This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application Nos. 2011-281630, 2012-071848, and 2012-125958, filed on Dec. 22, 2011, Mar. 27, 2012, and Jun. 1, 2012, respectively in the Japan Patent Office, the entire disclosures of which are hereby incorporated by reference herein.
1. Field of the Invention
Embodiments of the present invention relate to a sheet feeding mechanism and an image forming apparatus incorporating the sheet feeding mechanism.
2. Description of the Related Art
Some image forming apparatuses (e.g., copiers, printers, and facsimile machines) are designed to form a sheet conveyance path near a transfer roller so that the sheet conveyance path can be exposed to an outside of the apparatus for easily removing jammed paper(s) remaining near the transfer roller.
For example, Japanese Patent Application Publication Nos. 2011-085815 (JP-2011-085815-A), and 2004-020574 (JP-2004-020574-A) disclose configurations in which an openably retractable transfer cover unit is disposed on an outer surface of an image forming apparatus, and a transfer roller is disposed on an inner surface of the transfer cover unit. Similarly, Japanese Patent Application Publication No. 2000-231321 (JP-2000-231321-A) discloses a configuration in which not only a transfer roller but also one of a pair of timing rollers is disposed on an inner surface of such a transfer cover unit.
The transfer roller and the timing roller can be attached to the transfer cover unit, for example, by attaching respective rotatable axes of the rollers to the transfer cover unit fixedly as disclosed in Japanese Patent Application Publication No. 2000-231321 (JP-2000-231321-A) and swingably as disclosed in Japanese Patent Application Publication Nos. 2011-085815 (JP-2011-085815-A), 2004-020574 (JP-2004-020574-A), and 2006-030643 (JP-2006-030643-A). When the rotatable axes of the rollers are attached to the transfer cover unit fixedly, the transfer cover unit should be correctly positioned at at least four points (top, bottom, left, and right) by a projected and recessed engaging structure (e.g., main body positioning pins 38 and cover recessed portions 37 illustrated in
As disclosed in JP-2011-085815-A, a main body of an image forming apparatus is made compact in size by narrowing a secondary transfer unit and a fixing unit located above the secondary transfer unit (refer to paragraph [0082] of JP-2011-085815-A). Therefore, a transit path of the secondary transfer unit is made different from a transit path of the transfer cover unit to temporarily lower the absolute height of the secondary transfer unit at opening and closing of the transfer cover unit, thereby avoiding interference with the fixing unit. Thereafter, the secondary transfer unit is lifted. (See
To enable such a transit path, the secondary transfer unit is supported by a rotation supporting mechanism to the transfer cover unit. However, the secondary transfer unit cannot be part of the structure of the transfer cover unit due to the rotation supporting mechanism, and the rigidity of the transfer cover unit decreases. Further, the rotation supporting mechanism as disclosed in JP-2011-085815-A has a high degree of design freedom but a complicated configuration, and therefore a positioning mechanism for positioning the secondary transfer unit having a high degree of design freedom to the main body of the image forming apparatus should be located at at least four positions (top, bottom, left, and right) (a secondary transfer unit guide shaft 228 for a cutout 232 of a main body positioning member 230 and a cutout 238 of a secondary transfer unit positioning member 234 for a main body positioning boss 236 in
In an image forming apparatus disclosed in JP-2004-020574-A, a linear guide member attached to a main body linearly guides a rotary shaft of a transfer roller attached to a transfer cover unit toward a drive roller attached to the main body. An opening at the leading edge of the linear guide member is located at a slightly lower position, and the transit path of the transfer roller becomes lower in the middle of opening and closing actions of the transfer cover unit but basically aligns with a transit path of the transfer cover unit. That is, the configuration of JP-2004-020574-A is not designed to avoid interference with parts provided in the main body, and therefore provides relatively less design freedom of space for a compact layout of the parts of the main body without interference with the transit path of the transfer roller.
In an image forming apparatus disclosed in JP-2000-231321-A, both the transfer roller and the timing roller can be exposed by opening the transfer cover unit, which can remove jammed paper in a vicinity of the rollers easily. Further, since the respective rotary shafts of the transfer roller and the pair or timing rollers are fixedly attached to the transfer cover unit, the above-described rotation supporting mechanism is not required. However, these transit paths of the rollers basically match the transit path of the transfer cover unit, and therefore the configuration of JP-2000-231321-A provides relatively less design freedom of space for a compact layout of the parts of the main body without interference with the transit path of the transfer roller.
Also in an image forming apparatus disclosed in JP-2006-030643-A, the transit paths of the transfer roller and the timing roller are basically the same as the transit paths of the transfer cover unit, and therefore the same issue regarding the interference with the parts of the main body (e.g., a photoconductive drums and an intermediate transfer belt) might arise when a compact layout of the image forming apparatus is attempted. Further, the mechanism of the image forming apparatus can be complicated due to arrangement of a transfer guide member and an operation lever to the transfer cover unit, which also leads to another issue regarding accuracy in positioning of the rotary shafts of the transfer roller and the timing roller.
Similar to JP-2011-085815-A, when a transfer roller and a timing roller are swingably disposed on the inner surface of the transfer cover unit, a simple mechanism or configuration to position the transfer roller and the timing roller with a drive roller and a timing roller provided in the main body is required.
The present invention describes a novel sheet feeding mechanism which includes a cover unit, a first feeding member, a second feeding member, and the guide member. The cover unit is rotatably attached to one side of a main body of an image forming apparatus to cover a part of a sheet conveyance path. The first feeding member is located in the main body of the image forming apparatus. The second feeding member is located in the cover unit in a displaceable manner and facing the first feeding member when the cover unit is closed. The first feeding member and the second feeding member sandwich and convey a recording medium along the sheet conveyance path. The guide member is disposed in the main body to guide the second feeding member. The guide member guides the second feeding member to move in a first direction that approaches the first feeding member when closing the cover unit and in a second direction that separates from the first feeding member when opening the cover unit.
The above-described sheet feeding mechanism may further include a rotary arm to support the second feeding member. The second feeding member may move in the first direction according to cooperation of the rotary arm and the guide member while the cover unit is closing, and in the second direction according to cooperation of the rotary arm and the guide member while the cover unit is opening.
The second feed member may be biased in the first direction by an elastic member while the second feeding member is guided by the guide member.
The second feeding member may be supported at a leading edge of the rotary arm, and a base end of the rotary arm may be supported by the cover unit to be rotatable in the first direction and in the second direction.
A regulated portion may be formed on a side surface of the rotary arm to contact a regulating member formed on the cover unit in a width direction of the second feeding member.
One of the regulated portion and the regulating member may include a slope to reduce play between the regulated portion and the regulating member.
A regulated member of the rotary arm and a supporting portion of the displaceable second feeding member at the leading edge of the rotary arm may be disposed offset in the width direction of the second feeding member.
A pressure lever may be disposed between the elastic member and the rotary arm. A biasing force of the elastic member may be exerted in the first direction via the pressure lever and the rotary arm.
The biasing force of the pressure lever with respect to the rotary arm may be released in a non-guided state in which the second feeding member is not guided by the guide member.
The pressure lever may be rotatably supported by a pivot formed on the cover unit. The regulating member of the cover unit may be formed by a leading edge of the pivot.
Since the displaceable second feeding member is in the non-guide state, the rotary arm may contact a stopper surface mounted on the cover unit to regulate the position thereof.
The above-described sheet feeding mechanism may further include a sheet feed guide disposed upstream from the second feeding member in the sheet conveyance direction. A downstream end of the sheet feed guide may be engaged with the second feeding member.
A transit path of the cover unit may be one of a straight line and an arc.
The above-described sheet feeding mechanism may further include a third sheet feeding member located in the main body and downstream from the first sheet feeding member in the sheet conveyance direction, and a fourth sheet feeding member located in the cover unit in a displaceable manner, downstream from the second sheet feeding member in the sheet conveyance direction, and facing the third feeding member when the cover unit is closed. The third feeding member and the fourth feeding member may sandwich and convey the recording medium along the sheet conveyance path. By moving in the second direction when opening or closing the cover unit, the second feeding member avoids interference with the third feeding member.
Further, the present invention describes a novel image forming apparatus including a writing device to optically write image data, an image forming device to form an image based on the image data written by the writing device, a transfer unit to transfer the image formed in the image forming device onto a recording medium, a fixing unit to fix the image to the recording medium, a sheet conveyance path through which the image-fixed recording medium travels from the transfer unit via the fixing unit to a sheet discharging unit, and the above-described sheet feeding mechanism disposed on the sheet conveyance path.
The first feeding member and the second feeding member may be a pair of timing rollers and the third feeding member and the fourth feeding member may be a pair of transfer rollers.
The cover may include a duplex unit therein.
The above-described image forming apparatus may be a multi-functional apparatus having two or more functions of a copier, a printer, and a facsimile machine.
A more complete appreciation of the invention and many of the advantages thereof are obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements describes as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used only to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Descriptions are given, with reference to the accompanying drawings, of examples, exemplary embodiments, modification of exemplary embodiments, etc., of an image forming apparatus according to the present invention. Elements having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted. Elements that do not require descriptions may be omitted from the drawings as a matter of convenience. Reference numerals of elements extracted from the patent publications are in parentheses so as to be distinguished from those of exemplary embodiments of the present invention.
The present invention includes a technique applicable to any image forming apparatus, and is implemented in the most effective manner in an electrophotographic image forming apparatus.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of the present invention is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, preferred embodiments of the present invention are described.
A description is given of an exemplary embodiment applicable to a sheet feeding mechanism and an electrophotographic image forming apparatus.
It is to be noted in the present invention that: the term “image forming apparatus” indicates an apparatus in which an image is formed on a medium such as paper, thread, fiber, fabric, leather, metal, plastic, glass, wood, and/or ceramic by attracting developer or ink thereto; the term “image formation” indicates an action for providing (i.e., printing) not only an image having meanings such as texts and figures on a recordable medium but also an image having no meaning such as patterns on a medium on a medium; and the term “sheet” is not limited to indicate a paper material but also includes the above-described plastic material (e.g., an OHP sheet), a fabric sheet and so forth, and is used as a general term of a recorded medium, recording medium, recording sheet, and recording material to which the developer or ink is attracted.
[Image Forming Apparatus]
Referring to
Referring to
The main body 110 includes a plurality of units and components used for image formation. Details of the units and components will be described later.
The sheet feeding tray 30 is disposed at the lower part of the image forming apparatus 100.
The transfer cover unit 8 is disposed above the sheet feeding tray 30 and on the outside surface of the image forming apparatus 100 to serve as a cover for opening and closing when checking the inside of the image forming apparatus 100.
The sheet discharging tray 44 is formed at the upper portion of the image forming apparatus 100.
Referring to
The transfer cover unit 8 includes a duplex unit 9 on the inner surface thereof and, as illustrated in
The duplex unit 9 includes a conveyance housing 9a (see
As illustrated in
The process units 1K, 1Y, 1M, and 1C are disposed in the main body 110 of the image forming apparatus 100, and have respective toner bottles 6K, 6Y, 6M, and 6C for containing unused toners of colors different from each other. The process units 1K, 1Y, 1M, and 1C have the same structure, differing only in the colors of toners in the toner bottles 6K, 6Y, 6M, and 6C.
The process units 1K, 1Y, 1M, and 1C further include photoconductor drums 2K, 2Y, 2M, and 2C serving as image carriers, drum cleaning units 3K, 3Y, 3M, and 3C, non-illustrated electricity discharging units, charging units 4K, 4Y, 4M, and 4C, and developing units 5K, 5Y, 5M, and 5C, respectively. The process units 1K, 1Y, 1M, and 1C are detachably attachable to the main body 110 of the image forming apparatus 100, and consumable parts can be replaced at one time.
The main body 110 further includes an optical writing device 7, a transfer device 15, a fixing unit 34, and a powder container 10.
The optical writing device 7 is disposed above the process units 1K, 1Y, 1M, and 1C and is configured to emit laser light beams L from laser diodes therein based on image data.
The transfer device 15 is disposed below the process units 1K, 1Y, 1M, and 1C, and includes four primary transfer rollers 19K, 19Y, 19M, and 19C, an intermediate transfer belt 16, the secondary transfer roller 20, a belt cleaning unit 21, and a cleaning backup roller 22.
The primary transfer rollers 19K, 19Y, 19M, and 19C are disposed facing the photoconductor drums 2K, 2Y, 2M, and 2C, respectively. The intermediate transfer belt 16 is an endless belt that is spanned over the primary transfer rollers 19K, 19Y, 19M, and 19C, the drive roller 18, and a driven roller 17. The secondary transfer roller 20 that serves as a secondary transfer unit is disposed facing the drive roller 18 to form the pair of transfer rollers. The photoconductor drums 2K, 2Y, 2M, and 2C are defined as first image carriers, and the intermediate transfer belt 16 may be a second image carrier that carries a composite image thereon.
As described above, the sheet feeding tray 30 that can contain multiple sheets including a sheet S is disposed at the lower part of the image forming apparatus 100. Further, a sheet feeding roller 30a is also disposed to feed the sheet S from the sheet feeding tray 30 toward a sheet feeding path 31. Around the downstream end of the sheet feeding path 31 and immediately upstream from the intermediate transfer belt 16, the pair of timing rollers 32 is disposed to stop the sheet S there temporarily. To cause a toner image formed on the intermediate transfer belt 16 to meet the leading edge of the sheet S at a proper position, the sheet S is sagged at the pair of timing rollers 32 once, and is then fed to a secondary transfer nip portion at a predetermined timing immediately before a toner image formed on the intermediate transfer belt 16 is transferred onto the sheet S at the secondary transfer nip portion.
The secondary transfer roller 20 is generally tensioned by a compression spring 25 to the intermediate transfer belt 16. However, in the image forming apparatus 100 of a full-front access type, the duplex unit 9 is generally disposed before the intermediate transfer belt 16 and closer to the front cover, which makes it difficult to reduce the size of the area around the compression spring 25. Therefore, a transfer nip portion is arranged in an oblique direction, as illustrated in
A post-transfer sheet conveyance path 33 is disposed above the transfer nip portion formed between the secondary transfer roller 20 and the drive roller 18.
The fixing unit 34 is disposed in the vicinity of one end of the post-transfer sheet conveyance path 33, and includes a fixing roller 34a and a pressure roller 34b. The fixing roller 34a includes a heating source such as a non-illustrated halogen lamp, and the pressure roller 34b rotates while contacting the fixing roller 34a with a given pressure.
A post-fixing sheet conveyance path 35 is defined above the fixing unit 34 and branches into two paths, which are a sheet discharging path 36 and a switch-back conveyance path 41. A switching member 42 is disposed at the downstream end of the post-fixing sheet conveyance path 35, and rotates about a swing shaft 42a for switching the direction of the sheet S. A pair of sheet discharging rollers 37 is disposed at the downstream end of the sheet discharging path 36. The switch-back conveyance path 41 meets a sheet feeding path 31 at the downstream end thereof. A pair of switch-back conveyance rollers 43 is disposed in the middle of the switch-back conveyance path 41. Further, the sheet discharging tray 44 is formed on top of the main body 110 of the image forming apparatus 100, with a top cover thereof recessed inwardly.
The powder container (that is, the tray container) 10 is disposed between the transfer device 15 and the sheet feeding tray 30 to contain waste toner therein. The powder container 10 is detachably attachable to the main body 110 of the image forming apparatus 100.
In the image forming apparatus 100 according to this exemplary embodiment of the present invention, it is necessary to separate the sheet feeding roller 30a from the secondary transfer roller 20 by a certain distance or gap due to conveyance of a transfer sheet such as the sheet S. This separation generates dead space or unused space, which can be used to dispose the powder container 10 therein, resulting in achieving a reduction in overall size of the image forming apparatus 100.
[Operations Performed by the Image Forming Apparatus]
Next, a description is given of basic operations of the image forming apparatus 100 according to an exemplary embodiment of the present invention.
As shown in
For example, in basic image forming operations of the process unit 1K, the charging unit 4K uniformly charges a surface of the photoconductor drum 2K by supplying a high electric potential at the surface of the photoconductor drum 2K. Based on image data, the laser light beam L is emitted from the optical writing device 7 to the charged surface of the photoconductor drum 2K so that the electric potential at the emitted portion on the surface of the photoconductor drum 2K decreases to form an electrostatic latent image. The toner bottle 6K supplies the unused black toner to the developing unit 5K.
The developing unit 5K supplies the black toner to the electrostatic latent image formed on the surface of the photoconductor drum 2K to develop the electrostatic latent image into a visible black toner image. Then, the toner image formed on the surface of the photoconductor drum 2K is transferred onto a surface of the intermediate transfer belt 16.
The drum cleaning unit 3K removes residual toner remaining on the surface of the photoconductor drum 2K after an intermediate transfer operation. The removed residual toner is conveyed by a non-illustrated waste toner conveyance unit and collected to a waste toner collecting unit included in the process unit 1K. Further, the electricity discharging unit removes residual electric potential remaining on the surface of the photoconductor drum 2K after cleaning.
Even though the above description details operations in the process unit 1K, the same operation is performed in the other process units 1Y, 1M, and 1C. For example, respective toner images are developed on the respective surfaces of the photoconductor drums 2Y, 2M, and 2C and are then sequentially transferred onto the surface of the intermediate transfer belt 16 to form a composite color image.
After the respective color toner images are transferred sequentially onto the surface of the intermediate transfer belt 16 to form a composite toner image, the pair of timing rollers 32 and the sheet feeding roller 30a start driving to convey the sheet S to the secondary transfer roller 20 in synchronization with movement of the toner image formed on the surface of the intermediate transfer belt 16. Then, the composite toner image formed on the surface of the intermediate transfer belt 16 is transferred onto the sheet S conveyed as above at the secondary transfer nip portion formed between the intermediate transfer belt 16 and the secondary transfer roller 20.
The sheet S on which the transferred toner image is formed passes through the post-transfer sheet conveyance path 33 to the fixing unit 34. The sheet S in the fixing unit 34 is sandwiched by the fixing roller 34a and the pressure roller 34b and the unfixed toner image on the sheet S is fixed to the sheet S by application of heat and pressure. The sheet S with the fixed image thereon is conveyed from the fixing unit 34 to the post-fixing sheet conveyance path 35.
At the feeding of the sheet S from the fixing unit 34, the switching member 42 is at a position as illustrated by a solid line in
When performing a duplex printing, as the trailing edge of the sheet S conveyed by the pair of sheet discharging rollers 37 passes through the post-fixing sheet conveyance path 35, the switching member 42 rotates to a position indicated by a dotted line in
The sheet S conveyed in the switch-back conveyance path 41 passes through the pair of switch-back conveyance rollers 43 and reaches the pair of timing rollers 32. The sheet S is fed in synchronization with another toner image formed on the surface of the intermediate transfer roller 16 for printing the toner image on a reverse side of the sheet S. When the sheet S passes through the secondary transfer nip portion formed between the drive roller 18 and the secondary transfer roller 20 with the intermediate transfer belt 16 therebetween, the toner image is formed on the rear side of the sheet S. Then, after the toner image formed on the rear side of the sheet S is fixed by the fixing unit 34 to the sheet S, the sheet S travels through the post-fixing sheet conveyance path 35, the sheet discharging path 36, and the pair of sheet feeding rollers 37 to be discharged to the sheet discharging tray 44.
Further, even after the toner image formed on the surface of the intermediate transfer belt 16 has been transferred onto the sheet S, residual toner remains on the surface of the intermediate transfer belt 16. Such residual toner is removed by the belt cleaning unit 21 from the intermediate transfer belt 16.
The residual toner removed from the intermediate transfer belt 16 is conveyed by a non-illustrated waste toner conveyance unit to the powder container 10 and collected through an entrance 53 of the powder container 10, as shown in
[Transfer Cover Unit]
If a paper jam occurs in the middle of a printing job, a user can open the transfer cover unit 8 manually by rotating the transfer cover unit 8 about the rotary shaft 12 to the outside, as illustrated in
In this exemplary embodiment, since the transfer roller 20 and the timing drive roller 32a that is one of the pair of timing rollers 32 are disposed inside the transfer cover unit 8, once the transfer cover unit 8 is opened, the transfer roller 20 and the pair of timing rollers 32 can be released to open, thereby enabling removal of the jammed paper(s) quickly and easily. That is, as illustrated in
[Secondary Transfer Roller]
As illustrated in
[Timing Drive Roller]
As illustrated in
It is to be noted that, since the inner circumferential surface of the shaft hole 45b of the rotary arm 45 directly contacts the rotary shaft 32a1 of the timing drive roller 32a, it is preferable that the rotary arm 45 is made of a material with which the rotary arm 45 and the rotary shaft 32a1 slide well. Further, to reduce the number of parts by using common shaped parts for the left and right side of the rotary arm 45 and to achieve good assembly of the parts, it is preferable that the rotary arm 45 has a symmetrical design on both the front and rear sides.
Further, since a high pressure is exerted at both ends of the rotary shaft 32a1 of the timing drive roller 32a due to the nip pressure exerted at the pair of timing rollers 32, the shaft hole 45b of the rotary arm 45 may be worn out easily by friction with the rotary shaft 32a1, resulting in a shorter life of the shaft hole 45b. Therefore, to increase durability of the shaft hole 45b, an inner diameter of the shaft hole 45b may be formed slightly larger than the diameter of the rotary shaft 32a1 of the timing drive roller 32a to allow a tubular bearing 49 formed by metal or resin having high wear resistance or other high performance material to be pressure caulked or fixed by glue in the shaft hole 45b in a direction indicated by arrow A in
As illustrated in
As illustrated in
A flat pressure surface 46c is formed on a side surface at the leading edge of the pressure lever 46, and contacts a pressed surface 45c that is formed around the shaft hole 45b of the rotary shaft 45 due to the force exerted by the tension spring 47, as illustrated in
With this configuration, the force exerted by the tension spring 47 is transmitted to the timing drive roller 32a effectively, and therefore, even with a small spring, a sufficient timing roller nip pressure can be generated. Since the flat pressure surface 46c of the pressure lever 46 presses the pressed surface 45c of the pressure lever 45, the rotary arm 45 is constantly biased in a linear manner in an axial direction of the rotary shaft 32b1 of the timing driven roller 32b, as indicated by arrow B in
The slot 45a of the rotary arm 45 enables the rotary arm 45 to move in a direction indicated by the arrow B in
A space between the base end 45d and the supporting portion 45e of the rotary arm 45 is defined as a planar middle portion 45f, and a base end 45d and a supporting portion 45e are disposed on one side of the plate-shaped middle portion 45f (i.e., inside of an axial direction of the timing drive roller 32a). That is, the base end 45d and the supporting portion 45e are disposed offset in a width direction of the timing drive roller 32a, that is, in an axial direction to the middle portion 45f.
Accordingly, there is a space inside the middle portion 45f, as illustrated in
It is to be noted that, depending on the layout of parts provided to the transfer cover unit 8, the space can be provided on the opposite side of the middle portion 45f (i.e., outside the axial direction of the timing drive roller 32a). Also in this case, the space can be used to locate the other parts to be located on the transfer cover unit 8 without interfering with the rotary arm 45, and therefore the size of the image forming apparatus 100 can be reduced.
On the middle portion 45f of the rotary arm 45, a regulated portion 45g can be provided if necessary, as illustrated in
Specifically, as described above, the rotary arm 45 has the pivot 27a inserted into the slot 45a and is supported rotatably about the pivot 27a and slidably moved to the slot 45a. Therefore, the rotary arm 45 can easily have looseness due to a play between the pivot 27a and the slot 45a. If the amount of looseness is rather large, the rotary arms 45 on the left and right sides can easily tilt in a direction toward the rotary shaft 32a1 of the timing drive roller 32a. Accordingly, especially when the transfer cover unit 8 is closed, the timing drive roller 32a and the rotary arm 45 tend to interfere with the parts provided in the main body 110, which can degrade the open and close operability of the transfer cover unit 8. To overcome this problem, the regulated portion 45g may be formed as needed.
The configuration according to this exemplary embodiment, the regulated portion 45g is formed as a tapered groove across the middle portion 45f in a slightly oblique direction. The regulated portion 45g is not limited to a groove shape or tapered groove, but the entire surface of the middle portion 45f can be formed as the regulated portion 45g or the bottom surface of the regulated portion 45g can be formed to have a round groove instead of the tapered groove, and other various shapes.
If the regulated portion 45g is formed in a gutter shape, the pivot 27b can guide the rotary arm 45. In
A stopper 48 is provided in the vicinity of the spring peg shaft 27c of the end plate 27, as illustrated in
The moment of rotation of the pressure lever 46 is determined based on a governor gain between a distance from the hook 46b of the tension spring 47 to the pivot 27b and a distance from the pivot 27b to the pressure surface 46c. The configuration of this exemplary embodiment is designed to increase the force of the tension spring 47 due to the above-described governor gain of the distances so as to be transmitted to the pressed surface 45c of the rotary arm 45. Therefore, even with a small force of the tension spring 47, a large nip pressure of the timing roller can be generated. Accordingly, a necessary timing roller nip pressure can be gained by using the small tension spring 47.
As described above, by forming a hole through which the pivot 27a of the end plate 27 is inserted into the rotary arm 45 to the slot 45a, the rotary arm 45 can move in the longitudinal direction by a distance between the slot 45a and the pivot 27a. By so doing, the timing drive roller 32a can be pressed against the timing driven roller 32b reliably, and therefore a reliable nip pressure of the timing roller can be secured. It is to be noted that relative positions of the slot 45a and the pivot 27a can be switched. That is, by inserting a pivot formed on the base end section of the rotary arm 45 into a slot formed in the end plate 27, the same effect as that described above can be obtained.
In a state in which the transfer cover unit 8 is open, that is, an external force is not exerted on a circumferential surface of the timing drive roller 32a, the rotary arm 45 rotates due to the weight thereof about the pivot 27a in a direction to an extreme low side or in a counterclockwise direction, as illustrated in
With the state as illustrated in
[Sheet Feed Guide]
As illustrated in
In a known image forming apparatus, a sheet feed guide that is similar to the sheet feed guide 50 is fixedly mounted on the inside surface of a conveyance housing that is similar to the conveyance housing 9a. By contrast, in the exemplary embodiment of the present invention, the timing drive roller 32a is rotatably disposed with respect to the conveyance housing 9a, and therefore, if the sheet feed guide 50 is fixedly mounted on the conveyance housing 9a, it is likely that the timing drive roller 32a interferes with the sheet feed guide 50.
Further, if the sheet feed guide 50 is sufficiently separated from the timing drive roller 32a to avoid the above-described interference, a gap between the timing drive roller 32a and the sheet feed guide 50 becomes too large. As a result, it is difficult to guide the sheet S to the timing roller nip portion reliably, which can cause a paper jam more frequently due to the large gap.
Therefore, in the exemplary embodiment of the present invention, the sheet feed guide 50 is rotatably disposed to the conveyance housing 9a, together with the timing drive roller 32a. The sheet feed guide 50 includes bearings 50a at an upper end of each side thereof, and the rotary shaft 32a1 of the timing drive roller 32a is rotatably engaged with the bearings 50a. In
A part of the bearing 50a is cut out into a C-shape viewed from the side of the sheet feed guide 50 (i.e., viewed from the front of
By engaging the rotary shaft 32a1 of the timing drive roller 32a with the bearing 50a of the sheet feed guide 50 as described above, the bearing 50a of the sheet feed guide 50, that is, the lower end of the sheet feed guide 50 can be moved together with the timing drive roller 32a. Therefore, the gap between the downstream edge of the sheet feed guide 50 and the timing drive roller 32a can be constantly maintained at the necessary minimum gap. Accordingly, the sheet S can be fed to the timing roller nip portion reliably, and can prevent occurrence of paper jam with the sheet S biting into the gap.
A minor axis boss 50b is integrally mounted at the lower end of the sheet feed guide 50, as illustrated in
The support member 52 includes a long groove 52a disposed facing both ends of the sheet feed guide 50, as illustrated in
As illustrated in
When a user keeps the transfer cover unit 8 open for a certain period of time for removing jammed papers, it can happen that the user inadvertently touches and displaces the timing drive roller 32a from the transfer cover unit 8. At this time, if the user tries to move the timing drive roller 32a together with the sheet feed guide 50 beyond its movable range, an excess load can be applied on the sheet feed guide 50, and it is likely to damage or break the sheet feed guide 50.
Therefore, as illustrated in
[Positioning Guide Member]
Further, the timing driven roller 32b as illustrated in
As illustrated in
Accordingly, the opening 55d has a rake shape that can smoothly receive the rotary shaft 32a1 of the timing drive roller 32a from the upper oblique direction. This rake-shaped opening 55d can prevent damage or breakage of the rotary shaft 32a1 of the timing drive roller 32a due to interference with the positioning guide member 55 when the rotary shaft 32a1 is lifted from the lower jaw 55c before reaching the inward portion of the positioning guide member 55.
The opposite side of the opening 55d forms an arc-shaped end 55e. Both ends of the rotary shaft 32a1 of the timing drive roller 32a proceed in a horizontal direction toward the arc-shaped end 55e at the last step for closing the transfer cover unit 8. However, both ends of the rotary shaft 32a1 cannot proceed over the position immediately before a portion at which the rotary shaft 32a1 contacts the arc-shaped end 55c at the maximum. That is, there is a small space S3 between the rotary shaft 32a1 and the arc shaped end 55e of the positioning guide member 55 when the transfer cover unit 8 completely closed.
The space S3 is necessary to form a given nip pressure of the pair of timing rollers 32. If there is the space S3, the position of the outer circumferential surface of the timing drive roller 32a may be based on the arc shaped end 55e, which may produce small variations in dimensional accuracy of each of multiple parts disposed from the rotary shaft 32a1 to the outer circumferential surface of the timing drive roller 32a and be accumulated to cause a larger variation of the nip pressure. Further, the nip pressure can vary due to deterioration due to age such as wear on the outer circumferential surface of the timing drive roller 32a. Accordingly, providing the space S3 can prevent the above-described issue.
The lower jaw 55c of the positioning guide member 55 includes an upper surface 55c1 to guide the rotary shaft 32a1 of the timing drive roller 32a so that the rotary shaft 32a1 can slidably move on the upper surface 55c1 while pressing the upper surface 55c1. The upper surface 55c1 of the lower jaw 55c is formed in a straight shape so that a proper and precise nip portion can be formed between the timing driven roller 32b and the timing drive roller 32a. With this configuration, variation in relative positions between the rotary shaft 32b1 of the timing driven roller 32b and the rotary shaft 32a1 of the timing drive roller 32a can be reduced significantly, thereby providing accurate timing performance and precise skew calibration.
It is to be noted that the term “in a straight shape” does not indicate a perfect straight shape only but includes a shape substantially straight toward the timing driven roller 32b. A path along the straight-shaped upper surface 55c1 of the lower jaw 55c on which the rotary shaft 32a1 of the timing drive roller 32a moves is a second transit path of the rotary shaft 32a1 (See
Further, a positioning guide member having a similar structure to the positioning guide member 55 may be disposed in the vicinity of both ends of the rotary shaft of the drive roller 18 of the intermediate transfer belt 16 provided to the main body 110 of the image forming apparatus 100 so that the relative positioning accuracy of the transfer roller 20 and the drive roller 18 can be secured with the positioning guide member.
[Opening and Closing of the Transfer Cover Unit and Operation of the Timing Drive Roller]
When the transfer cover unit 8 is rotated, no parts can be disposed within a range of an arc-shaped transit path drawn by the secondary transfer roller 20 and the timing drive roller 32a (e.g., a transit path A1 drawn by the timing drive roller 32a in
For recently marketed image forming apparatuses, the need for a compact layout has caused a pair of timing rollers to be located close to a photoconductor drum serving as an image carrier and the lower portion at one end of an intermediate transfer belt. In such a layout of parts for a compact configuration, it is highly likely that the arc-shaped transit path A1 of the timing drive roller 32a intersects the intermediate transfer belt 16 and the drive roller 18. That is, when opening and closing the transfer cover unit 8, the transit path A1 of the timing drive roller 32a can easily intersect the intermediate transfer belt 16 and the drive roller 18. Specifically, when the pair of timing rollers 32 is located slightly inward from the transfer nip portion of the intermediate transfer belt 16 due to the sheet conveyance path, the possibility of interference of the timing drive roller 32a with the intermediate transfer belt 16 increases dramatically.
Further, to achieve an entirely compact image forming apparatus, it is necessary to reduce the height thereof. However, if the image forming apparatus becomes smaller in height, a rotation radius R1 from the rotary shaft 12 of the transfer cover unit 8 to the timing drive roller 32a is shortened. With this configuration, the transit path A1 of the timing drive roller 32a approaches the intermediate transfer belt 16, and therefore the transit path A1 of the timing drive roller 32a may be an obstacle to a reduction in height of the image forming apparatus 100.
The configuration of this exemplary embodiment of the present invention is designed such that, while the pair of timing rollers 32 is located immediately below and inward (left side) from the drive roller 18 of the intermediate transfer belt 16 to reduce the size of the image forming apparatus 100 in both a vertical direction and a horizontal direction as illustrated in
In the state illustrated in
Accordingly, the rotary arm 45 and the timing drive roller 32a are rotatable to the right and upward from the state illustrated in
After the transfer cover unit 8 is rotated about the rotary shaft 12 in a clockwise direction from the state illustrated in
Further, the position of the rotary arm 45 moved to the pivot 27a due to the weight thereof may be maintained until at least the rotary arm 45 contacts the stopper surface 52b at the upper end of the support member 52 when the transfer cover unit 8 is being closed. Therefore, as described above, a non-interference range between the timing drive roller 32a and the parts in the main body 110 of the image forming apparatus 100 can be largely obtained by the amount that the protruding amount of the timing drive roller 32a is reduced due to movement with the weight thereof.
In this state, the space S2 is still preserved between the rotary arm 45 and the pressure lever 46. The force exerted by the tension spring 47 is received by the stopper 48, and therefore does not affect the rotary arm 45. Accordingly, even if the transfer cover unit 8 is being closed further from the state in
It is to be noted that, when the regulated portion 45g is formed on the rotary arm 45, the leading edge of the pivot 27b that serves as a regulating member in the state of
By so doing, even if there is some play between the slot 45a and the pivot 27a, the positions of the timing drive roller 32a and the rotary arm 45 are corrected due to an increase in horizontal parallelism of the rotary arms 45 at the left and right sides of the rotary shaft 32a1 and in verticality of the rotary arm 45 with respect to the rotary shaft 32a1. Thereafter, when the transfer cover unit 8 is being closed, the interference of the timing drive roller 32a and the rotary arm 45 with the parts provided in the main body 110 of the image forming apparatus 100 can be prevented. Especially, by providing a tapered surface or a round surface to the regulated portion 45g, even if the transfer cover unit 8 is bent or the rotary arm 45 is tilted due to this looseness, the position of the rotary arm 45 is corrected satisfactorily to effectively avoid the interference of the timing drive roller 32a and the rotary arm 45 with the parts in the main body 110 of the image forming apparatus 100.
As the transfer cover unit 8 is being closed further from the state of
It is to be noted that, if the regulated portion 45g is provided to the rotary arm 45, the leading edge of the pivot 27b that serves as a regulating member is located at an extreme inward portion where the depth of the regulated portion 45g is shallowest in the state of
It is to be noted that, if the leading edges of the pivots 27b disposed on the left and right sides contact the regulated portion 45g, a contact pressure is exerted therebetween, and therefore it is likely that the friction force exerted between the leading edges of the pivots 27b and the regulated portion 45g prevents the biasing force exerted by the tension spring 47 to effectively act as a nip force of the timing drive roller 32a. Therefore, in the state as illustrated in
With this condition, the timing drive roller 32a contacts the timing driven roller 32b to form a nip portion therebetween, which composes a timing mechanism including the pair of timing rollers 32. Further, the transfer roller 20 contacts the drive roller 18 of the intermediate transfer belt 16 via the intermediate transfer belt 16 with the biasing force exerted by the compression spring 25, and therefore a transfer nip pressure is generated between the transfer roller 20 and the end portion of the intermediate transfer belt 16 supported by the drive roller 18.
The rotary shaft 32a1 of the timing drive roller 32a contacts the upper surface 55c1 of the lower jaw 55c of the positioning guide member 55 and then maintains the state of contact with the upper surface 55c1 of the lower jaw 55c constantly until the timing mechanism is composed as described above. A known positioning mechanism of a roller guides a roller shaft along a guide groove of a guide unit including upper and lower jaws provided to a main body of an apparatus, and the direction of the force exerted by a spring biasing the roller is aligned with the direction in which the guide groove extends.
The above-described known positioning mechanism does not clearly show whether the roller shaft is guided by the upper jaw or the lower jaw in the above-described roller biasing mechanism, and therefore it may not be clearly determined whether the final position of the roller is guided based on the upper jaw or the lower jaw. By contrast, the exemplary embodiment of the present invention, guides the rotary shaft 32a1 of the timing drive roller 32a by the upper surface 55c1 of the lower jaw 55c until the timing mechanism is conformed, and therefore the above-described problem will not be raised.
Further, the biasing force of the tension spring 47 is transmitted via the pressure lever 46 to the rotary arm 45 in the exemplary embodiment of the present invention. The rotary arm 45 can be rotatably biased to the counterclockwise direction and, at the same time, to the direction toward the slot 45a. Further, as described above, the roller shaft 32a1 can be positioned based on the upper surface 55c1 of the lower jaw 55c while the biasing force exerted by the tension spring 47 can be used for generating the nip pressure of the pair of timing rollers 32. While a known roller biasing mechanism can form a nip pressure using a spring but, as described above, the rollers cannot be positioned reliably.
In the timing mechanism implemented by the pair of timing rollers 32, a mechanism for positioning the timing drive roller 32a with respect to the timing driven roller 32b includes the upper surface 55c1 of the lower jaw 55c of the positioning guide member 55, the rotary shaft 32a1 of the timing drive roller 32a that is guided by the upper surface 55c1 of the lower jaw 55c, and the entire outer circumferential surface of the timing drive roller 32a. Even if a base end of the rotary arm 45 is loosened in a space between the support pin 27a and the slot 45a, this looseness does not adversely affect the position of the timing drive roller 32a.
This positioning mechanism can be made simpler and smaller than a mechanism disclosed in a known configuration. Further, the outer circumferential surface of the timing drive roller 32a is positioned toward the outer circumferential surface of the timing driven roller 32b with the timing drive roller 32a biased and guided linearly. Therefore, as previously described, even if the dimensional accuracy of parts of the timing drive roller 32a varies and/or an outer circumferential surface of the timing drive roller 32a is worn and deteriorated due to age, the nip pressure of the pair of timing rollers 32 does not vary.
The timing drive roller 32a receives the reaction force exerted by the nip portion from the timing driven roller 32b, and the rotary arm 45 is pressed back in a longitudinal direction to the base end side and the clockwise direction due to the reaction force. By contrast, the reaction force of the nip portion of the pair of timing rollers 32 is transmitted via the rotary arm 45 to the pressed surface 46c of the pressure lever 46. With this action, the pressure lever 46 is slightly pressed back in the clockwise direction, and therefore the tension spring 47 is slightly extended. At this time, the space S1 remains between the pressure lever 46 and the stopper 48, and the biasing force exerted by the tension spring 47 is increased by the governor gain of the pressure lever 46 (i.e., a ratio of a distance between the hook 46b of the tension spring 47 and the pivot 27b and a distance between the pivot 27b and the pressed surface 46c), so as to be affected to the nip pressure.
As described above, referring to
Next, a description is given of the transit path of the timing drive roller 32a in opening and closing the transfer cover unit 8, referring to
As described above, as described above, the rotary arm 45 in
By contrast, the transfer roller 20 has already contacted the drive roller 18 of the intermediate transfer belt 16 in
Next, in
Here, it is assumed that the timing drive roller 32a is rotated about the rotary shaft 12 in the clockwise direction from the state of
In this case, as indicated by the transit path A3 illustrated in
Specifically, compared to the states of
In this exemplary embodiment of the present invention, during the opening and closing of the transfer cover unit 8 and when the timing drive roller 32a passes by the parts of the main body 110, such as the intermediate transfer belt 16 and the drive roller 18, the rotary arm 45 is rotated due to the weight thereof in the counterclockwise direction to contact the stopper surface 52b of the support member 52. By so doing, the radius R1 of the transit path A1 can be shorter enough to avoid interference with the parts of the main body 110.
It is to be noted that, even if the rotary arm 45 is raised temporarily from the stopper surface 52b of the support member 52 due to shock during the opening and closing of the transfer cover unit 8, the pressure lever 46 that is in contact with the stopper 48 regulates the height of moving up from the stopper surface 52b of the support member 52, as illustrated in
However, with the transit path A1, the timing drive roller 32a cannot contact the timing driven roller 32b of the main body 110 even if the transfer cover unit 8 is completely closed. Therefore, after the timing drive roller 32a passes by the intermediate transfer belt 16 and the drive roller 18 and is moved to the lower portion thereof, the rotary shaft 32a1 of the timing drive roller 32a contacts the upper surface 55c1 of the lower jaw 55c of the positioning guide member 55, thereby rotating the rotary arm 45 in the clockwise direction. Further, at the same time, the rotary arm 45 is shifted in a direction to separate from the pivot 27a due to the biasing force between the pressure lever 46 and the tension spring 47.
By moving the timing drive roller 32a as described above while opening or closing the transfer cover unit 8, the configuration layout in which the timing drive roller 32a is disposed at the immediately lower portion of the intermediate transfer belt 16, that is, at the immediately low and inward (left side) portion of the drive roller 18 can be achieved. With this configuration layout, the size of the image forming apparatus 100 can be reduced in the inward direction and in the vertical direction thereof, thereby promoting the compact size of the image forming apparatus 100.
If the opening and closing method in the horizontal direction is employed to the image forming apparatus 100, the interference of the transfer roller 20 and the timing drive roller 32a on the transfer cover unit 8 with the parts of the main body 110 may be less possible along the compact structure of the image forming apparatus 100. However, the accuracy in positioning of the transfer roller 20 and the timing drive roller 32a may be adversely affected and the friction of the intermediate transfer belt 16 received from the transfer roller 20 may be a problem.
According to the exemplary embodiment of the present invention, the transfer roller 20 and the timing drive roller 32a can be correctly located to the final position by using the positioning guide member 55. Further, due to the guide shape of the positioning guide member 55, the final position can be raised higher than the height for horizontal shifting. By so doing, the position of the parts of the main body 110 can be lower in the middle of the movement of the transfer cover unit 8 for positioning the transfer roller 20 and the timing drive roller 32a, and therefore can promote the compact configuration of the image forming apparatus 100.
As described above, the exemplary embodiment of the present invention has been described. However, the present invention is not limited to the above-described exemplary embodiment and can be applied to variations. For example, the exemplary embodiment of the present invention can be applied to an image forming apparatus. However, it is needless to say that the present invention is applicable to a device other than an image forming apparatus. Further, the exemplary embodiment provides the timing driven roller 32b, the intermediate transfer belt 16, and the drive roller 18 as sheet feed members of the main body 110 and the timing drive roller 32a and the secondary transfer roller 20 as the sheet feed members of the transfer cover unit 8. The sheet feed member may be a roller or an endless belt.
Further, the sheet feed member may be a member other than for timing or transfer. For example, the pressure roller 34b of the fixing unit 34 can be repositioned to the transfer cover unit 8 and can be shifted by a positioning guide member provided to the main body 110 so as to avoid interference with the parts of the main body 110 in the vicinity of the fixing roller 34a that is disposed in the main body 110 of the image forming apparatus 100.
Further, the positioning guide member 55 is provided to guide the timing drive roller 32a in the exemplary embodiment of the present invention. However, a positioning guide member that is similar to the positioning guide member 55 can guide the secondary transfer roller 20. Further, in the exemplary embodiment of the present invention, two sheet feed members are provided in the main body 110 and the transfer cover unit 8. However, the number of sheet feed members may be one, three or more.
Further, the positions of the timing drive roller 32a and the timing driven roller 32b can be switched. Specifically, the timing drive roller 32a can be provided to the main body 110 of the image forming apparatus 100 and the timing driven roller 32b can be provided to the transfer cover unit 8, which is an opposite configuration to the exemplary embodiment of the present invention.
Further, the present invention can also be applied to an image forming apparatus for forming black-and-white images without the intermediate transfer belt 16. In the monochrome image forming apparatus, the intermediate transfer belt 16 may be replaced by a photoconductor drum that serves as an image carrier to press contact the transfer roller 20 provided in the transfer cover unit 8 to the outer circumferential surface of the photoconductor drum.
Further, in the exemplary embodiment, the transfer cover unit 8 includes the duplex unit 9. However, the transfer cover unit 8 without a duplex unit can also be applied.
The above-described embodiments are illustrative only and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements or features of different illustrative and exemplary embodiments herein may be combined with each other or substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2011-281630 | Dec 2011 | JP | national |
2012-071848 | Mar 2012 | JP | national |
2012-125958 | Jun 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7430385 | Yamaoka | Sep 2008 | B2 |
8437659 | Fukunaga | May 2013 | B2 |
20060093397 | Yamaoka | May 2006 | A1 |
20070092292 | Ito | Apr 2007 | A1 |
20090022514 | Fujiwara et al. | Jan 2009 | A1 |
20100003051 | Sekina et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
7-261504 | Oct 1995 | JP |
2000-231321 | Aug 2000 | JP |
2004-020574 | Jan 2004 | JP |
2006-030643 | Feb 2006 | JP |
2006-290516 | Oct 2006 | JP |
2007-148196 | Jun 2007 | JP |
2011-085815 | Apr 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20130164066 A1 | Jun 2013 | US |