind of sheets.
In the first, second or third arrangement, a fifth technical arrangement is characterized in that timing sensing means is mounted on the press drum for determining a timing for feeding the leading edge of the sheet toward the clamping means.
In the fifth arrangement, a sixth technical arrangement is characterized in that a delay time is provided between the time when the timing sensing means outputs an ON signal and the drive start point at which the registration drive means begins to be driven. Registration drive start varying means varies the drive start point and therefore the delay in accordance with the kind of sheets.
In the fourth or sixth arrangement, a seventh technical arrangement is characterized in that the registration drive control means bifunctions as the registration drive start varying means.
In the fourth and sixth arrangements, the delay times may be set on the basis of time or on the basis of the angular position of the press drum sensed by an encoder including an encoder sensor. When the registration drive control means is implemented by a microcomputer, the delay times may be set and counted by a timer included in the microcomputer. In this case, a CPU included in the microcomputer is capable of playing the role of the registration drive varying means by suitably reading delay times matching with the kind of sheets out of a ROM also included in the microcomputer or out of an external storage.
In the fourth, six or seventh arrangement, an eighth technical arrangement is characterized in that kind-of-sheet setting means allows the kind of sheets to be set.
In the fourth, sixth or seventh arrangement, a ninth technical arrangement is characterized in that kind-of-sheet sensing means senses the kind of sheets.
In any one of the first to ninth arrangements, a tenth technical arrangement is characterized in that sheet feed timing sensing means determines a timing for feeding the leading edge of the sheet toward the registering means.
In the tenth arrangement, an eleventh technical arrangement is characterized in that sheet feeding means feeds the leading edge of the sheet toward the registering means, and in that sheet feed drive control means controls the sheet feed drive means in responsive to a signal output from the sheet feed timing sensing means for thereby feeding the leading edge of the sheet toward the registering means.
In the eleventh arrangement, a twelfth technical arrangement is characterized in that the sheet feed drive means is implemented by a stepping motor.
In any one of the first to twelfth arrangements, a thirteenth technical arrangement is characterized in that the leading edge sensing means functions to detect a sheet jam.
In the first and other arrangements, the outside diameter of the press drum substantially the same as the outside diameter of the ink drum may include a design tolerance. To press the press drum against the ink drum relative to the ink drum, the press drum may be pressed against the ink drum, or the ink drum may be pressed against the press drum, or the ink drum and press drum may be pressed against each other. The press drum movable into and out of contact with the ink drum may be implemented by the press drum and moving means included in the illustrative embodiments.
For the control means, bank registration drive control means, bank sheet feed drive control means, registration drive control means and sheet feed drive control means, use may advantageously be made of a microcomputer or a microprocessor including a CPU, I/O ports, ROM, RAM and a timer.
For the bank registration timing sensing means, bank sheet feed timing sensing means, timing sensing means and sheet feed timing sensing means, use may advantageously be made of transmission type optical sensors (photointrrupter type photosensors) and interrupters from the stable and reliable operation standpoint. Of course, use may be made of reflection type optical sensors which are low cost and stably operable.
For the bank leading edge sensing means and leading edge sensing means, use may advantageously be made of reflection type optical sensors which are inexpensive and stably operable. To further enhance stability and reliability, the reflection type optical sensors may be replaced with transmission type optical sensors and interrupters. The optical sensors may, of course, be replaced with, e.g., microswitches having mechanical contacts if importance is not attached to stabilization or reliability.
The press drum movable into and out of contact with the ink drum refers also to a member movable substantially in synchronism with the press drum. Likewise, the ink drum movable into and out of contact with the press drum refers also to an apparatus body adjoining the ink drum.
The bank sheet feeding means and sheet feeding means each may be implemented by a pickup roller and a pair of separation rollers, by a loosening roller (pickup roller bifunctioning as a separation roller) taught in Japanese Patent Publication No. 5-32296, or by the pickup roller, separation roller and separation pad included in the illustrative embodiments.
In summary, it will be seen that the present invention provides a sheet feeding device for a printer having various unprecedented advantages, as enumerated below.
(1) Sheet conveyance drive means independent of a driveline assigned to an ink drum so drives sheet conveying means as to set up a constant sheet conveying speed without regard to a print speed input on print speed setting means. It is therefore possible to obviate a short loop and therefore skew and feed failure without regard to the print speed varying every moment due to the extension of a belt included in the ink drum driveline due to aging and the backlashes of gears.
(2) The sheet conveyance drive means drives, if the set print speed is higher than a standard print speed, the sheet conveying means in such a manner as to set up a sheet conveying speed matching with the set print speed or drives, if the set print speed is lower than the standard print speed, the sheet conveying means in such a manner as to set up a sheet conveying speed matching with the standard print speed. It is therefore possible to obviate a short loop and therefore skew and feed failure at low print speeds without regard to the print speed varying every moment due to the extension of the above belt and the backlashes of gears, while taking account of the noise of the entire printer ascribable to sheet conveyance. In addition, noise at speeds lower than the standard print speed predominant over the other speeds is reduced.
(3) The sheet conveyance drive means drives, if the set print speed is higher than a standard print speed, the sheet conveying means in such a manner as to set up a sheet conveying speed matching with the highest print speed or drives, if the set print speed is lower than the standard print speed, the sheet conveying means in such a manner as to set up a sheet conveying speed matching with the standard print speed. This is also successful to achieve the above advantage (2).
(4) In response to a signal output from leading edge sensing means positioned on a transport path between registering means and sheet conveying means, control means controls the sheet conveyance drive means such that the leading edge of a sheet abuts against the registering means and forms a preselected loop. Generally, a load acting on sheet conveyance depends on the transport path or the sheet size while the coefficient of friction of the sheet contacting the sheet conveying means depends on the quality and thickness thereof. Even when sheets of the same quality and thickness are used, the slip of the sheet increases due to the variation of conveying conditions (e.g. coefficient of friction between the sheet and the sheet conveying means or intermediate rollers or shape of the sheet) ascribable to the varying environmental conditions including temperature and humidity. Also, the slip increases when the sheet conveying means wears or is contaminated by, e.g., paper dust or deteriorated due to aging. The leading edge sensing means senses the position of the leading edge of the sheet when the slip increases in order to further stabilize the loop, thereby surely obviating skew and feed failure.
(5) The press drum having substantially the same outside diameter as the ink drum is pressed against the ink drum relative to the ink drum. This prevents the sheet from rolling up, reduces noise, and enhances accurate registration.
(6) Bank registering means for feeding the leading edge of the sheet toward registering means is included in a bank sheet feeding section independently of the registering means. This reduces the skew, lateral misregistration and crease of the sheet when the sheet is fed from the bank sheet feeding section. Further, the timing for feeding the sheet toward the registering means of the printer body is free from irregularity, so that a change in the amount of sheet conveyance ascribable to, e.g., the slip of the sheet occurring between the bank sheet feeding section and the registering means is compensated for. Moreover, bank sheet conveyance drive means independent of the driveline assigned to the ink drum so drives bank sheet conveying means as to set up a constant sheet conveying speed without regard to the print speed input on the print speed setting means. It is therefore possible to obviate a short loop and therefore skew and feed failure without regard to the print speed varying every moment due to the extension of a belt included in the ink drum driveline due to aging and the backlashes of gears.
(7) When the set print speed is higher than the standard print speed, the bank sheet conveyance drive means drives the sheet conveying means in such a manner as to set up a conveying speed matching with the set print speed. When the set print speed is lower than the standard print speed, the bank sheet conveyance drive means drives the sheet conveying means in such a manner as to set up a conveying speed matching with the standard print speed. It is therefore possible to obviate a short loop and therefore skew and feed failure at low print speeds without regard to the print speed varying every moment due to the extension of the above belt and the backlashes of gears, while taking account of the noise of the entire printer ascribable to sheet conveyance. In addition, noise at speeds lower than the standard print speed predominant over the other speeds is reduced.
(8) When the set print speed is higher than the standard print speed, the bank sheet conveyance drive means drives the bank sheet feeding means in such a manner as to set up a conveying speed matching with the highest set print speed. When the set print speed is lower than the standard print speed, the bank sheet conveyance drive means drives the bank sheet feeding means in such a manner as to set up a conveying speed matching with the standard print speed. It is therefore possible to obviate a short loop and therefore skew and feed failure at low print speeds without regard to the print speed varying every moment due to the extension of the above belt and the back lashes of gears, while taking account of the noise of the entire printer ascribable to sheet conveyance. In addition, noise at speeds lower than the standard print speed predominant over the other speeds is reduced.
(9) In response to a signal output from bank leading edge sensing means positioned on a transport path between the bank registering means and the bank sheet conveying means, control means controls the bank sheet conveyance drive means such that the leading edge of a sheet abuts against the bank registering means and forms a preselected loop. Generally, a load acting on sheet conveyance depends on the transport path or the sheet size while the coefficient of friction of the sheet contacting the bank sheet conveying means depends on the quality and thickness thereof. Even when sheets of the same quality and thickness are used, the slip of the sheet increases due to the variation of conveying conditions (e.g. coefficient of friction between the sheet and the sheet conveying means or intermediate rollers or shape of the sheet) ascribable to the varying environmental conditions including temperature and humidity. Also, the slip increases when the bank sheet conveying means wears or is contaminated by, e.g., paper dust or deteriorated due to aging. The bank leading edge sensing means senses the position of the leading edge of the sheet when the slip increases in order to further stabilize the loop, thereby surely obviating skew and feed failure.
(10) Bank registration timing sensing means is mounted on the press drum for determining a timing for the bank registering means to feed the leading edge of the sheet toward the registering means. This enhances the stability and reliability of the timing for feeding the sheet toward the registering means.
(11) Bank registration drive control means is capable of controlling, in response to a signal output from the bank registration timing sensing means, the bank registration drive means in such a manner as to feed the leading edge of the sheet toward the registering means.
(12) Bank sheet feed timing sensing means is mounted on the press drum for determining a timing for the bank sheet feeding means to feed the leading edge of the sheet toward the bank registering means. This enhances the stability and reliability of the timing for feeding the sheet toward the bank registering means.
(13) Bank sheet feed drive control means is capable of controlling, in response to a signal output from the bank registration timing sensing means, the bank sheet feed drive means in such a manner as to feed the leading edge of the sheet toward the bank registering means.
Various modifications will become possible for those skilled in the art after receiving the teachings of the present disclosure without departing from the scope thereof.
Claims
- 1. A sheet feeding device for a printer comprising an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, pressing means pressed against said ink drum relative to said ink drum with the intermediary of a sheet, registering means for feeding a leading edge of the sheet toward a print position between said ink drum and said pressing means, a bank sheet feeding section positioned below said print position, and sheet conveying means for conveying the sheet fed from said bank sheet feeding section toward said registering means, said sheet feeding device comprising:print speed setting means for setting a print speed such that said ink drum rotates in accordance with a set print speed included in the plurality of print speeds; and sheet conveyance drive means independent of a driveline assigned to said ink drum for driving said sheet conveying means; said sheet conveyance drive means driving, when the set print speed is higher than a standard print speed, said sheet conveying means in such a manner as to set up a sheet conveying speed matching with said set print speed or driving, when said set print speed is lower than said standard print speed, said sheet conveying means in such a manner as to set up a sheet conveying speed matching with said standard print speed.
- 2. A sheet feeding device as claimed in claim 1, further comprising:leading edge sensing means positioned on a transport path between said registering means and said sheet conveying means for sensing the leading edge of the sheet; and control means for controlling, in response to a signal output from said leading edge sensing means, said sheet conveyance drive means such that the leading edge of the sheet abuts against said registering means and forms a preselected loop.
- 3. A sheet feeding device as claimed in claim 1, wherein said pressing means comprises a press drum having substantially a same outside diameter as said ink drum and pressed against said ink drum relative to said ink drum during printing.
- 4. A sheet feeding device for a printer comprising an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, pressing means pressed against said ink drum relative to said ink drum with the intermediary of a sheet, registering means for feeding a leading edge of the sheet toward a print position between said ink drum and said pressing means, a bank sheet feeding section positioned below said print position, and sheet conveying means for conveying the sheet fed from said bank sheet feeding section toward said registering means, said sheet feeding device comprising:print speed setting means for setting a print speed such that said ink drum rotates in accordance with a set print speed included in the plurality of print speeds; and sheet conveyance drive means independent of a driveline assigned to said ink drum for driving said sheet conveying means; said sheet conveyance drive means driving, when the set print speed is higher than a standard print speed, said sheet conveying means in such a manner as to set up a sheet conveying speed matching with a highest set print speed included in the plurality of print speeds or driving, when said set print speed is lower than said standard print speed, said sheet conveying means in such a manner as to set up a sheet conveying speed matching with said standard speed.
- 5. A sheet feeding device as claimed in claim 4, further comprising:leading edge sensing means positioned on a transport path between said registering means and said sheet conveying means for sensing the leading edge of the sheet; and control means for controlling, in response to a signal output from said leading edge sensing means, said sheet conveyance drive means such that the leading edge of the sheet abuts against said registering means and forms a preselected loop.
- 6. A sheet feeding device as claimed in claim 4, wherein said pressing means comprises a press drum having substantially a same outside diameter as said ink drum and pressed against said ink drum relative to said ink drum during printing.
- 7. A sheet feeding device for a printer comprising an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, pressing means pressed against said ink drum relative to said ink drum with the intermediary of a sheet, registering means for feeding a leading edge of the sheet toward a print position between said ink drum and said pressing means, and a bank sheet feeding section for conveying the sheet toward said registering means, said sheet feeding device comprising:bank registering means included in said bank sheet feeding section independently of said registering means for feeding the leading edge of the sheet toward said registering means; bank sheet conveying means for feeding the leading edge of the sheet toward said bank registering means such that said leading edge of said sheet abuts against said bank registering means and forms a loop; bank sheet conveyance drive means independent of a driveline assigned to said ink drum for driving said bank sheet conveying means; and print speed setting means for setting a print speed such that said ink drum rotates in accordance with a set print speed included in the plurality of print speeds; said bank sheet conveyance drive means driving said bank sheet conveying means in such a manner as to set up a constant sheet conveying speed without regard to the set print speed set via said print speed setting means.
- 8. A sheet feeding device as claimed in claim 7, further comprising:bank leading edge sensing means positioned on a transport path between said bank registering means and said bank sheet conveying means for sensing the leading edge of the sheet; and control means for controlling, in response to a signal output from said bank leading edge sensing means, said bank sheet conveyance drive means such that the leading edge of the sheet abuts against said bank registering means and forms a preselected loop.
- 9. A sheet feeding device as claimed in claim 7, wherein said pressing means comprises a press drum having substantially a same outside diameter as said ink drum and pressed against said ink drum relative to said ink drum during printing.
- 10. A sheet feeding device as claimed in claim 9, further comprising bank registration timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 11. A sheet feeding device as claimed in claim 10, further comprising:bank registration drive means for driving said bank registering means: and bank registration drive control means for controlling, in response to a signal output from said bank registration timing sensing means, said bank registration drive means for driving the leading edge of the sheet toward said registering means.
- 12. A sheet feeding device as claimed in claim 9, further comprising:bank sheet feeding means for feeding the leading edge of the sheet from a bank tray to said bank registering means; and bank sheet feed timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 13. A sheet feeding device as claimed in claim 12, further comprising:bank sheet feed drive means for driving said bank sheet feeding means; and bank sheet feed drive control means for controlling, in response to a signal output from said bank sheet feed timing sensing means, said bank sheet conveyance drive means for feeding the leading edge of the sheet toward said bank registering means.
- 14. A sheet feeding device for a printer comprising an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, pressing means pressed against said ink drum relative to said ink drum with the intermediary of a sheet, registering means for feeding a leading edge of the sheet toward a print position between said ink drum and said pressing means, and a bank sheet feeding section for conveying the sheet toward said registering means, said sheet feeding device comprising:bank registering means included in said bank sheet feeding section independently of said registering means for feeding the leading edge of the sheet toward said registering means; bank sheet conveying means for feeding the leading edge of the sheet toward said bank registering means such that said leading edge of said sheet abuts against said bank registering means and forms a loop; bank sheet conveyance drive means independent of a driveline assigned to said ink drum for driving said bank sheet conveying means; and print speed setting means for setting a print speed such that said ink drum rotates in accordance with a set print speed included in the plurality of print speeds; said bank sheet conveyance drive means driving, when the set print speed is higher than a standard print speed, said bank sheet conveying means in such a manner as to set up a sheet conveying speed matching with said set print speed or driving, when said set print speed is lower than said standard print speed, said bank sheet conveying means in such a manner as to set up a sheet conveying speed matching with said standard print speed.
- 15. A sheet feeding device as claimed in claim 14, further comprising:bank leading edge sensing means positioned on a transport path between said bank registering means and said bank sheet conveying means for sensing the leading edge of the sheet; and control means for controlling, in response to a signal output from said bank leading edge sensing means, said bank sheet conveyance drive means such that the leading edge of the sheet abuts against said bank registering means and forms a preselected loop.
- 16. A sheet feeding device as claimed in claim 14, wherein said pressing means comprises a press drum having substantially a same outside diameter as said ink drum and pressed against said ink drum relative to said ink drum during printing.
- 17. A sheet feeding device as claimed in claim 16, further comprising bank registration timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 18. A sheet feeding device as claimed in claim 17, further comprising:bank registration drive means for driving said bank registering means; and bank registration drive control means for controlling, in response to a signal output from said bank registration timing sensing means, said bank registration drive means for driving the leading edge of the sheet toward said registering means.
- 19. A sheet feeding device as claimed in claim 16, further comprising:bank sheet feeding means for feeding the leading edge of the sheet from a bank tray to said bank registering means; and bank sheet feed timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 20. A sheet feeding device as claimed in claim 19, further comprising:bank sheet feed drive means for driving said bank sheet feeding means; and bank sheet feed drive control means for controlling, in response to a signal output from said bank sheet feed timing sensing means, said bank sheet conveyance drive means for feeding the leading edge of the sheet toward said bank registering means.
- 21. A sheet feeding device for a printer comprising an ink drum rotatable at a variable speed in accordance with any one of a plurality of print speeds with a master wrapped therearound, pressing means pressed against said ink drum relative to said ink drum with the intermediary of a sheet, registering means for feeding a leading edge of the sheet toward a print position between said ink drum and said pressing means, and a bank sheet feeding section for conveying the sheet toward said registering means, said sheet feeding device comprising:bank registering means included in said bank sheet feeding section independently of said registering means for feeding the leading edge of the sheet toward said registering means; bank sheet conveying means for feeding the leading edge of the sheet toward said bank registering means such that said leading edge of said sheet abuts against said bank registering means and forms a loop; bank sheet conveyance drive means independent of a driveline assigned to said ink drum for driving said bank sheet conveying means; and print speed setting means for setting a print speed such that said ink drum rotates in accordance with a set print speed included in the plurality of print speeds; said bank sheet conveyance drive means driving, when the set print speed is higher than a standard print speed, said bank sheet conveying means in such a manner as to set up a sheet conveying speed matching with a highest set print speed included in the plurality of print speeds or driving, when said set print speed is lower than said standard print speed, said bank sheet conveying means in such a manner as to set up a sheet conveying speed matching with said standard print speed.
- 22. A sheet feeding device as claimed in claim 21, further comprising:bank leading edge sensing means positioned on a transport path between said bank registering means and said bank sheet conveying means for sensing the leading edge of the sheet; and control means for controlling, in response to a signal output from said bank leading edge sensing means, said bank sheet conveyance drive means such that the leading edge of the sheet abuts against said bank registering means and forms a preselected loop.
- 23. A sheet feeding device as claimed in claim 21, wherein said pressing means comprises a press drum having substantially a same outside diameter as said ink drum and pressed against said ink drum relative to said ink drum during printing.
- 24. A sheet feeding device as claimed in claim 23, further comprising bank registration timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 25. A sheet feeding device as claimed in claim 24, further comprising:bank registration drive means for driving said bank registering means; and bank registration drive control means for controlling, in response to a signal output from said bank registration timing sensing means, said bank registration drive means for driving the leading edge of the sheet toward said registering means.
- 26. A sheet feeding device as claimed in claim 23, further comprising:bank sheet feeding means for feeding the leading edge of the sheet from a bank tray to said bank registering means; and bank sheet feed timing sensing means mounted on said press drum for determining a timing for said bank registering means to feed the leading edge of the sheet toward said registering means.
- 27. A sheet feeding device as claimed in claim 26, further comprising:bank sheet feed drive means for driving said bank sheet feeding means; and bank sheet feed drive control means for controlling, in response to a signal output from said bank sheet feed timing sensing means, said bank sheet conveyance drive means for feeding the leading edge of the sheet toward said bank registering means.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-319378 |
Nov 1998 |
JP |
|
US Referenced Citations (3)
Foreign Referenced Citations (12)
Number |
Date |
Country |
2-265825 |
Oct 1990 |
JP |
5-124737 |
May 1993 |
JP |
5-18342 |
May 1993 |
JP |
5-32296 |
May 1993 |
JP |
5-221536 |
Aug 1993 |
JP |
6-40137 |
Feb 1994 |
JP |
6-144600 |
May 1994 |
JP |
7-137851 |
May 1995 |
JP |
8-59031 |
Mar 1996 |
JP |
9-30714 |
Feb 1997 |
JP |
9-216448 |
Aug 1997 |
JP |
10-35911 |
Feb 1998 |
JP |