The present invention relates to a sheet finishing apparatus and an image forming apparatus, particularly to a sheet finishing apparatus for bundling sheets with images and stapling a sheet bundle and an image forming apparatus provided with the sheet finishing apparatus.
Conventionally, there has been a sheet finishing apparatus for aligning, bundling and stapling sheets with images ejected from an image forming apparatus such as a copying machine, a printer, a facsimile or the like (refer to Japanese Patent Publications (Kokai) No. 2000-72320 and No. 2003-267622). In such a sheet finishing apparatus, the sheets are ejected in a bundle with ends thereof aligned and stapled in uniform format. Accordingly, it is possible to eliminate manual processing such as manual aligning and manual stapling. Such a sheet finishing apparatus is provided with a stapler unit for driving a staple into the sheet bundle. In general, a stapler unit has a maximum stapling capacity such as 20 sheets or 30 sheets, and is designated with a grade and power consumption according to the capacity.
In the conventional sheet finishing apparatus, when a large number of sheets are stapled, it is necessary to increase a load of a staple for penetrating a sheet bundle, thereby causing a problem such that legs of a staple are bent or broken. Such a problem may be associated with low rigidity of a staple or a thickness of a sheet (especially, a cover sheet).
In view of the problems described above, an object of the present invention is to provide a sheet finishing apparatus capable of surely stapling a large number of sheets without deforming a staple, and an image forming apparatus provided with the sheet finishing apparatus.
Further objects and advantages of the invention will be apparent from the following description of the invention.
In order to attain the objects described above, according to a first aspect of the present invention, a sheet finishing apparatus comprises a sheet transfer device for transferring sheets with toner images, a sheet bundling device for bundling the sheets transferred by the sheet transfer device, and a stapling device for driving a staple into the sheets at a position where the toner images is formed to staple the sheets bundled by the sheet bundling device.
In the first aspect of the present invention, the sheets having the toner images are transferred by the sheet transfer device. The sheets transferred by the sheet transfer device are bundled by the sheet bundling device. The sheets bundled by the sheet bundling device are stapled when the staples are driven into the bundle at the position where the toner images are formed. A load of the staple driven into the sheet at the position with the toner images is smaller than a load of the staple driven into the sheet at a position without the toner images as the number of the sheets increases. Although a reason for the decrease in the load is not clear at this moment, it is confirmed that the load becomes small under different environmental conditions.
In the first aspect of the present invention, the stapling device staples the sheet bundled by the sheet bundling device at the position with the toner images, thereby decreasing the load of the staple as compared with the case of stapling the sheet bundle at a position without the toner images. Accordingly, it is possible to surely staple a large number of the sheets without deforming the staple. The toner image may be formed at a position including a stapling position in a strip form or a separate form.
In the first aspect of the present invention, the sheet finishing apparatus may further comprise a transport device for moving one of the sheets bundled by the sheet bundling device and the stapling device relative to each other, and a control device for controlling the stapling device so as to drive the staple at the position with the toner images. Further, the stapling device may be arranged so as to drive the staple from a backside of the sheets at a position where the toner images are formed.
According to a second aspect of the present invention, an image forming apparatus comprises a sheet feeding device for feeding sheets, an image forming device for forming toner images on the sheets fed from the sheet feeding device, a sheet transfer device for transferring the sheets with the toner images formed by the image forming device, a sheet bundling device for bundling the sheets transferred by the sheet transfer device, and a stapling device for driving a staple into the sheets at a position there the toner images are formed to staple the sheets bundled by the sheet bundling device.
In the second aspect of the present invention, the sheets are supplied by the sheet feeding device. The image forming device forms the toner images on the sheets supplied by the sheet feeding device. The sheets with the toner images formed by the image forming device are transferred by the sheet transfer device. The sheets transferred by the sheet transfer device are bundled by the sheet bundling device. The stapling device staples the sheets bundled by the sheet bundling device at a position with the toner images.
In the second aspect of the present invention, the image forming apparatus may further comprise a transport device for transporting one of the sheets bundled by the sheet bundling device and the stapling device relative to each other, and a control device for controlling the transport device so that the stapling device drives the staple into the sheets at a position with the toner images. The image forming apparatus may further comprise a positioning device for determining a stapling position where the stapling device drives the staple, and an image control device for controlling the image forming device to form the toner images at a position including the stapling position.
In the second aspect of the present invention, when the positioning device determines a plurality of stapling positions, the image control device controls the image forming device to separately form the toner images at positions corresponding to the stapling positions or ends of the staple, thereby minimizing an amount of toner. Further, the image control device may control the image forming device to form the toner images on a front surface of the sheet opposite to a back surface where the stapling device drives the staple and the stapling device drives the staple from the backside. Accordingly, the front surface of the sheet, especially a cover sheet, does not have the toner images, thereby improving appearance of the sheet bundle.
According to the present invention, the stapling device drives the staple into the sheet bundle formed by the sheet bundling device at a position with the toner images, thereby reducing a load of the staple. Accordingly, it is possible to surely staple a large number of the sheets without deforming the staple.
a) and 9(b) are perspective views showing staples driven into a bundle, wherein
a) to 11(c) are plan views showing toner marks (images) and stapling positions, wherein
Hereunder, embodiments of the present invention will be explained with reference to the accompanying drawings. As shown in
The digital copying unit 1 comprises an image forming apparatus 902, as an image forming device for recording an image copied from an original image D onto a sheet; an image input unit 200 provided with a light source 907 for irradiating the original image D placed above the image forming apparatus 902 and focusing light reflected from the original image D on a CCD 201 through an optical system 908 to function as a scanner; a sheet feeder 909 disposed under the image forming apparatus 902 as a sheet feeding device for feeding the sheet to the image forming apparatus 902 one at time; and a control unit 950 for controlling various units as a positioning device and an image control device.
The sheet feeder 909 is detachable from the digital copying unit 1 and comprises a cassette 910 for containing A5 size sheets, a cassette 911 for containing A4 size sheets and a cassette 913 for containing A3 size sheets.
The image forming apparatus 902 is provided with a cylindrical photosensitive drum 914 for forming a latent image on a circumferential surface thereof. Arranged around the photosensitive drum 914 are a primary electrifier 919 for charging the photosensitive drum 914 to form the latent image; a laser unit 922 for outputting a modulated laser beam according to image data stored in a hard disk 961 (see
A laser unit 922 comprises a semiconductor laser for generating the laser beam; a polygon mirror for converting the laser beam output from the semiconductor laser into a beam corresponding to each line through a collimator lens; an fθ lens for converting the leaser beam corresponding to each line output from the polygon mirror into parallel light beams; a mirror for guiding the parallel beams from the fθ lens to the photosensitive drum 914 and rotating the polygon mirror.
A pair of rollers having an endless transfer belt 920 placed thereon is placed on a downstream side of the photosensitive drum 914 and in the vicinity of the separating electrifier 917. The endless transfer belt 920 is placed on a pair of rollers and is located in the vicinity of a photographic fixer 904 provided with a heat roller or the like for heating and fixing the toner image formed on the sheet. On the downstream side of the photographic fixer 904, there is provided a pair of ejection rollers 905 as a part of an ejection transport device for ejecting the sheets whereon the images are formed from the digital copying unit 1. Between a location under the endless transfer belt 920 and an upstream side of the pair of the ejection rollers 905 and the photosensitive drum 914, there is provided a duplex 921 for printing on front and back surfaces of the sheet.
The digital copying unit 1 comprises a platen glass 906 for placing the original D thereon, and a touch panel 248 for indicating a present state of the digital copying machine 1A as well as for inputting on operation command from an operator to the controller 950. Above the platen glass 906, there is provided an automatic original feeder (ADF) 940 for automatically feeding the original onto the platen glass 906 with one end thereof fixed onto a top of the digital copying unit 1 while the other end thereof being left for permitting to be pivotally raised or lowered.
As shown in
On the touch panel 248, in order to receive the operation command from the operator, there is displayed a plurality of switch buttons, namely, an end-stapling process command input switch button A (one position stapling) for stapling one end of a bundle of the sheets at one position; an end-stapling process command input button switch B (plural position stapling) for stapling one end of the sheet bundle at a plurality of positions; a center-stapling process command input switch button for stapling a middle of the sheet bundle; a folding process command input switch button for applying a folding process to a bundle of the sheets to form a book; a toner-marked place stapling process command input switch button for stapling the bundle of the sheets at a position marked with the toner mark (image); a sheet size specification command input switch button for specifying the sheet sizes (A3, A4, A5 or the like).
As shown in
The transfer unit 100 comprises a transfer guide 3 for receiving the sheets sequentially ejected from the digital copying unit 1 and guiding the sheets into the sheet finishing apparatus 2; an inward transfer guide 7 placed on a downstream side of the transfer guide 3 for further transferring the sheets; a pair of transfer rollers 5 disposed between the transfer guide 3 and the inward transfer guide 7 for nipping and transferring the sheets; a sheet detection sensor 4 placed in the vicinity of a downstream side of the transfer rollers 5 for detecting the sheet transferred into the inward transfer guide 7 as well as jam of the sheets in the transfer unit 100; and a pair of ejection rollers 6 placed on the furthest downstream side of the transfer guide 7 for nipping and ejecting the sheet.
As shown in
As shown in
Under the lefthand side tray 8a and the right-hand side tray 8c and near the central tray 8b, there are provided matching motors 14, i.e. stepping motors, capable of rotating in both forward and reverse directions. Shafts of the matching motors 14 have pinions 15 fitted thereto respectively, while the pinions 15 respectively engage racks 16 having a length substantially equal to a width of the right-hand side tray 8a and the left-hand side tray 8b. Each of the matching plates 9 has a rectangular stationary member extending from an underside thereof. Each of the front ends of the stationary members passes through an oblong hole formed along the width of the right-hand side tray 8a and the left-hand side tray 8b to be fixed to the racks 16 (see
A stepping motor 70 capable of making forward and reverse rotations is provided under and on one side (on the side of the stapler unit 30) of the left-hand side tray 8a. In the stepping motor 70, a motor shaft 70a has a gear 71 fitted thereon, while the gear 71 meshes with a gear pulley 72 pivotally supported with a stationary arm extending from the stepping motor 70. A timing belt 74 is placed between the pulley portion of the gear pulley 72 and the pulley 73. The pulley 73 is fixed to a first pulley shaft 10a having a length substantially equal to the width of the processing tray 8 and pivotally supported under one side of the processing tray 8. A second pulley shaft 11a having a length shorter than the first pulley shaft 10a is pivotally supported at a location under the central tray 8b and the opposite side to the first pulley shaft 10a (the other side of the central tray 8b).
The first pulley shaft 10a has four underside rollers 18 fitted thereon, i.e., a pair of the rollers on the left-hand side and a pair of the rollers on the right-hand side with respect to the center line of the sheet to be transferred (upside and underside in
The shaft 10a of the first pulley is fitted with the first pulley 10 having a diameter smaller than the underside roller of the transfer roller 18 through a one-way clutch 75 for transmitting only the counterclockwise turning force. The both ends of the second pulley shaft 11a are fitted with the second pulleys 11 having a diameter identical to that of the first pulley. A pair of the first pulley 10 and the second pulley 11 is located between the central tray 8b and left-hand side tray 8a, while another pair of the first pulley 10 and the second pulley is located between the central tray 8b and the right-hand tray 8c. Placed on the pairs of the first pulleys 10 and the second pulleys 11 are two sets of endless transfer belts 12. Hence, the rotary driving force of the stepping motor 70 transmitted to the shaft 10a of the first pulley 10 through the one-way clutch 75 can be transmitted to the second pulley 11 only when the first pulley turns counterclockwise, that is, only when the transfer belt 12 rotates for transferring in the arrow direction A in
As shown in
As shown in
Above the underside transfer rollers 18, there is provided the upside transfer rollers 19 movable freely between a contact point (i.e., a first contact point) or a contact point Q where the upside roller and the underside roller 18 abut against each other as indicated with a phantom line in
On the downstream side of the inclined surface of the processing tray 8, there is provided a plate-form first sheet bundle guide 27 for supporting (holding) the sheet bundle in cooperation with the processing tray 8. Above the first bundle guide 27, there is provided a stopper 21 for controlling and aligning one end of the sheet to move the sheet in the transfer direction by its own weight and the rotation of the paddle 17.
As shown in
The pushing claw 13 in an ordinary state (the state where the transfer roller 19 is at the separated position while the stopper 21 is at the retracted position) moves in the arrow direction A shown in
As shown in
As shown in
The head assembly 31 and the anvil assembly 32 mesh with the guide screw shafts 36 and 35 through threads so as to be movable leftward and rightward as shown in
The drive force to the head drive shaft 38 is also transmitted from a stapling/folding operation motor (not shown), as being a stepping motor, through a coupler 44 provided on the outside of the unit frame 41. The drive force from the stapling/folding operation motor is transmitted simultaneously to the anvil assembly 32 through the timing belt 45 placed between the pulleys respectively fitted with the head drive shaft 38 and the anvil drive shaft 37 on the outside of the unit frame 40. Hence, the head assembly 31 and the anvil assembly 32 synchronously move in the direction intersecting the transfer direction of the sheet while maintaining the relative distance thereof. Accordingly, a moving mechanism is provided for the head assembly 31 and the anvil assembly 32 by controlling the stapler sliding motor 42, so that the stapling operation can be carried out at any position on a width of the sheet. The moving mechanism functions as a moving mechanism for enabling the head assembly 31 and the anvil assembly 32 to travel to a location of the sheet bundle.
As shown in
At an entrance to the folding unit 50, there are provided the upside sheet bundle transfer roller 51 and the underside sheet bundle transfer roller 52 for nipping and transferring the sheet bundle toward the downstream side. On the downstream side of the upside sheet bundle transfer roller 51 and the underside sheet bundle transfer roller 52, there is provided a sheet bundle transfer guide 53 for guiding the sheet bundle to a further downstream side. On the sheet bundle transfer route of the sheet bundle transfer guide 53, there is provided an integral transmission type end detection sensor unit 54, wherein a controller 149 moves the upside bundle transfer roller 51 and the underside bundle transfer roller 52 to be pressed against each other responding to a sheet bundle end detection signal from the end detection sensor 54, and also controls the setting of the folding position in the sheet transfer direction.
The upside roller 51 for transferring the sheet bundle is designed so as to move between a position for contacting the underside roller 52 for transferring the sheet bundle and a position (not shown) away from the position, and is also designed so as to be away from the underside roller 52 until the front end of the sheet bundle is detected by the end detection sensor 54 for contacting the sheet bundle.
Under the transfer guide 53, there is provided a pair of rollers, namely a folding roller 57a and a folding roller 57b, rotating and pressed with each other in a direction intersecting the transfer direction of the sheet bundle. The folding rollers 57a and 57b have a diameter (e.g., 40 mm) for turning at least once or more when folding the sheet bundle.
On the downstream side of the transfer guide 53 corresponding to the direction intersecting the transfer direction of the sheet bundle, there is provided a pushing plate 55 with a front edge advancing near a point where the folding rollers 57a and 57b are pressed against each other until the sheet bundle enters between the folding rollers 57a and 57b. The pushing plate is made of stainless steel, and the front edge is formed to have a thickness of about 0.25 mm.
Partially surrounding above the folding rollers 57a and 57b, there are provided backup guides 59a and 59b having a substantially semicircular section. The backup guides 59a and 59b move together with the up and down movement (of the folding rollers 57a and 57b) in the direction intersecting the transfer direction of the sheet bundle by the pushing plate 55 to provide a space around the folding rollers 57a and 75b when the front edge of the pushing plate moves close to the nipping point between the folding rollers 57a and 57b.
On the downstream side of the sheet folder unit 50 and under the sheet finishing apparatus 2, there are provided a sheet bundle forming unit 20; a stapler unit 30; and a stacker 80 for placing the folded sheet bundles having an inclined surface opposite to the stapler unit 30 and the sheet folding unit 50. Above the stacker 80, there is provided a folded sheet holder 81 with one end thereof pivotally fixed for holding the folded sheet through a falling force resulting from the inclined surface of the stacker 80 and a force of a spring or the like.
On the side of the frame 2A opposite to the body of the digital copying machine 1, there is provided a tray with lift 90 capable of rising and falling vertically along the frame 2A. The tray with lift 90 is supported with a supporter 92. The supporter 92 of the tray with lift 90 ascends and descends through a belt driven by a stepping motor (not shown) capable of rotating clockwise and counterclockwise. The tray with lift 90 is capable of ascending and descending between an ascending limit indicated with a solid line and a descending limit indicated with a phantom line.
The tray with lift 90 comprises an auxiliary tray 91 to be drawn out from the tray with lift 90 when loading the tray with the large-size sheets or the like. Under the second pulley 11 of the sheet bundling unit 20, there is provided a sheet surface sensor 93 for detecting the top surface of the sheet on the tray with lift 90. On the side of the tray with lift 90 of the frame 2A, there is provided a rear end guide 94 for guiding the rear end of the sheet on the tray with lift 90 when the tray with the lift 90 ascends and descends. The sheet bundle folded by the sheet folding unit 50 is stacked on the folded sheet bundle stacker 80, and when not folded, the sheet bundle is stacked on the tray with lift 90.
The controller 149 functions as a work area for the CPU and the ROM for storing the program and the program data to be executed by the CPU, and comprises the RAM for storing the control data received from the controller 950 of the digital copying machine 1 and an interface, thereby communicating with the controller 950.
An operation of the digital copying machine 1A according to the present invention will be described with reference to a flow chart.
The CPU of the controller 950 shows an initial display on the touch panel 248 through the touch panel display controller 250. At this point, as shown in
The operations of the various buttons shown in
The toner mark to be provided on the stapling position may be a single-block type continually covering a plurality of stapling positions as shown in
The stapling process to be carried out by the sheet finishing apparatus 2 according to the present embodiment is available in two modes, namely, the end stapling process mode and the center stapling process mode. The end stapling process is further divided into the end stapling process (for one-place stapling) shown in
When the operator presses (or touches) a proper button displayed on the touch panel 248 and then presses the start button, the CPU of the controller 950 executes the image forming routine for forming the desired image onto the sheet.
As shown in
More specifically, the stapling positions according to the sheet size and the types of stapling processes such as the end stapling (one-place stapling), the end stapling process (plural-place stapling), and the center stapling process are previously stored, for example, in the form of a table in the memory, so that the CPU decides (or selects) the stapling positions referring to such table. In the following description, it is supposed that the end stapling process input switch A button (for one-place stapling) and the sheet size specification switch button (for A4 size) have been pressed by the operator.
In the next step 306, information relating to the control of the sheet finishing apparatus 2 such as the stapling position, the sheet size, or the like will be inputted to the controller 149 of the sheet finishing apparatus 2 through a communication device. In such a communication mode, it is not necessary to directly input the information such as the stapling position (e.g., actual distance from an end of the sheet), and, instead, the default value common to the controller 950 and the controller 149 may be used. In order for the default value common to the controller 950 and the controller 149 to be recognized, for example, the default value according to the common table may be stored in the ROM, or a content of the default value may be inputted to the controller 950 from the controller 149 at the time of the initial setting after the sheet finishing apparatus 2 is turned on.
Next, in step 308, it is detected whether the input switch for the toner-mark-basis stapling process has been pressed. When the response in the step 308 is affirmative, the image formation process (on both sides of the sheet) is carried out. In other words, when the sheet feed signal is outputted from the controller 950, the sheet with the specified sheet size (A4 size sheet in the present example) is fed to the image forming apparatus 902 from one of the sheet cassettes 910, 911, and 913 with an electric motor (not shown). Improper orientation of the sheet is corrected by a registration roller pair simultaneously with synchronization of the timing before the sheet is transferred to the image forming apparatus 902.
The CPU commands the image input unit 200 to read the data D and to project the image data for one sheet line by line onto the photosensitive drum 914 with the laser unit 922. The photosensitive drum 914 is previously charged with the electricity by means of the primary electrifier 919, so that the electrostatic latent image is formed on the photosensitive drum 914 when irradiated with light. The electrostatic latent image is developed by means of the developer 915 to form the toner image on the photosensitive drum 914.
In the image forming apparatus 902, the toner image on the photosensitive drum 914 is transcribed onto the sheet by means of the transcription electrifier 916. The toner image on the sheet is charged inversely to the transcription electrifier 916 by means of the separation electrifier 917 to be separated from the photosensitive drum 914. Further, the sheet, undergone the separating electrification process, is transferred to the photographic fixer 904 where the image is permanently fixed onto the sheet by the photographic fixer 904 to obtain the desired image on the sheet.
In the toner-mark-basis stapling process as described previously, the toner mark is provided on the backside of the sheet opposite to the top surface of the sheet whereon the desired image is formed. In the present embodiment, the toner marks shown in
When the response in step 308 is negative, the image is formed on one side of the sheet in step 314 (toner mark is not formed on the backside of the sheet; refer to
The following typical modes applicable to the post-processing of the sheets ejected from the digital copying machine 1 are carried out by the sheet finishing apparatus 2: (1) the non-stapling mode wherein the sheets are stacked on the tray with the lift 90 without undergoing the stapling process; (2) the end stapling mode wherein the stapling is provided at one or more places on one end of the sheets in the transfer direction before being stacked on the tray with lift 90; and (3) the center stapling and folding mode wherein the sheets are stapled at one or more places on the folding line at a middle of the length of the sheet along the transfer direction and subsequently folded along the line including the stapled places to form a book before being stacked on the folded sheets ejection stacker 80 or the like. The operations of the sheet finishing apparatus 2 in these modes will be described.
(1) Non-Stapling Mode
When the non-stapling mode is selected, the controller 149 first drives the stepping motor 70 to move the pushing claw 13 from HP, shown in
In parallel, a transfer motor (not shown) is driven to rotate the drive roller of the transfer roller pair 5 and the drive roller of the ejection roller pair 6 until the sheets are ejected from the ejection roller pair 905 of the digital copying machine 1. When the sheets are ejected from the digital copying machine 1, the sheet is transferred to the processing tray 8 by the transfer roller pair 5 and the ejection roller pair 6. When the sheet detection sensor 4 detects the sheet, the controller 149 sets the timing for starting the matching motor 14 for moving the matching plate 9 and the timing for starting the paddle motor for rotating the paddle. Further, the controller 149 previously receives the control data concerning the sheet size, the transfer directions (horizontal and vertical directions) of the sheet from the controller 950 of the digital copying machine 1, and stores such control data in the RAM.
When the sheet is ejected onto the processing tray 8, the matching motor 14 and the paddle motor are driven. Accordingly, the matching plate 9 moves in the direction intersecting the transfer direction of the sheet to match the ends of the sheets and rotate the paddle 17 to align the ends of the sheets at the front end of the pushing claw 13 located at the preHP. The operation is repeated each time when the sheet is ejected onto the processing tray 8.
When a predetermined number of the sheets are aligned against the end face of the pushing claw 13, the transfer motor and the stepping motor (not shown) stop. The stepping motor 70 for operating the transfer belt 12 is driven, so that one end of the pushing claw 13 pushes the sheet bundle toward the tray with lift 90 (in the arrow direction A in
When the sheet bundle is loaded on the vertically movable tray 90, a motor (not shown) for the tray 90 is driven to lower the tray 90 to a certain extent, and then the motor for the tray 90 is driven inversely to lift the tray 90 until reaching the level where a sheet surface sensor detects the top surface of the sheet. The tray 90 stays at this position until the next sheet bundle is loaded thereon.
In the non-stapling mode without the stapling process, the sheets need not to be transferred to the regulating position of the stopper 21, so that the sheet bundle is pushed toward the vertically movable tray 90 to be stacked thereon by the pushing claw 13 located at the PreHP. Accordingly, even when the sheet ejection speed of the digital copying machine 1 is relatively high, the operational speed of the sheet finishing apparatus 2 can be adjusted to the ejection speed (of the digital copying machine 1). When the PreHP of the pushing claw 13 overlaps with the transfer guide 7 over the top of the pushing claw 13, the sheets transported one at time can be stacked more surely through abutting against the end face of the pushing claw 13.
(2) End-Stapling Mode
In the present embodiment, when the end-stapling mode (one-place stapling) is selected, the controller 149 first drives the stapler sliding motor 42 to move the head assembly 31 and the anvil assembly 32 to their initial positions to be detected by the staple slide HP sensor. Also, the solenoid is turned on and the stopper 21 is located at the controlling position.
A transfer motor (not shown) is driven to rotate the drive rollers of the transfer roller pair 5 and ejection roller pair 6, to eject the sheets from the copying machine 1 onto the processing tray 8, and the matching motor 14 and the paddle motor are driven. The sheets are aligned by the edges along the transfer direction by means of the aligning plate 9, and the sheets stop when the ends thereof reach the side of the leg of the stopper 21. When this operation is repeated for the specified number of the sheets, the sheet bundle is aligned with the stopper 21.
In a state that the sheet bundle is aligned with the stopper 21, the upside transfer roller 19 moves toward the downside transfer roller 18 until the sheet bundle is nipped thereby, and the solenoid is turned off to locate the stopper 21 at the retracted position. The stepping motor 70 is driven for the predetermined number of steps in the direction inversely to the direction in the non-stapling mode. Accordingly, the sheet bundle is held between the upside transfer roller 19 and the underside transfer roller 18, and transferred toward the stapler unit 30 located in the arrow direction B shown in
A stapling/folding motor (not shown) is driven to apply the stapling to the end portion (stapling position) of the sheet bundle by means of the head assembly 31 and the anvil assembly 32. When the end portion (stapling positions) of the sheet bundle is stapled at a plurality of places, the staple sliding motor 42 is driven to shift the position of the stapler unit 30 before applying the stapling. The stapling/folding motor and the stapler sliding motor (not shown) are the sources of the power, or a part of the driving means, for moving the stapler unit 30 toward the sheet bundle, so that the staples can be applied to the places marked with the toner on each sheet of the sheet bundle.
Upon completion of the stapling process, the stepping motor 70 drives the underside transfer roller 18, the upside transfer roller 19, and the transfer belt 12 toward the tray with lift 90. Accordingly, the transfer of the stapled sheet bundle is relayed from the pair of the underside transfer roller 18 and the upside transfer roller 19 to the pushing claw 13. The pushing claw 13 pushes the sheet bundle to be loaded on the tray with lift 90. The operation of the tray with lift 90 in the later stage is omitted, since they are similar to those in the non-stapling mode.
(3) Center Stapling and Folding Mode
When the center stapling and folding mode is selected, similarly to the end-stapling mode, the sheets ejected from the digital copying machine 1 are loaded on the processing tray 8. After the sheet bundle is loaded and aligned on the processing tray 8, the upside transfer roller 19 descends toward the underside transfer roller 18 to hold the sheet bundle. The solenoid is turned off, and the stopper 21 is located at the retracted position.
The stepping motor 70 is driven in the direction inverse to the direction of the rotation in the non-stapling mode, and the sheet bundle nipped between the upside transfer roller 19 and the underside transfer roller 18 is transferred toward the stapler unit 30. Under this state, the head assembly 31 and the anvil assembly 32 remain at the initial position intersecting the transfer direction of the sheet bundle.
During the transfer of the sheet bundle, when the sheet end detection sensor 45 detects the end of the sheet in the transfer direction, the controller 149 stops the stepping motor 70 at the point where the middle of the sheet has arrived at the stapling point on the basis of the information concerning the length of the sheet previously received from the copying machine 1 and stored in the RAM.
The stapling/folding motor (not shown) for driving the head drive shaft 38 and the anvil drive shaft 37 is driven in the direction for the stapling operation. When a plurality of places are stapled, the stapler sliding motor 42 is driven to rotate the guide screw shafts 35 and 36, so that the head assembly 31 and the anvil assembly 32 are shifted to the predetermined positions in the direction intersecting the transfer direction of the sheet before the stapling operation takes place. When the sheet bundle is transferred to the stapling position, the front end of the sheet bundle in the transfer direction passes a point where the underside transfer roller 52 and the upside transfer roller 51 are separated from each other within the folding unit 50.
For the folding operation, the transfer motor (not shown) is inversely driven for rotating a transfer cam (not shown), so that the upside transfer roller 51 descends toward the underside transfer roller 52 to nip the sheet bundle. Then, the upside transfer roller 19 returns to the separated position to release the sheet bundle from the nipped position.
The drive motor (not shown) is driven to rotate the upside transfer roller 51 and the underside transfer roller 52 to transfer the sheet bundle toward a further downstream side. During this transfer operation, the controller 149 gradually decelerate transfer motor (not shown) to be stopped, so that the center of the sheet in the transfer direction, i.e., the stapling position, coincides with the folding position with reference to the detection signal from the end detection sensor 45 and the sheet length data stored in the RAM. At this point, the sheet bundle is nipped between the upside sheet bundle transfer roller 51 and the underside sheet bundle transfer roller 52 with the front end thereof hanging downwardly in the sheet bundle passage 58 (see
The stapling/folding motor (not shown) rotates in the direction for the folding operation, that is, in the direction reverse to the direction for the stapling operation. Accordingly, the folding rollers 57a and 57b rotate in the directions for nipping the sheet bundle, while the pushing plate 55 descends, so that the folding rollers 57a and 57b abut against each other. Together with the descending motion, the backup guides 59a and 59b move so as to provide a space round the circumferential surfaces of the folding rollers on the side of the sheet bundle. When the pushing plate 55 descends, the sheet bundle is drawn between the folding rollers 57a and 57b, and the pushing plate 55 moves away from the sheet bundle, while the sheet bundle is further drawn between the folding rollers 57a and 57b to be transferred further in the nipped condition.
The sheet bundle transferred while being nipped between the folding rollers 57a and 57b is ejected onto the folded sheet bundle ejection stacker 80 to be stocked thereon. In this case, the folded sheet bundle (book) is held down by the folded sheet bundle hold-down member 81, so that the folded sheet bundle is prevented from opening to disturb folding the next sheet bundle into a book.
After the folding operation, when a pushing plate HP sensor (not shown) detects that the pushing plate 55 moves reciprocally the predetermined number of times depending on the length of the sheet in the transfer direction of the sheet bundle, the controller 149 stops the stapling/folding motor (not shown). When the time required from the start of the folding operation to the nipping of the sheet bundle between the folding rollers 57a and 57b has passed, the upside sheet bundle transfer roller 51 ascends away from the underside sheet bundle transfer roller 52 for receiving the next sheet bundle.
For the sheet bundle folding operation, the timing for folding the sheet (bundle) by the folding rollers 57a and 57b is set so as not coincide with the timing for the movement of the pushing plate 55, so that the pushing plate 55, after pushing the sheet bundle into between the folding roller 57a and the folding roller 57b, does not contact the both ends of the folded sheet bundle when returned to the pushing position during the sheet bundle folding operation. Accordingly, when the stapling/folding motor (not shown) drives the pushing plate 55 and the folding rollers 57a and 57b as a common power source, any damage to the sheet bundle can be prevented, thereby reducing a size and weight of the sheet processing unit 2.
An effect of the digital copying machine 1 according to the present invention will be described next.
According to the present embodiment, the digital copying machine 1A performs the toner-mark-basis stapling process.
For instance, when driving the staple into the toner-marked place of a 50-sheet bundle, the current flowing in the stapler unit 50 is smaller than that required when driving the staple into the non-toner-marked place of a 30-sheet bundle. It is also found that the current required when driving the staple into place without the toner mark on the 20-sheet bundle is almost equal to that required when driving the staple into the toner-marked place of the 50-sheet bundle. When the number of the sheets contained in the bundle is constant, the load on the staple driven into the place marked with the toner is smaller than the load on the staple to be driven into the place not marked with the toner. Accordingly, it is possible to prevent deformation of the stapler and reduce a size of the stapler unit 50.
An exact reason for this phenomenon is not clarified yet. It can be considered that this phenomenon may result from gaps between the sheets with the toner images. The digital copying machine 1A of the present embodiment utilizes the above-mentioned principle, wherein the toner-mark-basis stapling principle is applied to increase the number of the sheets that can be stapled surely with one stapling action without the deformation of the staple.
If the toner mark is provided on a surface whereon the original image is formed, the toner mark becomes visible, thereby spoiling appearance of the sheet with the image. In the present embodiment, the toner mark is provided on the backside of the sheet, thereby maintaining appearance of the top surface of the sheet. As shown in
In the present embodiment, the uniform sheet size and uniform procedure for determining the stapling conditions according to the predetermined table have been described. Such stapling conditions may be modified by incorporating a function controllable by the operator. Thus, by incorporating such an adjusting function, the stapling process of the present invention can be applicable to a case where an image needs to be provided over the stapled place.
In the present embodiment, the digital copying machine 1 incorporates the hard disk 961, and the image data stored in the hard disk 961 may be utilized. More specifically, the hard disk 961 stores the image data already outputted from the personal computer 210 or the image data obtained by reading out the original data D from the image input unit 200. When the image data is outputted from the personal computer 210, the CPU needs an ID for enabling such data to be inputted to a folder thereof by means of a ten key or the like, and such a folder is provided with a name of the ID. In the latter case, an inquiry for the image data needs to be stored in the touch panel 248 or needs to be deleted by the operator through the touch panel display controller 250. Accordingly, when the operator wants to have such image data stored as it is, the operator will be required to input the ID for inputting such image data to the folder designed for storing collectively. Thus, where the ID has been inputted through the touch panel 210 or through the computer 210, it is necessary to check if the image data is stored collectively in the folder corresponding to the ID stored. When the response is affirmative, the image data stored in the folder is read out, and when the response is negative, the original image D may be read out through the automatic original image output unit 940. Accordingly, utilizing the image data stored in the hard disk 961 enables the operator to save time and labor for reading out the original data D for a large number of sheet bundles.
In the present embodiment, the sheet bundles are made by accumulating and loading the sheets in the sheet bundle making unit 20, and the present invention is not limited to such a case. For example, the sheet bundle making unit may hold and align the sheets vertically for making the sheet bundle.
In the present embodiment, the head assembly 31 and the anvil assembly 32 constituting the stapler unit 30 move toward the sheet bundle. The system may be reversed so that the sheet bundle moves toward the stapler unit 30. The system may be changed so that both the sheet bundle and the stapler unit 30 move toward each other. In such a case, both (the sheet bundle and the stapler unit 30) move toward each other, thereby shortening time for the stapler unit 30 to arrive at the stapling position.
In the present embodiment, the stapling position is specified through the controller 950 of the digital copying machine 1 in the step 304, and the present invention is not limited to this embodiment. For instance, the stapling position may be specified through the controller 149 of the sheet finishing apparatus 2, while the toner marking place may be inputted to the controller 950.
Further, as shown in
The disclosure of Japanese Patent Application No. 2003-404863, filed on Dec. 3, 2003, is incorporated in the application.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-404863 | Dec 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5060921 | Higashio et al. | Oct 1991 | A |
5144562 | Stikkelorum et al. | Sep 1992 | A |
5980676 | Meetze | Nov 1999 | A |
5999244 | Yanagihara et al. | Dec 1999 | A |
6406199 | Hayashi | Jun 2002 | B1 |
6549299 | Allen et al. | Apr 2003 | B1 |
6733006 | Kobayashi et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050123332 A1 | Jun 2005 | US |