The present invention relates to a groove cutter for floor sheets which can form a concave groove, necessary for bonding tightly the adjacent floor sheets by use of a welding rod, on the seam formed by the adjacent floor sheets, and in particular relates to a groove cutter for floor sheets wherein a concave groove at a seam, which is formed bridging over the floor sheets, can be formed rapidly and accurately without using a ruler.
Generally, when floor sheets are bonded to a base sheet of floor, in order to bind a seam of individual floor sheets tightly, a method of pouring a heat melted welding rod into the said seam is used. In this case, since the floor sheets are laid so closely each other from the beginning, it is difficult to press directly the heat melted welding rod into the narrow gap, which exists at the seam, from the top of the seam. Therefore, even if the welding rod had been pressed into the gap, the heat melted welding rod merely becomes firm on the surface of the seam in a state of being raised (See,
Generally, a U-shaped or V-shaped groove is cut at the seam part by using a hand cutter or the like (See,
In either case, it is required that the concave groove is formed uniformly along a seam without being displaced to right or left from a center of the seam by means of the above groove-cutting work. Therefore, in order for the seam to be placed at the center of a U-shaped or V-shaped blade of cutter, a ruler is usually set parallel to the seam, and the groove is cut contacting the blade of cutter with the ruler. With regard to this method, if the seam is short in length, it does not take time or care to work so much. However, when a floor space is larger and a seam is longer in length, there is a disadvantage that it takes an immense amount of time and effort and also an operating cost becomes huge.
In order that the groove can be cut easily on the seam of sheets, a grooving tool having a guiding function is proposed (for instance, Patent document 1). By using this tool, a relatively stable operation can be performed due to a support structure having a two contact points consisting of a blade edge and a guiding roller against sheet surfaces. However, since the distance between the support points and a grip is long, there are disadvantages that not only the stability is limited but also a tool itself is easy to break.
In addition, a floor grooving device equipped with rollers having a function for a guiding seam, at the front end portion and the rear end portion of the device itself is proposed (Patent document 2). With regard to this device, there was a disadvantage that this device causes a risk to cut off the part other than the seam of the floor in the process of operation, since the front roller, which is the seam guide, is apt to run off from the seam. Furthermore, there were other disadvantages that the device cannot follow the seam sufficiently, since the rear roller, even though a width of it is wider than that of the above front roller, is not always stable in the wide cut groove which is formed by a blade equipped just behind the roller provided at front of the device, and also the device cannot sufficiently correspond to surface irregularities of floor. And also, there was one more disadvantage that, the rear roller, and if the second blade is provided at the rear, the second blade should also be detached when a curved groove is formed, which is a troublesome operation.
Patent document 1: Japanese Unexamined Utility Model Publication Jitsu kai hei 6-57606
Patent document 2: U.S. Pat. No. 6,640,446
As a result of extensive studies for improving the above conventional disadvantages, the inventors of the present invention found that, when a nonrotating thin fixed plate which is inserted into the seam formed between sheets to guide the tool along the seam is provided, and also a blade is provided behind that plate in order to cut the seam part so as to have a concave-shaped groove, and further a wheel having a width matched to a groove formed by the above blade, or a fixed member of which cross-sectional shape at the end fits into the above groove is provided near the rear end of tool, not only this tool can follow the seam very well, but also it can be improved in following the surface irregularities of the floor, maintaining a light operability and the depth of groove formed at the seam can be uniformed better than ever. The inventors also found that it becomes difficult for a welding rod pressed into the seam for filling up to detach by forming the second groove inside the above first groove, and that the bond between sheets can be tightened much better than ever by the second groove, and further found that, by making the tool bottom near the front end having the thin plate incline at a suitable angle moderately toward the end upward and making the thin plate nonangular-shaped so as to incline the tool forward easily, it becomes possible to operate the tool easily along the seam by inclining the tool forward even when the seam is curved, thereby achieving the present invention.
Therefore, the first object of the present invention is to provide a groove cutter for floor sheets wherein it is possible to be operated easily corresponding with the surface irregularities of floor without using a ruler or the like and a groove having excellent uniformity of depth can be cut rapidly and accurately at the seam of floor sheets.
The second object of the present invention is to provide a groove cutter for floor sheets, which can be operated along the curved seam easily.
The third object of the present invention is to provide a groove cutter for floor sheets wherein the second groove can be cut continuously inside the first groove by one time operation.
The above objects of the present invention were attained by a groove cutter for floor sheets which is a tool capable of being operated without using a ruler and can cut a seam, which is created when sheets are laid sequentially on the surface of floor base with an adhesive agent, so that a groove formed along the seam can bridge over both adjacent sheets, comprising a front part, a middle part, a rear part, wherein the front part has a thin guide plate, which is to be inserted into the seam and guides the said tool along the seam when pushing the tool forward, at the front end, and at least one blade to cut a concave groove at the seam part of the above sheet, which is provided behind the guide plate so as to be detachable, and also a stabilizing member provided at the rear part, which is to be inserted into the concave groove, to stabilize a direction of movement of the tool along the seam; and the method for cutting groove at the seam of sheets, wherein by means of one time operation, shallower groove than the thickness of the sheet is formed by the first blade, then a deeper groove is formed by the second blade inside the groove formed by the above first blade.
The groove cutter for floor sheets of the present invention may provide a blade, which may be detachable or slidable in and out, at the rear part so that when the tool is turned 180 degrees, that is, it is the opposite direction, the said blade is able to act as the blade for cutting a concave groove at the seam part, and a bottom part of the front part having the thin guide plate may also be provided so as to be able to slide back and forth.
In addition, a pair of rollers and/or wheels running on the surface of the sheet may be provided on the right and left side, near the stabilizing member of the rear part of the tool, and an independent grip may be provided mainly over the middle part. Furthermore, it is preferable to provide the first blade just behind the guide plate, and to provide the second blade having a narrower width than the first blade behind the first blade so as to be free to detach and so as to be able to cut much deeper groove inside the groove formed by the first blade.
Furthermore, it is preferable that the stabilizing member set at the rear part is a wheel having a width almost corresponding to the groove formed by the blade(s), or the fixed member having a cross-sectional shape almost corresponding to a cross-sectional shape of the groove. Also, it is preferable that the bottom surface of the front end part having the guide plate inclines upward, and the above guide plate, without having angles, is designed to have a smooth shape in order to be able to incline the tool forward easily along the inclined surface.
Moreover, the groove cutter for floor sheets of the present invention may have the constitution of the invention, wherein the front end portion which is set before the first blade provided at the front part and has the guide plate, is detachable from the tool or 90 degrees or more turnable upward, and when the said front end portion is detached or is turned 90 degrees or more upward, the first blade at the front part sticks out from the tool.
By using the groove cutter of the present invention, a concave groove can be easily and accurately obtained at the seam existing between the sheets without using a ruler or the like, and the concave groove also can be easily and accurately obtained along the seam and at the seam, which is created between the sheets attached to base sheets having small surface irregularities or formed as curved seam from a design-centric viewpoint, although it was difficult in these cases to obtain the concave groove beautifully even though the ruler or the like was used. In addition, in cases of cutting further groove inside the groove cut first, by means of the present invention, the working efficiency of grooving welding operation can be remarkably improved and adjacent sheets are bound much stronger each other than ever, since the melted welding rod pressed into the groove can hardly be detached from the groove formed at the seam of the floor sheets.
Hereafter, the present invention is explained according to Examples, however, the present invention is not limited by these Examples. In this regard, the groove cutter for floor sheets of the present invention will be described and explained simply as “a tool” in the present specification.
In addition, in cases where a formed groove does not reach the floor base, a roller having a thin disk may be used as the stabilizing member so as to get into the seam of remaining sheets, and if necessary, a middle roller may further be set behind the first groove-cutting blade so as to get into the seam of remaining sheets.
Naturally, with regard to the tool of the present invention, all the nonmovable parts including the bottom part 10 can be manufactured integrally. Materials can be selected from among known materials appropriately, however, it is preferable in the present invention to use aluminum in particular.
The tool of the present invention can be operated with a hand by gripping a handle part. If the handle part shown in the above Examples is not provided in particular, the middle part of the body functions practically as the handle part. Such a tool is also one of embodiments of the present invention. Definitely, it is free to design the part consisting of the middle part and the rear part as the part having an easy-to-grip shape. The handle part 2 in the present Example is an all-in-one with the body wherein the body has an easy-to-grip shape by hollowing out the body circularly. However, the handle part 2 can be manufactured as an independent grip from the body and be fixed to the body appropriately using the fixing means. In either event, when the contact area of the tool bottom of the present invention with sheets is larger, not only the movement of tool is heavier while in use, but also it is difficult to follow the surface irregularities of floor base and it is difficult to form a groove having a uniform depth. Therefore, it is preferable to design so as to make the above contact area as small as possible.
The front part has thin guide plate 6 and has the opening 14 behind the guide plate 6. Groove-cutter blade 7 passes through this opening and sticks out from the front bottom. In this case, if the distance between the said groove-cutting blade 7 and the above guide plate 6 is too small, it is difficult for chips to fall off from between the groove-cutting blade 7 and the above guide plate 6. Therefore, it is necessary that the distance is at least longer than the depth of groove formed. However, in the case of reaching an obstacle such as a wall, this distance remains as a non-cut distance. Hence, in the present invention, in order to shorten the above remaining distance, it is preferable to design the distance between the above groove-cutting blade 7 and the above guide plate 6 is adjustable by using the front plate, which functions as the front bottom having the above guide plate and can move back and forth, or to design the above guide plate 6 part as a part which can completely detachable in order to lose the above remaining distance, or to design the above guide plate 6 part as a part which can move more than 90 degrees upward.
In this regard, the front bottom corresponding to the front plate part 20 having the above guide plate 6 contacts with sheets. Therefore, it is preferable that the front bottom part is as small as possible (short plate or short bottom part) in order to follow the surface irregularities of base floor under the sheets.
Furthermore, in the present invention, in order to solve the problem of the above remaining part of cutting, the same blade as the above blade can be attached at the rear end portion. This blade can also function as a stabilizing member in general use, when the stick out distance of this blade from the bottom surface of the tool is adjusted to the depth of the groove to be cut. This blade at the rear end portion can stick out all the time, however, it is preferable to attach slidably in and out, in order to enhance safety of the tool and keep the edge of the blade. For that purpose, a person skilled in the art would be able to make the above front blade detachable using known technique such as the screw bolt 9′ in the same way as using the screw bolt 9.
In the present invention, by using the blade 7′ at the rear end portion which is equivalent to the blade used at the front part, and/or by attaching the wheel 11 having the width corresponding to the cut groove, or by attaching the stick-like or hemispherical stabilizing member 11 of which end cross-section corresponds to the cross-section of the groove, the stability for the direction of movement of the tool of the present invention can be ensured when used, however, the stability for crosswise direction of the tool cannot be sufficient by these technique. Therefore, it is preferable in the present invention that a pair of wheels, or a pair of rollers 13 which have a width larger than the wheel, is arranged on the right and left of the tool near the above stabilizing member 11. When the wheels 11 are provided as a stabilizing member, the shaft 12 of aforementioned wheels or rollers can be the same shaft of the wheels 11. Moreover, the above wheels 11 and rollers 13 may turn freely around the fixed rotating shaft 12 or may rotate integrally with the shaft 12. Where, the direction of the shaft is a direction orthogonal to the longitudinal direction of tool.
As described above, by attaching the wheels or rollers 13, the stability of the direction of movement and the direction orthogonal to it increases sufficiently when the tool of the present invention is used. In this case, in order not to make the use of tool heavier, due to occurring of unnecessary friction, or from the viewpoint of following easily the surface irregularities when a groove is cut, it is preferable to design the rear bottom surface in order not to contact with sheets in the same way as the middle part bottom surface. In addition, it is preferable to design so as for the radius of the above wheels or rollers 13 to be as small as possible in order to follow easily the surface irregularities of the floor.
By the way, in some cases, the seam 40 may often not be a straight line but a curved line. In order to be able to accommodate the groove-cutting along such curved seam, it is preferable in the present invention that the bottom end portion of front part having thin guide plate 6 is inclined upward toward the front (See.
The guide plate 6 (See.
In the tool of the present invention, the groove-like or tube-like space 8 is provided on the body upper backwardly from the opening 14. For instance, U-shaped groove-cutting blade 7 is inserted in this space 8, then, after adjusting appropriately the blade direction and the blade length sticking out from the bottom surface, it is fixed by a known method such as a screw bolt 9.
As is shown in
In the present invention, the second blade (not shown) having narrower width than that of the first blade may be arranged behind the blade provided at the front part (the first blade) so that much deeper groove can be cut in the groove formed by the first blade. In this case, it is required that the groove formed by the first blade is relatively shallow, and the sticking out distance of the second blade from the bottom surface of the tool body is adjusted so that the groove depth cut by the second blade can be shorter than the thickness of the sheet.
In this embodiment, after a groove is formed by the first blade a narrower groove than the first groove width is then formed at the bottom of the first groove by the second blade. The depth of groove on the seam of sheets 40 increases by this procedure, and the groove structure having longitudinal cross-sectional shape, wherein a middle part of it is narrow, can be realized. As a result, the welding rod 50, which is welded and pressed into the seam, hardly detaches and the binding strength at the seam of sheets increases than that of simple groove structure. In this case, it is preferable to provide an opening, which is able to guide the chips, for such second blade.
By using the groove cutter of the present invention, it is possible to create a concave groove along the seam of sheets easily and accurately without using a ruler. In addition, it is possible to create a groove having a uniform depth by improving the following properties for small surface irregularities of floor, and to perform groove-cutting of curved seam emphasizing design thereof easily and accurately, and also to further create a groove inside the first cut groove by means of one time operation, which were difficult when a ruler was used. Therefore, not only the working efficiency of conventional groove-cutting welding operation can be remarkably improved, but also the welding rod, which is melted and pressed into the groove, can create a stronger binding strength between sheets since the rod hardly detaches from the groove.
Thus, the present invention is quite useful for industry.
Number | Date | Country | Kind |
---|---|---|---|
2011-249103 | Oct 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/004132 | 6/26/2012 | WO | 00 | 4/25/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/061491 | 5/2/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2882594 | Long | Apr 1959 | A |
4501069 | Kohno | Feb 1985 | A |
6112417 | Hyer et al. | Sep 2000 | A |
6640446 | Martinez | Nov 2003 | B2 |
6748659 | Street | Jun 2004 | B1 |
20030115760 | Martinez | Jun 2003 | A1 |
20130160303 | Everett | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
196930704 | Nov 1969 | DE |
3318914 | Nov 1984 | DE |
198805314 | Jul 1988 | DE |
4408396 | Sep 1995 | DE |
0297684 | Jan 1989 | EP |
60-097841 | Jul 1985 | JP |
60097841 | Jul 1985 | JP |
4625541 | Feb 2011 | JP |
Entry |
---|
International Search Report from PCT/JP2012/004132 dated Jul. 24, 2012. |
English language Bibliography of corresponding German Patent Application No. DE198805314; published Jul. 14, 1988. |
English language Abstract of corresponding German Patent Application No. DE3318914; published Nov. 29, 1984. |
English language Bibliography of corresponding German Patent Application No. DE196930704; published Nov. 27, 1969. |
English language Abstract of corresponding German Patent Application No. DE4408396; published Sep. 21, 1995. |
English language Bibliography of corresponding Japanese Application No. JP60097841; published Jul. 3, 1985. |
Supplemental European Search Report dated Nov. 12, 2015 for corresponding European Application No. 12844301. |
Number | Date | Country | |
---|---|---|---|
20140260886 A1 | Sep 2014 | US |