This patent application is based on and claims priority pursuant to 35 U.S.C. § 119(a) to Japanese Patent Application No. 2016-106312, filed on May 27, 2016, in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
Technical Field
This disclosure relates to a sheet folding device, an image forming system incorporating the sheet folding device, and a sheet folding method using the sheet folding device and the image forming system.
Related Art
As an example of sheet folding methods of performing a sheet folding operation to a sheet conveyed from an image forming apparatus, a leading end abutting method and a sheet holding and reversing method are known.
The leading end abutting method is a sheet folding method through which a sheet is firstly abutted against a stopper to adjust a sheet folding position and to form a warped portion of the sheet, and then the warped portion of the sheet is held in a sheet folding nip region, performed in a dedicated passage that is branched from a sheet conveyance passage through which the sheet is conveyed from an upstream device to a downstream device.
The sheet holding and reversing method is a sheet folding method through which sheet conveying members are rotated in a reverse direction while a sheet is supported between the sheet conveying members, so that a warped portion of the sheet is held in a sheet holding nip region, performed in a sheet conveyance passage through which the sheet is conveyed from an upstream device to a downstream device.
As can be seen from the above, the sheet holding and reversing method can do without including the dedicated passage that is branched from the sheet conveyance passage through which the sheet is conveyed from the upstream device to the downstream device. In addition, in the sheet holding and reversing method, the sheet folding position of the sheet is adjusted not by the stopper but by the rotation of the sheet conveying members disposed on a downstream side in the sheet conveying direction while the sheet conveying members are holding the sheet. Accordingly, a range of movement of the stopper may not be included in the sheet folding device and the image forming apparatus. Consequently, a reduction in size of the sheet folding device can be achieved.
There are some examples of a sheet folding device employing the sheet holding and reversing method that includes the above-described features.
As a first example, a sheet folding device includes a first pair of sheet conveying members that conveys a sheet, a second pair of sheet conveying members that receives the sheet conveyed by the first pair of sheet conveying members and further conveys the sheet, and a third pair of sheet conveying members that folds the sheet by rotating the second pair of sheet conveying members in the reverse direction in a state in which the first pair of sheet conveying members and the second pair of sheet conveying members are holding the sheet therebetween. In this configuration, one roller of the second pair of sheet conveying members also functions as one of the third pair of sheet conveying members.
As a second example, in the sheet folding device having the above-described configuration, the first pair of sheet conveying members and the second pair of sheet conveying members are driven by a single drive motor.
As a third example, a sheet folding device includes a first pair of sheet conveying members that folds a sheet, a second pair of sheet conveying members that receives the sheet folded by the first pair of sheet conveying members and further conveys the sheet, and a third pair of sheet conveying members that further folds the folded sheet. The second pair of sheet conveying members is rotatable in both directions, which are a forward direction and a reverse direction, while being driven for sheet conveyance. When the second pair of sheet conveying members is not driven for sheet conveyance, one direction of rotation of the second pair of sheet conveying members is locked while the other direction of rotation of the second pair of sheet conveying members is rotatable.
The first example employs the sheet holding and reversing method, that is, one roller of the second pair of sheet conveying members also functions as one of the third pair of sheet conveying members. According to this configuration, this sheet folding device achieves a reduction in size. When the second pair of sheet conveying members are rotated in the reverse direction while holding the sheet therebetween, a motor load significantly changes depending on paper size and thickness, and therefore the amounts of conveyance vary due to driving of the motor, and therefore it is likely that the sheet folding position is shifted.
By contrast, the respective sheet folding devices of the second and third examples employ a feedback control to control the driving of the motor, so that the sheet can be folded at a correct position.
The feedback control is performed to correct the variation in amounts of conveyance of a drive motor but is performed to basically correct a speed of conveyance when the speed is shifted. By correcting the speed of conveyance of the sheet, the variation in amounts of conveyance can be corrected. However, the positional shift causing the variation in amounts of conveyance is not directly corrected while the speed of conveyance of the sheet is controlled.
At least one aspect of this disclosure provides a sheet folding device including a first drive motor, a first sheet conveyor driven by the first drive motor and configured to receive a sheet and to convey a sheet toward a downstream side of a sheet conveying direction, a second sheet conveyor driven by the second drive motor and configured to receive the sheet conveyed from the first sheet conveyor and to convey the sheet further to the downstream side of the sheet conveying direction, and a controller configured to fold the sheet to a predetermined folding length set according to an amount of conveyance of the sheet by the second sheet conveyor while the sheet is being held between the first sheet conveyor and the second sheet conveyor, and to perform a feedback control with an integral gain to the second drive motor.
Further, at least one aspect of this disclosure provides an image forming system including an image forming apparatus configured to form an image on the sheet, and the above-described sheet folding device configured to fold the sheet having the image formed by the image forming apparatus.
Further, at least one aspect of this disclosure provides a sheet folding method including receiving a sheet by a first sheet conveyor driven by a first motor, conveying the sheet by the first sheet conveyor toward a downstream side of a sheet conveying direction, receiving the sheet conveyed from the first sheet conveyor by a second sheet conveyor driven by a second motor, conveying the sheet by the second sheet conveyor toward the downstream side of the sheet conveying direction, performing a feedback control with an integral gain to the second motor, setting a folding length of the sheet according to an amount of conveyance of the sheet conveyed by the second sheet conveyor while holding the sheet by the first sheet conveyor and the second sheet conveyor, and folding the sheet to the set folding length of the sheet.
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements describes as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
The terminology used herein is for describing particular embodiments and examples and is not intended to be limiting of exemplary embodiments of this disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Descriptions are given, with reference to the accompanying drawings, of examples, exemplary embodiments, modification of exemplary embodiments, etc., of an image forming apparatus according to exemplary embodiments of this disclosure. Elements having the same functions and shapes are denoted by the same reference numerals throughout the specification and redundant descriptions are omitted. Elements that do not demand descriptions may be omitted from the drawings as a matter of convenience. Reference numerals of elements extracted from the patent publications are in parentheses so as to be distinguished from those of exemplary embodiments of this disclosure.
This disclosure is applicable to any image forming apparatus, and is implemented in the most effective manner in an electrophotographic image forming apparatus.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this disclosure is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes any and all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, preferred embodiments of this disclosure are described.
Descriptions are given of an example applicable to a sheet folding device, an image forming system incorporating the sheet folding device, and a sheet folding method using the sheet folding device and the image forming system, with reference to the following figures.
It is to be noted that identical parts are given identical reference numerals and redundant descriptions are summarized or omitted accordingly.
The image forming system 1 includes an image forming apparatus 200 may be a copier, a facsimile machine, a printer, a multifunction peripheral or a multifunction printer (MFP) having at least one of copying, printing, scanning, facsimile, and plotter functions, or the like. According to the present example, the image forming apparatus 200 included in the image forming system 1 is an electrophotographic copier that forms toner images on recording media by electrophotography.
It is to be noted in the following examples that: the term “image forming apparatus” indicates an apparatus in which an image is formed on a recording medium such as paper, OHP (overhead projector) transparencies, OHP film sheet, thread, fiber, fabric, leather, metal, plastic, glass, wood, and/or ceramic by attracting developer or ink thereto; the term “image formation” indicates an action for providing (i.e., printing) not only an image having meanings such as texts and figures on a recording medium but also an image having no meaning such as patterns on a recording medium, and the term “sheet” is not limited to indicate a paper material but also includes the above-described plastic material (e.g., a OHP sheet), a fabric sheet and so forth, and is used to which the developer or ink is attracted. In addition, the “sheet” is not limited to a flexible sheet but is applicable to a rigid plate-shaped sheet and a relatively thick sheet.
Further, size (dimension), material, shape, and relative positions used to describe each of the components and units are examples, and the scope of this disclosure is not limited thereto unless otherwise specified.
Further, it is to be noted in the following examples that: the term “sheet conveying direction” indicates a direction in which a recording medium travels from an upstream side of a sheet conveying path to a downstream side thereof; the term “width direction” indicates a direction basically perpendicular to the sheet conveying direction.
As illustrated in
As illustrated in
It is to be noted that the CPU 100a performs the control in a RAM, for example, by reading a program code stored in a ROM and using to the RAM based on a program defined by the program codes.
The sheet folding device 100 includes two sheet conveyance passages, which are a first sheet conveyance passage W1 and a second sheet conveyance passage W2, and multiple sheet conveying units, which are a first sheet conveying unit F1, a second sheet conveying unit F2, and a third sheet conveying unit F3. The first sheet conveying unit F1, the second sheet conveying unit F2, and the third sheet conveying unit F3 are disposed along the first sheet conveyance passage W1 and the second sheet conveyance passage W2.
The second sheet conveying unit F2 is disposed holding (across) the first sheet conveyance passage W1 and the second sheet conveyance passage W2, so as to fold and transfer a sheet P from the first sheet conveyance passage W1 to the second sheet conveyance passage W2.
The first sheet conveying unit F1 includes a first pair of sheet conveying rollers R1. The second sheet conveying unit F2 includes a first sheet conveying roller R2, a second sheet conveying roller R3, a third sheet conveying roller R4, and a fourth sheet conveying roller R5. The third sheet conveying unit F3 includes a second pair of sheet conveying rollers R6. The first pair of sheet conveying rollers R1 (the first sheet conveying unit F1) is driven by a drive motor M1, so as to apply a conveying force to the sheet P. The second pair of sheet conveying rollers R6 (the third sheet conveying unit F3) is driven by a drive motor M3, so as to apply a conveying force to the sheet P. The third sheet conveying unit F3 sets a direction of conveyance of the sheet P that has been folded to either in a forward direction or a reverse direction.
The sheet conveying roller R2, the second sheet conveying roller R3, the third sheet conveying roller R4, and the fourth sheet conveying roller R5 are driven by a drive motor M2.
In the first sheet conveying unit F1, two rollers of the first pair of sheet conveying rollers R1 are disposed facing each other across the first sheet conveyance passage W1. Consequently, a first nip region N1 is formed between the two rollers of the first pair of sheet conveying rollers R1.
The first pair of sheet conveying rollers R1 is disposed on an entrance side of the first sheet conveyance passage W1 of the sheet folding device 100, where the first pair of sheet conveying rollers R1 receives the sheet P fed from the image forming apparatus 200. The first pair of sheet conveying rollers R1 is driven by the first drive motor M1 to covey the sheet P toward a downstream side in the sheet folding device 100.
The second sheet conveyance passage W2 has an end portion W2a and an end portion W2b. The end portion W2a is located on a downstream side (that is, a sheet ejection side) in the sheet conveying direction and meets the first sheet conveyance passage W1 at a downstream side of the first sheet conveyance passage W1, as illustrated in
In the second sheet conveying unit F2, the first sheet conveying roller R2 and the second sheet conveying roller R3 are disposed facing each other across first sheet conveyance passage W1. Consequently, a second nip region N2 is formed between the first sheet conveying roller R2 and the second sheet conveying roller R3.
Further, the second sheet conveying roller R3 and the third sheet conveying roller R4 are disposed facing each other between the first sheet conveyance passage W1 and second sheet conveyance passage W2. Consequently, a third nip region N3 is formed between the second sheet conveying roller R3 and the third sheet conveying roller R4. A passage that is guided by the third nip region N3 corresponds to the communication passage W2c that guides the sheet P from the first sheet conveyance passage W1 to the second sheet conveyance passage W2.
Further, the second sheet conveying roller R3 and the fourth sheet conveying roller R5 are disposed facing each other across second sheet conveyance passage W2. Consequently, a fourth nip region N4 is formed between the second sheet conveying roller R3 and the fourth sheet conveying roller R5.
As previously described, the first sheet conveying roller R2, the second sheet conveying roller R3, the third sheet conveying roller R4, and the fourth sheet conveying roller R5 are driven by the second drive motor M2 that drives the second sheet conveying roller R3. Specifically, the second sheet conveying unit F2 is driven to rotate by the second drive motor M2. The second drive motor M2 is rotatable in both directions, which are the forward direction and the reverse direction. By changing the direction of rotation, the second drive motor M2 conveys the sheet P and performs a sheet folding operation.
It is to be noted that the second sheet conveying unit F2 according to the present embodiment includes pairs of sheet conveying rollers but the configuration is not limited thereto. For example, a pair of or pairs of adhesive sheet conveying rollers may be applied to the second sheet conveying unit F2.
In the second sheet conveying unit F2, the second sheet conveying roller R3 functions as a sheet conveying drive roller. Similarly, the first sheet conveying roller R2, the third sheet conveying roller R4, and the fourth sheet conveying roller R5 functions as a sheet conveying driven roller to be rotated with the second sheet conveying roller R3 while contacting the second sheet conveying roller R3. Further, the second sheet conveying roller R3 and the third sheet conveying roller R4 form a first sheet folding unit, and the second sheet conveying roller R3 and the fourth sheet conveying roller R5 form a second sheet folding unit.
The first sheet conveying roller R2 is biased by a first compression spring S2 that functions as a biasing body so as to apply an elastic force toward the second sheet conveying roller R3. The third sheet conveying roller R4 is biased by a second compression spring S3 that functions as a biasing body so as to apply an elastic force toward the second sheet conveying roller R3. The fourth sheet conveying roller R5 is biased by a third compression spring S4 that functions as a biasing body so as to apply an elastic force toward the second sheet conveying roller R3. According to this configuration, the first sheet conveying roller R2, the third sheet conveying roller R4, and the fourth sheet conveying roller R5 remain in contact with the second sheet conveying roller R3. Accordingly, the first sheet conveying roller R2, the third sheet conveying roller R4, and the fourth sheet conveying roller R5 are rotated with the second sheet conveying roller R3 by receiving respective driving forces form the second sheet conveying roller R3.
The first pair of sheet conveying rollers R1 includes a sheet conveying drive roller R1a and a sheet conveying driven roller R1b. The first drive motor M1 applies a driving force to the sheet conveying drive roller R1a. The sheet conveying driven roller R1b receives the elastic force applied by the first compression spring S1 to move toward the sheet conveying drive roller R1a. Consequently, the sheet conveying driven roller R1b contacts the sheet conveying drive roller R1a in the first nip region N1. Accordingly, the sheet conveying driven roller R1b is rotated with the sheet conveying drive roller R1a while contacting the sheet conveying drive roller R1a.
The second pair of sheet conveying rollers R6 includes a sheet conveying drive roller R6a and a sheet conveying driven roller R6b. The third drive motor M3 applies a driving force to the sheet conveying drive roller R6a. The sheet conveying driven roller R6b receives the elastic force applied by the fifth compression spring S5 to move toward the sheet conveying drive roller R6a. Consequently, the sheet conveying driven roller R6b contacts the sheet conveying drive roller R6a in a fifth nip region N5 formed between the sheet conveying drive roller R6a and the sheet conveying driven roller R6b. Accordingly, the sheet conveying driven roller R6b is rotated with the sheet conveying drive roller R6a while contacting the sheet conveying drive roller R6a.
Further, a first sheet detection sensor SN1 is disposed at a position immediately before the first pair of sheet conveying rollers R1 in first sheet conveyance passage W1. Similarly, a second sheet detection sensor SN2 is disposed at a position immediately after the second nip region N2 formed by the first sheet conveying roller R2 and the second sheet conveying roller R3. Further, a third sheet detection sensor SN3 is disposed at a position nearest the second pair of sheet conveying rollers R6 and separated from the fourth sheet conveying roller R5 in the second sheet conveyance passage W2. It is to be noted that the first sheet detection sensor SN1 functions as an inlet sheet detection sensor and the second sheet detection sensor SN2 functions as an outlet sheet detection sensor.
The sheet folding device 100 includes the sheet folding mechanism illustrated in
Embodiment 1.
A description is given of a sheet folding operation when the half fold is performed by a configuration according to Embodiment 1, with reference to
After the initial state of
Upon detection of the leading end P1 of the sheet P, the second drive motor M2 decreases the speed of conveyance of the sheet P. Accordingly, the sheet P is conveyed to a predetermined position by an amount of conveyance Δ0 from the second sheet detection sensor SN2, so as to perform the half fold operation, as illustrated in
In this case, it is not controlled that the second drive motor M2 stops instantly when the sheet P that is conveyed from the upstream side is passing a sheet detection position at which the second sheet detection sensor SN2 detects the leading end P1 of the sheet P but it is controlled that the second drive motor M2 stops after the sheet P has passed the predetermined stop position located downstream from the second sheet detection sensor SN2 by the amount of conveyance Δ0 or rotates in the reverse direction after the sheet P has passed the sheet detection position of the second sheet detection sensor SN2.
The amount of conveyance Δ0 to be set is a calculation result that is automatically calculated by the CPU 100a based on data of the length of the sheet P in the sheet conveying direction that is transmitted from the image forming apparatus 200 to the CPU 100a before the start of the job (i.e., before the start of image formation onto the sheet P).
Alternatively, the amount of conveyance Δ0 can be set based on a table including relations of sheet sizes and amounts of movement of the sheet P. The table is previously prepared and stored in the ROM, so that the amount of movement of the sheet P can be set according to the sheet size by reference to the table in the ROM.
As second drive motor M2 starts rotating in the reverse direction, the sheet P bends toward the third nip region N3 formed between the second sheet conveying roller R3 and the third sheet conveying roller R4 in the communication passage W2c, as illustrated in
It is to be noted that the above-described sheet folding operation can be performed without stopping the first pair of sheet conveying rollers R1 while the first pair of sheet conveying rollers R1 continuously rotates in the forward direction toward a sheet outlet side.
In the communication passage W2c, the first sheet conveyance passage W1 has one side facing the third nip region N3, and the other side that is opposite the one side. The one side is open and the other side is closed. Therefore, the sheet P bends toward the one side facing the third nip region N3. Alternatively, in order not to generate a paper jam, a guide pawl may be disposed at a position immediately before the second nip region N2 formed between the first sheet conveying roller R2 and the second sheet conveying roller R3. When the first sheet conveying roller R2 and the second sheet conveying roller R3 are rotated in the reverse direction, which is an opposite direction to the sheet conveying direction, a direction of bend of the sheet P can be guided toward the third nip region N3.
Consequently, as illustrated in
The sheet P conveyed to the first nip region N1 of first pair of sheet conveying rollers R1 is further conveyed by first pair of sheet conveying rollers R1 toward the second sheet conveying unit F2. As illustrated in
At this time, when a trailing end of the sheet P that has been folded by the half fold passes the third sheet detection sensor SN3, the second drive motor M2 and the third drive motor M3 are stopped. When a subsequent sheet is to be conveyed, the sheet folding operation performed by the sheet folding device 100 according to Embodiment 1 illustrated in
It is to be noted that, when the image forming system 1 does not include the post-processing device 300, the sheet P may be output to a sheet output tray 400 that is disposed instead of the post-processing device 300. Accordingly, a relatively smaller system configuration of this image forming system 1 includes the image forming apparatus 200 and a sheet folding device 100.
Further, the sheet folding device 100 includes the sheet folding mechanism illustrated in
Embodiment 2
Now, a description is given of a sheet folding mechanism 50 according to Embodiment 2 of this disclosure, included in the sheet folding device 100 according to Embodiment 2 of this disclosure, with reference to
In Embodiment 2, the sheet folding mechanism performs the sheet folding operation by a sheet folding control including a feedback control with an integral gain.
It is to be noted that the elements or components of the sheet folding device 100 according to
Further, in order to avoid complexity, the reference numerals used for the elements or components of the sheet folding device 100 according to Embodiment 1 illustrated in
In
The sheet folding mechanism 50 includes the first sheet conveyance passage W1 and the second sheet conveyance passage W2, and the first sheet conveying unit F1 that functions as a first sheet conveyor, the second sheet conveying unit F2 that functions as a second sheet conveyor, and the fourth sheet conveying unit F4 that functions as a third sheet conveyor. The first sheet conveying unit F1, the second sheet conveying unit F2, and the fourth sheet conveying unit F4 are disposed along the first sheet conveyance passage W1 and the second sheet conveyance passage W2.
The first sheet conveying unit F1 is disposed on the entrance side of the first sheet conveyance passage W1 of the sheet folding device 100. The second sheet conveying unit F2 is disposed on the exit side of the first sheet conveyance passage W1. The fourth sheet conveying unit F4 is disposed between or in the middle of the first sheet conveying unit F1 and the second sheet conveying unit F2 along the first sheet conveyance passage W1. That is, the fourth sheet conveying unit F4 is disposed between the first sheet conveyance passage W1 and the second sheet conveyance passage W2, which is the same structure as the second sheet conveying roller R3 and the third sheet conveying roller R4 aligned to each other according to
It is to be noted that, in Embodiment 2, the fourth sheet conveying unit F4 is disposed as a single unit and at a position separated from the second sheet conveying unit F2.
Similar to the configuration illustrated in
The first pair of sheet conveying rollers R1 is driven by the drive motor M1 and the second pair of sheet conveying rollers is driven by the second drive motor M2. The fourth sheet conveying unit F4 that functions as a fourth sheet conveyor including a pair of sheet folding rollers is driven by a fourth drive motor M4. For example, a driving force is transmitted to the fifth sheet conveying roller R7 via a timing belt, so that the pair of sheet folding rollers is driven to rotate. Both the first drive motor M1, the second drive motor M2, and the fourth drive motor M4 apply a conveying force to the sheet P. In addition, fourth drive motor M4 applies a folding force to fold the sheet P.
A difference between the configuration illustrated in
Now, a description is given of the sheet folding operation according to Embodiment 2, with further reference to
As illustrated in
The bend or warp of the sheet P is formed in a space immediately before a nip region formed between the third sheet conveying roller R4 and the fifth sheet conveying roller R7 of the fourth sheet conveying unit F4 (the pair of pair of sheet folding rollers), as illustrated in
Here, when the second sheet conveying unit F2 conveys the sheet P by the predetermined distance of X mm from the second sheet detection sensor SN2, a period during which the first sheet conveying unit F1 and the second sheet conveying unit F2 conveys the sheet P to the downstream side in the sheet conveying direction at substantially same speeds is referred to as a first period “a1” and a period from when the speed of the second sheet conveying unit F2 starts to decrease to when the second sheet conveying unit F2 stops is referred to as a second period “a2”. In addition, a period during which the sheet P is stopped at the stop position ahead of the second sheet detection sensor SN2 by the predetermined distance of X mm due to the stoppage of the second sheet conveying unit F2 is referred to as a third period “b”. At completion of the third period b, the fourth sheet conveying unit F4 starts the sheet folding operation to the sheet P. The second period a2 corresponds to a period from the timing T2 at which a control of stopping the second drive motor M2 is started to the timing T3 at which the control of stopping the second drive motor M2 is completed. During the second period a2, the sheet P bends between the first sheet conveying unit F1 and the second sheet conveying unit F2, a load variation influence is generated to the second drive motor M2, and therefore a deviation is generated between a target value of the distance of conveyance (depicted by a broken line in
It is to be noted that the “load variation influence” here is generated due to a bend or warp of the sheet P other than a sheet conveyance load of the sheet P, that is, transmitted a driving force from a sheet conveying member and is generated to a drive motor side as a load.
Specifically, the second drive motor M2 does not stop instantly and power transmission parts such as a timing belt have a time lag. Therefore, the second sheet conveying unit F2 completely stops at a timing with a delay from the stoppage of rotation of the second drive motor M2. In addition, when the second drive motor M2 stops or while the speed of the second sheet conveying unit F2 is decreasing, the second sheet conveying unit F2 is continuously applying the conveying force to the sheet P. Therefore, even when the speed of the second sheet conveying unit F2 is decreasing or even after the second sheet conveying unit F2 is stopped, the sheet P is pushed in the direction A due to the conveying force applied by the first sheet conveying unit F1. Consequently, even though the conveyance of the sheet P is forced to stop at the stop position by the distance of X mm from the second sheet detection sensor SN2 after the second sheet detection sensor SN2 has detected the leading end P1 of the sheet P, the stop position by the distance of X mm from the second sheet detection sensor SN2 is shifted due to the deviation indicated in the second period a2 in
Specifically, a comparative sheet folding device employs a sheet holding and reversing method. That is, in the comparative folding device, one roller of one pair of sheet conveying members also functions as one of another pair of sheet conveying members. According to this configuration, the comparative sheet folding device can achieve a reduction in size but does not especially take a motor load into consideration. Specifically, when the comparative sheet folding device performs a sheet folding operation, the one pair of sheet conveying members are rotated in the reverse direction. Therefore, when the one pair of sheet conveying members are rotated in the reverse direction while holding a sheet therebetween, it is likely that the motor load significantly changes depending on paper size and thickness of the sheet. In a case in which the motor load significantly changes, amounts of conveyance of sheets vary due to the driving of the motor, and therefore it is likely that a sheet folding position at which the sheet is folded is shifted. It does not seem that the comparative sheet folding device gives any consideration to this inconvenience.
By contrast, in order to address changes in motor load that can cause variation in the amounts of conveyance, a different comparative sheet folding device employs a feedback control to control the driving of the motor, so that the sheet can be folded at a correct position.
However, in the technique of the different comparative sheet folding device, even though the feedback control is performed to correct the variation in amounts of conveyance of a drive motor, the control is performed to basically correct a speed of conveyance when the speed is shifted. By correcting the speed of conveyance of the sheet, the variation in amounts of conveyance can be corrected. However, the positional shift of a sheet to cause variation in amounts of conveyance is not directly corrected but the speed of conveyance of the sheet is controlled, thereby lacking the accuracy of correction of the positional shift.
In the comparative sheet folding device, the deviation is corrected by controlling the speed of conveyance of a sheet. However, it is difficult to reduce or eliminate the error (i.e., the deviation) the correction of speed cannot fully reduce or eliminate the error (i.e., the deviation) to a desired range.
In order to address this inconvenience, the sheet folding device 100 according to Embodiment 2 of this disclosure executes a proportional, integration and differential (PID) control in stopping of the second drive motor M2 to perform a correction of the position for correction of the amount of conveyance of the sheet P.
The PID control is preferable when employing a direct current (DC) motor as a drive motor to control an input value based on a deviation between an output value (an actual control value) and a target value (a desired set point), the integral, and the differential. The PID control is a control of combination of a proportional control (P), an integral control (I), and a differential control (D). The proportional control is a control performed in proportion to a difference (deviation) of the output value and the target value. The integral control is a control performed to eliminate or cancel the difference (deviation) of the output value and the target value. The differential control is a control performed to restrain conversion. At this time, for example, a deviation between a target speed and a measured speed is detected. To the detected speed deviation, calculation is conducted by the proportional (P), integral (I), and differential (D). By so doing, the PID control is performed.
In the present embodiment, based on the calculation result, the CPU 100a outputs a signal to output electricity for driving the DC motor, to a motor driver illustrated in
In the present embodiment, the deviation generated in the second period a2 is canceled by the feedback control using an integral gain, that is, by the PID control. Specifically, variation in rotation of the second drive motor M2 that drives the second sheet conveying unit F2 is corrected by the PID control. By so doing, the variation in amounts of conveyance of a sheet is reduced to stop the second sheet conveying unit F2 at the position corresponding to the distance of X mm accurately, and therefore a highly accurate sheet folding quality can be secured.
Further, other elements or components and operations of the sheet folding device 100 according to the present embodiment of this disclosure are identical to those of the above-described sheet folding devices. By employing the PID control according to the present embodiment to the above-described techniques, the sheet folding operation including the half fold operation, the Z-fold operation, the letter fold-in operation, and the letter fold-out operation can be performed by the PID control accurately.
In the control procedure described in the flowchart of
After step S102, it is determined whether or not the leading end of the sheet P is conveyed to a point immediately before the second nip region N2 of the second sheet conveying unit F2, in step S103. When the leading end of the sheet P is conveyed to the point immediately before the second nip region N2 (YES in step S103), the second sheet conveying unit F2 starts rotating in the sheet conveying direction (i.e., the direction A), in step S104. When the leading end of the sheet P is not conveyed to the point immediately before the second nip region N2 (NO in step S103), the process returns to repeat step S103 until the leading end of the sheet P is conveyed to the point immediately before the second nip region N2.
After step S104, it is determined whether or not the sheet P is conveyed by the previously set amount of conveyance Δ1 (i.e., the distance of X mm), in step S105. When the sheet P is conveyed by the amount of conveyance Δ1 (YES in step S105), the second sheet conveying unit F2 stops rotating, in step S106. When the sheet P is not conveyed by the amount of conveyance Δ1 (NO in step S105), the process returns to repeat step S105 until the sheet P is conveyed by the amount of conveyance Δ1.
The PID control is executed while the sheet P is conveyed by the distance of X mm in step S105.
After the second sheet conveying unit F2 has been stopped in step S106, the fourth sheet conveying unit F4 starts rotating, in step S107.
As described above, the fold P2 of the sheet P is formed in the nip region formed between the third sheet conveying roller R4 and the fifth sheet conveying roller R7 of the fourth sheet conveying unit F4. The fold P2 is conveyed to the second pair of sheet conveying rollers R6 and is reinforced in the fifth nip region N5. Thereafter, the sheet P passes through the connecting sheet conveyance passage W2d that connects the second sheet conveyance passage W2 and the first sheet conveyance passage W1. Consequently, the sheet P is conveyed by the first sheet conveying unit F1 in the first sheet conveyance passage W1 to the second sheet conveying unit F2. After having been received by the second sheet conveying unit F2, the sheet P is further conveyed and ejected to the subsequent post-processing device 300.
At this time, it is determined whether or not the third sheet detection sensor SN3 detects the trailing end of the sheet P folded in two, in step S108. When the trailing end of the sheet P is detected by the third sheet detection sensor SN3 (YES in step S108) and has passed through the first sheet conveying unit F1, the second drive motor M2 and the fourth drive motor M4 are stopped, in step S109.
By repeating the above-described process, the half-fold sheets P are generated continuously.
Embodiment 3
Now, a description is given of the sheet folding mechanism 50 according to Embodiment 3 of this disclosure, included in the sheet folding device 100 according to Embodiment 3 of this disclosure, with reference to
In Embodiment 3, the sheet folding mechanism 50 performs a different sheet folding operation by a sheet folding control including the feedback control with the integral gain.
It is to be noted that the elements or components of the sheet folding device 100 according to Embodiment 3 are identical to the elements or components of the sheet folding device 100 according to Embodiment 2, and therefore the descriptions thereof are omitted. Now, a description is given of the sheet folding operation according to Embodiment 3, with further reference to
As illustrated in
According to the reverse rotation of the second sheet conveying unit F2, the half fold operation is performed to the sheet P. That is, as the second sheet conveying unit F2 rotates in the reverse direction, the directions of conveyance of the sheet P become opposite between the first sheet conveying unit F1 (the forward direction) and the second sheet conveying unit F2 (the reverse direction). As a result, the sheet P bends, as illustrated in
At this time, the direction of rotation of the second drive motor M2 that drives the second sheet conveying unit F2 is reversed, the sheet P warps in the space immediately before the nip region formed between the third sheet conveying roller R4 and the fifth sheet conveying roller R7 of the fourth sheet conveying unit F4 (the pair of pair of sheet folding rollers), as illustrated in
Here, when the second sheet conveying unit F2 conveys the sheet P by the predetermined distance of X mm from the second sheet detection sensor SN2, a period during which the first sheet conveying unit F1 and the second sheet conveying unit F2 convey the sheet P to the downstream side in the sheet conveying direction at substantially same speeds is referred to as a first period “c1” and a period from when the speed of the second sheet conveying unit F2 starts to decrease to when the second sheet conveying unit F2 rotates in the reverse direction at a constant speed is referred to as a second period “c2”. The second period c2 corresponds to a period from the timing T2 at which a control of stopping the second drive motor M2 is started to the timing T4 at which the reverse rotation of the second sheet conveying unit F2 has reached at a constant speed. During the second period c2, the sheet P bends between the first sheet conveying unit F1 and the second sheet conveying unit F2, a load variation influence is generated to the second drive motor M2 by the force to push the sheet P in the direction A in the second nip region N2 of the second sheet conveying unit F2, and therefore a deviation is generated between a target value of the distance of conveyance (depicted by a broken line in
Specifically, even though the second drive motor M2 is rotated in the reverse direction, the second drive motor M2 does not stop instantly and power transmission parts such as a timing belt has a time lag and a backlash. Therefore, the rotation of the second sheet conveying unit F2 reaches a constant speed at a timing with a delay from the reverse rotation of the second drive motor M2. In addition, since the second sheet conveying unit F2 is rotated in the reverse direction after the stop state in Embodiment 2, when the second drive motor M2 stops or while the second sheet conveying unit F2 is decreasing in speed, the second sheet conveying unit F2 continuously applies the conveying force to the sheet P and an elastic force applied due to the warp of the sheet P also acts. Therefore, even when the second sheet conveying unit F2 is decreasing in speed or stopped, the sheet P is pushed in the direction A due to the conveying force applied by the first sheet conveying unit F1. Consequently, even though the conveyance of the sheet P is forced to stop at the position by the distance of X mm from the second sheet detection sensor SN2 after the second sheet detection sensor SN2 has detected the leading end of the sheet P, the position of the distance of X mm is shifted due to the deviation indicated by the second period c2 in
It is to be noted that, as long as the second drive motor M2 is a DC motor, the second drive motor M2 can be rotated in the reverse direction without a settling time (the stopping time). However, the sheet folding operation delays due to the time lag or the backlash of the power transmission parts of the second sheet conveying unit F2.
Similar to Embodiment 2, the second drive motor M2 is rotated in the reverse direction during the second period c2 from the timing T2 to the timing T4 and the PID control with the integral gain is performed in Embodiment 3. Accordingly, the reverse rotation of the second drive motor M2 can reduce the deviation of conveyance Z due to excessive sheet conveyance generated by the backlash error that is caused by the push-in of the sheet by the first sheet conveying unit F1.
In
Further, by employing the PID control according to Embodiment 2 or Embodiment 3 to the configuration illustrated in
In the control procedure described in the flowchart of
After step S202, it is determined whether or not the leading end of the sheet P is conveyed to a point immediately before the second nip region N2 of the second sheet conveying unit F2, in step S203. When the leading end of the sheet P is conveyed to the point immediately before the second nip region N2 (YES in step S203), the second sheet conveying unit F2 starts rotating in the sheet conveying direction (i.e., the direction A), in step S204. When the leading end of the sheet P is not conveyed to the point immediately before the second nip region N2 (NO in step S203), the process returns to repeat step S203 until the leading end of the sheet P is conveyed to the point immediately before the second nip region N2.
After step S204, it is determined whether or not the sheet P is conveyed by the previously set amount of conveyance Δ1 (i.e., the distance of X mm), in step S205. When the sheet P is conveyed by the amount of conveyance Δ1 (YES in step S205), the second sheet conveying unit F2 is rotated to the reverse direction and starts the fourth sheet conveying unit F4 to rotate, in step S06. When the sheet P is not conveyed by the amount of conveyance Δ1 (NO in step S205), the process returns to repeat step S205 until the sheet P is conveyed by the amount of conveyance Δ1.
As described above, the fold P2 of the sheet P is formed in the nip region formed between the third sheet conveying roller R4 and the fifth sheet conveying roller R7 of the fourth sheet conveying unit F4. The fold P2 is conveyed to the second pair of sheet conveying rollers R6 and is reinforced in the fifth nip region N5.
Thereafter, the sheet P passes through the connecting sheet conveyance passage W2d that connects the second sheet conveyance passage W2 and the first sheet conveyance passage W1. Consequently, the sheet P is conveyed by the first sheet conveying unit F1 in the first sheet conveyance passage W1 to the second sheet conveying unit F2. After having been received by the second sheet conveying unit F2, the sheet P is further conveyed and ejected to the subsequent post-processing device 300.
At this time, it is determined whether or not the third sheet detection sensor SN3 detects the trailing end of the sheet P folded in two, in step S207. When the trailing end of the sheet P is detected by the third sheet detection sensor SN3 (YES in step S207) and has passed through the first sheet conveying unit F1, the second drive motor M2 and the fourth drive motor M4 are stopped, in step S208.
By repeating the above-described process, the half-fold sheets P are generated continuously.
Further, in Embodiment 2 and Embodiment 3, the sheet folding device 100 includes the first drive motor M1, the second drive motor M2, and the fourth drive motor M4, and the PID control is applied to the second drive motor M2. In this configuration, the first drive motor M1 also receives a force in a direction opposite the direction A from the sheet P due to a reaction of the stop or the reverse rotation of the second drive motor M2. Therefore, it is preferable that the PID control is also applied to the first drive motor M1. Accordingly, the amount of conveyance on the push-in side of the sheet P can also be corrected.
Further, the fourth drive motor M4 also receives a force from the first drive motor M1 and the second drive motor M2 via the sheet P during the half fold operation. Therefore, it is preferable that the PID control is also applied to the fourth drive motor M4. Accordingly, the precision of the sheet folding position can be further enhanced.
In addition, in a case in which the PID control according to Embodiment 2 or Embodiment 3 is applied to the configuration illustrated in
It is to be noted that, when the PID control relative to the first drive motor M1, the second drive motor M2, the third drive motor M3, and the fourth drive motor M4 is executed, individual parameters are set to achieve respective target amounts of conveyance of the sheet relative to the first drive motor M1, the second drive motor M2, the third drive motor M3, and the fourth drive motor M4 for correction.
Further, in Embodiments 1 through 3, the sheet folding device 100 includes the first the first drive motor M1, the second drive motor M2, the third drive motor M3, and the fourth drive motor M4, the second drive motor M2, and the fourth drive motor M4, as a DC motor respectively. By employing the DC motor, a higher resolution and a more detailed feedback control can be achieved.
Further, a motor step-out does not occur even when an abrupt load variation influence occurs, and the operation can start without setting the settling time (the stopping time) during a switching motion when the direction rotation changes from the normal rotation to the reverse rotation. Therefore, the productivity can be enhanced.
Further, the first sheet conveying unit F1 may include multiple first sheet conveying units F1. Similarly, the second sheet conveying unit F2 may include multiple second sheet conveying units F2. According to this configuration, multiple sheet folding operations such as a letter fold-in operation, a letter fold-out operation, and a Z-fold operation can be performed with a highly accurate sheet folding control, thereby achieving a highly accurate sheet folding quality.
The configurations according to the above-descried embodiments are not limited thereto. This disclosure can achieve the following aspects effectively.
Aspect 1.
In Aspect 1, a sheet folding device (for example, the sheet folding device 100) includes a first sheet conveyance passage (for example, the first sheet conveyance passage W1), a second sheet conveyance passage (for example, the second sheet conveyance passage W2), a first drive motor (for example, the first drive motor M1), a first sheet conveyor (for example, the first sheet conveying unit F1), a second drive motor (for example, the second drive motor M2), a second sheet conveyor (for example, the second sheet conveying unit F2), and a controller (for example, the CPU 100a). The first sheet conveyance passage is a passage through which a sheet (for example, the sheet P) travels. The second sheet conveyance passage is a passage through which the sheet conveyed from the first sheet conveyance passage travels. The first sheet conveyor is driven by the first drive motor. The first sheet conveyor is configured to receive the sheet and to convey the sheet toward a downstream side of a sheet conveying direction. The second sheet conveyor is driven by the second drive motor. The second sheet conveyor is configured to receive the sheet conveyed from the first sheet conveyor and to convey the sheet further to the downstream side of the sheet conveying direction. The controller is configured to fold the sheet to a predetermined folding length set according to an amount of conveyance of the sheet by the second sheet conveyor while the sheet is being held between the first sheet conveyor and the second sheet conveyor, and to perform a feedback control with an integral gain to the second drive motor.
According to this configuration, as described in the above-described embodiment, the amount of conveyance of the sheet P performed by the second sheet conveyor can be corrected by correcting the position of the sheet P using the feedback control with the integral gain.
As described above, in the above-described embodiments, the positional shift is not corrected based on the speed control but is directly corrected. Accordingly, when compared with a configuration in which the positional shift is corrected based on the speed control, a correction precision of the positional shift can be more enhanced. As described above, in the above-described embodiments, the positional shift is not corrected based on the speed control but is directly corrected. Accordingly, when compared with a configuration in which the positional shift is corrected based on the speed control, a correction precision of the positional shift can be more enhanced.
Aspect 2.
In Aspect 1, the second sheet conveyor (for example, the second sheet conveying unit F2) is configured to rotate in either direction.
According to this configuration, as described in the above-described embodiment, the reverse rotation of the second drive motor M2 can reduce the backlash error of power transmission parts of the second sheet conveyor.
Aspect 3.
In Aspect 1, the first sheet conveyor (for example, the first sheet conveying unit F1) includes multiple first sheet conveyors and the second sheet conveyor (for example, the second sheet conveying unit F2) includes multiple second sheet conveyors.
According to this configuration, as described in the above-described embodiment, multiple sheet folding operation s such as a letter fold-in operation, a letter fold-out operation, and a Z-fold operation can be performed with a highly accurate sheet folding control, thereby achieving a highly accurate sheet folding quality.
Aspect 4.
In Aspect 1, the controller (for example, the CPU 100a) is configured to control the first drive motor (for example, the first drive motor M1) and the second drive motor (for example, the second drive motor M2) and to perform the feedback control with the integral gain to the first drive motor.
According to this configuration, as described in the above-described embodiment, since the feedback control with the integral gain is also applied to the driving of the first sheet conveyor (for example, the first sheet conveying unit F1), the amount of conveyance of the sheet (for example, the sheet P) by the first sheet conveyor can be corrected accurately, thereby achieving a more highly accurate sheet folding quality.
Aspect 5.
In any one of Aspect 1 through Aspect 4, the first drive motor (for example, the first drive motor M1) and the second drive motor (for example, the second drive motor M2) include a DC motor.
According to this configuration, as described in the above-described embodiment, a higher resolution and a more detailed feedback control can be achieved. Therefore, even when an abrupt load variation influence occurs, a motor step-out can be prevented.
Aspect 6.
In any one of Aspect 1 through Aspect 5, an image forming system (for example, the image forming system 1) includes an image forming apparatus (for example, the image forming apparatus 200) configured to form an image on the sheet, and the sheet folding device (for example, the sheet folding device 100) configured to fold the sheet having the image formed by the image forming apparatus.
According to this configuration, the image forming system having the effects described above can be provided.
Aspect 7.
In Aspect 6, the sheet folding device is disposed in an apparatus body of the image forming apparatus (for example, the image forming apparatus 200).
According to this configuration, the image forming apparatus can be reduced in size, thereby enhancing a space saving of the image forming system.
Aspect 8.
A sheet folding method used in the sheet folding device (for example, the sheet folding device 100) included in the image forming system (for example, the image forming system 1). The sheet folding method performs steps of receiving a sheet (for example, the sheet P), conveying the sheet toward a downstream side of a sheet conveying direction, subsequently conveying the sheet further to the downstream side of the sheet conveying direction, holding the sheet between two rollers disposed facing each other, setting a predetermined folding length of the sheet according to an amount of conveyance of the sheet by the subsequently conveying while the holding is conducted, folding the sheet to the predetermined folding length of the sheet, and performing a feedback control with an integral gain.
Accordingly, the feedback control using the integral gain can be applied to the amount of conveyance of the sheet by the second sheet conveyor (for example, the second sheet conveying unit F2) to perform a positional correction control.
In this case, since the positional shift is directly corrected, a correction precision can be more enhanced when compared with a case in which the positional shift is corrected based on the speed control.
As described above, this disclosure employs a feedback control with an integral gain as a motor control when performing the sheet folding operation using a sheet holding and reversing method, thereby correcting variation in rotation of a motor due to load variation influence. When the sheet folding operation is performed, a motor load increases due to conveyance of a folded sheet. However, by correcting the variation in rotation of the motor due to the increase in the motor load, variation in amounts of conveyance of sheets is reduced, and therefore a highly accurate sheet folding quality can be secured.
As described above, this disclosure employs a feedback control with an integral gain as a motor control when performing the sheet folding operation using a sheet holding and reversing method, thereby correcting variation in rotation of a motor due to load variation influence. When the sheet folding operation is performed, a motor load increases due to conveyance of a folded sheet. However, by correcting the variation in rotation of the motor due to the increase in the motor load, variation in amounts of conveyance of sheets is reduced, and therefore a highly accurate sheet folding quality can be secured.
The above-described embodiments are illustrative and do not limit this disclosure. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements at least one of features of different illustrative and exemplary embodiments herein may be combined with each other at least one of substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of this disclosure may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2016-106312 | May 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7334787 | Akiyama | Feb 2008 | B2 |
7415239 | Saito | Aug 2008 | B2 |
20070126171 | Takeuchi | Jun 2007 | A1 |
20140141956 | Suzuki | May 2014 | A1 |
20140147184 | Kunieda et al. | May 2014 | A1 |
20140336031 | Suzuki | Nov 2014 | A1 |
20150353315 | Suzuki et al. | Dec 2015 | A1 |
20150360892 | Yoshimizu | Dec 2015 | A1 |
20160114999 | Suzuki et al. | Apr 2016 | A1 |
20160115000 | Sugiyama et al. | Apr 2016 | A1 |
20160185552 | Hoshino et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2004-185056 | Jul 2004 | JP |
2014-101164 | Jun 2014 | JP |
2014-105063 | Jun 2014 | JP |
2014-227284 | Dec 2014 | JP |
2014-240325 | Dec 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20170341885 A1 | Nov 2017 | US |