The present invention relates to a sheet guide apparatus which is connected to a printing press for printing a sheet, a coating machine for coating the sheet, or the like, and conveys the sheet in a stable state.
Generally, in a delivery device for a sheet-fed perfecter, a sheet guide member is arranged around a delivery cylinder to prevent rubbing or wrinkles which cause a printing trouble during sheet conveyance. To convey a sheet in a stable state, the sheet guide member blows air in a direction perpendicular to the sheet convey direction. In the conventional sheet guide apparatus which has the above arrangement, problems occur when a so-called thick sheet having a relatively large thickness is to be conveyed around the delivery cylinder. More specifically, because the thick sheet does not flex readily and is heavy, a large centrifugal force is generated to bring the printing surface on the reverse side of the trailing edge of the sheet into contact with the sheet guide member to damage or rub the printing surface.
In order to prevent these problems, if the gap between the outer surface of the delivery cylinder and the sheet guide member is increased, the Venturi effect obtained by the air blown from the sheet guide member decreases. When a so-called thin sheet having a relatively small thickness is to be conveyed, instability occurs to the sheet to damage or rub the printing surface.
As a countermeasure to solve these problems, as shown in Japanese Patent Laid-Open No. 2004-137028, a structure is proposed in which the distal end of the sheet guide member upstream in the sheet convey direction is movable between positions close to and spaced apart from the delivery cylinder. In this structure, when a thin sheet is to be conveyed, the distal end of the sheet guide member upstream in the sheet convey direction is moved close to the delivery cylinder. When a thick sheet is to be conveyed, the distal end of the sheet guide member upstream in the sheet convey direction is spaced apart from the delivery cylinder.
In the conventional sheet guide apparatus proposed in the above reference, when the distal end of the sheet guide member upstream in the sheet convey direction is positioned spaced apart from the delivery cylinder in order to convey a thick sheet, that portion of the sheet guide member which is downstream in the sheet convey direction stays close to the delivery cylinder. Therefore, when the thick sheet is to be gripped and conveyed by the grippers of the delivery cylinder, the trailing edge of the thick sheet which is to be spaced apart from the delivery cylinder is brought into contact with the inner surface of the sheet guide member downstream in the sheet convey direction by the centrifugal force to damage or rub the printing surface on the reverse side of the sheet.
It is an object of the present invention to provide a sheet guide apparatus which prevents the printing surface of a sheet from being damaged or rubbed when the sheet has a different thickness or weight.
In order to achieve the above object, according to the present invention, there is provided a sheet guide apparatus comprising a transport cylinder which holds and conveys a sheet, convey means for holding the sheet received from the transport cylinder and conveying the sheet along a first convey path which is at least substantially arcuate, and a sheet guide structure which guides the sheet conveyed by the convey means, the sheet guide structure comprising movable guide means which is movable between positions close to and spaced apart from the first convey path and stationary guide means which is stationarily arranged at a position spaced apart from the first convey path, wherein when the movable guide means is close to the first convey path, a first guide surface having a continuous substantially arcuate section is formed by only the movable guide means, and when the movable guide means is spaced apart from the first convey path, a second guide surface having a continuous substantially arcuate section is formed by the movable guide means and the stationary guide means.
A sheet guide apparatus according to the first embodiment of the present invention will be described with reference to
A plurality of gripper bars (not shown) are supported between the pair of delivery chains 5 at a constant interval in a traveling direction A of the delivery chains 5. A plurality of delivery grippers 6 each comprising a gripper and gripper pad line up on each gripper bar at a constant interval in the longitudinal direction of the gripper bar (widthwise direction of the sheet). A first movable guide member 7 extends downstream of the delivery cylinder 3 in the sheet convey direction from near the downstream side of a point B where the transfer cylinder 1 and delivery cylinder 3 oppose. The first movable guide member 7 has a guide surface 7a with an arcuate section having substantially the same curvature as that of the outer surface of the opposing delivery cylinder 3.
The first movable guide member 7 is supported by guide rails 9 attached to delivery frames 8 to be movable between positions close to and spaced apart from the delivery cylinder 3 (arcuate convey path). The distal end of a rod 11a of a first air cylinder 11 having a pivotally mounted cylinder end is pivotally mounted on frames 10 of the printing unit 2. The air cylinder 11 is driven by a solenoid valve unit 11b which switches between supply and discharge of pressurized air.
In this arrangement, when the rod 11a of the air cylinder 11 moves forward, the guide surface 7a of the first movable guide member 7 opposes the delivery cylinder 3 to be close to it, as shown in
A second movable guide member 12 extends downstream of the first movable guide member 7 in the sheet convey direction to be adjacent to it. The second movable guide member 12 has a guide surface 12a with an arcuate section having substantially the same curvature as that of the outer surface of the opposing delivery cylinder 3. Linear guide members 13, 14, and 15 are sequentially arranged downstream of the second movable guide member 12 in the sheet convey direction to be adjacent to it. The linear guide members 13, 14, and 15 are connected to each other by a movable lever 16 fixed to their lower surfaces. The second movable guide member 12 is supported by one end 16a of the movable lever 16 which is upstream in the sheet convey direction through a support plate 17. The first and second movable guide members 7 and 12 and linear guide members 13, 14, and 15 form a movable guide means. The second movable guide member 12 and linear guide members 13, 14, and 15 may be integral.
The distal end of a rod 21a of a second air cylinder 21 is pivotally mounted on the end 16a of the movable lever 16. A downstream end 16b of the movable lever 16 in the sheet convey direction is swingably attached to the delivery frames 8 by a pivot shaft 19 through a swing lever 18. The cylinder end of the air cylinder 21 is attached to the delivery frames 8 through a bracket 20. The air cylinder 21 is driven by a solenoid valve unit 21b which switches between supply and discharge of the pressurized air.
In this arrangement, when the rod 21a of the air cylinder 21 moves forward, guide surfaces 13a, 14a, and 15a of the linear guide members 13, 14, and 15 oppose the delivery chains 5 to be close to them, as shown in
Hence, the second movable guide member 12 is adjacent to the first movable guide member 7 which is close to the delivery cylinder 3, and the guide surfaces 7a and 12a form a thin-sheet guide surface 22 having a continuous substantially arcuate section. The thin-sheet guide surface 22 opposes the outer surface of the delivery cylinder 3 to be close to it between a position near the opposing point B of the transfer cylinder 1 and delivery cylinder 3 and a point C where the delivery chains 5 start to separate from the sprocket.
When the rod 21a of the air cylinder 21 moves backward from the state of
At those positions of the delivery frames 8 which are spaced apart from the delivery cylinder 3, a stationary guide member 23 having a stationary guide surface 23a with an arcuate section having substantially the same curvature as that of the outer surface of the opposing delivery cylinder 3 is attached through a bracket (not shown). The stationary guide surface 23a may alternatively be a flat surface. As shown in
Linear guide members 26 and 27 are sequentially attached to the delivery frames 8 further downstream of the linear guide member 15 in the sheet convey direction to be adjacent to it. The linear guide members 26 and 27 oppose the pair of delivery chains 5 to be close to them and have flat guide surfaces 26a and 27a, respectively. The movable guide members 7 and 12 to 15, stationary guide member 23, and linear guide members 26 and 27 form a sheet guide structure 101.
Switching control between thick and thin sheets will be explained. The switching control is interlocked with control of adjusting the gap between the impression cylinder and blanket cylinder. In a cylinder throw on/off mechanism 30 shown in
In this arrangement, when the stepping motor 38 rotates to rotate a nut 39, the driving rod 39 engaging with the nut 39 vertically moves to pivot the eccentric bearings 34. Thus, switching is performed between an impression throw-on position (a position indicated by a solid line in
When the controller 40 receives the sheet thickness signal 41a from a sheet thickness input device 41, the controller 40 calculates the gap between the blanket cylinder 33 and impression cylinder 31 corresponding to the sheet thickness, i.e., the stop position of the driving rod 39, and determines the rotational speed of the stepping motor 38. At this time, the controller 40 compares the sheet thickness indicated by the sheet thickness signal 41a with a preset threshold (e.g., 0.2 mm). If the sheet thickness signal 41a is larger than the threshold, the controller 40 determines that the sheet is a thick sheet. If the sheet thickness signal 41a is smaller than the threshold, the controller 40 determines that the sheet is a thin sheet. When the sheet is determined as a thick sheet, the controller 40 controls the solenoid valve units 11b and 21b to move the rods 11a and 21a of the air cylinders 11 and 21 backward. When the sheet is determined as a thin sheet, the controller 40 controls the solenoid valve units 11b and 21b to move the rods 11a and 21a of the air cylinders 11 and 21 forward.
Sheet guide operation in the sheet guide apparatus having the above arrangement will be described. Prior to printing operation, when the operator inputs the thickness of a sheet P to the sheet thickness input device 41 prior to printing, a sheet thickness signal 41a indicating a thin sheet is input to the controller 40. The controller 40 determines the rotational speed of the stepping motor 38 in accordance with the input sheet thickness signal 41a, to move the driving rod 39 forward or backward into and from the gap between the blanket cylinder 33 and impression cylinder 31 corresponding to the sheet thickness.
Simultaneously, the controller 40 checks whether the sheet P is a thick sheet or thin sheet based on the input sheet thickness signal 41a. When the sheet P is determined to be a thin sheet, the controller 40 controls the solenoid valve units 11b and 21b to move the rods 11a and 21a of the air cylinders 11 and 21 forward. Thus, the guide surfaces 7a and 12a of the first and second movable guide members 7 and 12 oppose the outer surface of the delivery cylinder 3 to be close to it, as shown in
At this time, the first and second movable guide members 7 and 12 are adjacent to each other, and the two guide surfaces 7a and 12a form the thin-sheet guide surface 22 having a continuous substantially arcuate section. The thin-sheet guide surface 22 opposes the outer surface of the delivery cylinder 3 to be close to it between the position near the opposing point B of the transfer cylinder 1 and delivery cylinder 3 and the point C where the sprocket and delivery chains start to separate. The first and second movable guide members 7 and 12 and linear guide members 13, 14, and 15 blow air from their nozzle holes (not shown) in a direction (widthwise direction of the sheet P) perpendicular to the convey direction A of the sheet P.
In this state, when the printing operation is started, the sheet (thin sheet) P passes between the impression cylinders 31 and blanket cylinders 33 of the plurality of printing units of the printing unit 2 to be subjected to double-sided printing. After the printing, the sheet P is conveyed as it is gripped by the grippers of the transfer cylinder 1 located at the final end of the printing unit 2, and gripping-changed to the delivery grippers 6 at the opposing point B of the delivery cylinder 3. The thin sheet P which is gripping-changed to the delivery grippers 6 is conveyed around the delivery cylinder 3, i.e., along the substantially arcuate convey path since the opposing point B of the transfer cylinder 1 and delivery cylinder 3 until the point C where the sprocket and the delivery chains 5 start to separate.
At this time, the thin-sheet guide surface 22 having the continuous arcuate section opposes the outer surface of the delivery cylinder 3 to be close to it. Thus, the instability of the sheet P is regulated by the Venturi effect of the air blown from the nozzle holes of the first and second movable guide members 7 and 12, so that the sheet P is conveyed stably without coming into contact with the thin-sheet guide surface 22. When the sheet P passes through the point C where the sprocket and the delivery chains 5 start to separate, the guide surfaces 13a, 14a, and 15a of the linear guide members 13, 14, and 15 oppose the delivery chains 5 to be close to them. Thus, the sheet P is linearly conveyed as it is guided by the guide surfaces 13a, 14a, and 15a.
A case wherein a printed thick sheet is to be guided will be described. In this case, prior to the printing operation, when the thickness of a sheet P is input to the sheet thickness input device 41 prior to printing, a sheet thickness signal 41a indicating the sheet thickness is input to the controller 40. The controller 40 determines the rotational speed of the stepping motor 38 in accordance with the input sheet thickness signal 41a, to move the driving rod 39 forward or backward into or from the gap between the blanket cylinder 33 and impression cylinder 31 corresponding to the sheet thickness.
Simultaneously, the controller 40 determines that the sheet P is a thick sheet based on the input sheet thickness signal 41a, and controls the solenoid valve units 11b and 21b to move the rods 11a and 21a of the air cylinders 11 and 21 backward. Thus, the guide surfaces 7a and 12a of the first and second movable guide members 7 and 12 oppose the outer surface of the delivery cylinder 3 to be spaced apart from it, as shown in
As the movable lever 16 pivots, the guide surfaces 13a, 14a, and 15a of the linear guide members 13, 14, and 15 separate from the delivery chains 5 to be gradually farther from them downstream in the sheet convey direction. More specifically, the guide surfaces 13a, 14a, and 15a, while being continuous from the guide surface 12a of the second movable guide member 12, gradually move close to the delivery chains 5 downward in the sheet convey direction, and then become continuous to the guide surface 26a of the linear guide member 26. Thus, the guide surfaces 12a, 13a, 14a, 15a, and 26a form a non-step convey path.
In this state, when the printing operation is started, the sheet (thick sheet) P passes between the impression cylinders 31 and blanket cylinders 33 of the plurality of printing units of the printing unit 2 to be subjected to double-sided printing. After the printing, the sheet P is conveyed as it is gripped by the grippers of the transfer cylinder 1 located at the final end of the printing unit 2, and gripping-changed to the delivery grippers 6 at the opposing point B of the delivery cylinder 3. When the thin sheet P which is gripping-changed to the delivery grippers 6 is to be conveyed around the delivery cylinder 3, its trailing edge is largely separated from the delivery cylinder 3 by the centrifugal force. However, as the thick-sheet guide surface 24 opposes the delivery cylinder 3 to be spaced apart from it substantially throughout the entire sheet convey direction from upstream to downstream, the trailing edge of the sheet P will not come into contact with the thick-sheet guide surface 24. Also, as the end 7b of the first movable guide member 7 moves close to the transfer cylinder 1, the trailing edge of the sheet P will not collide against the end 7b or enter between the transfer cylinder 1 and end 7b.
As the stationary guide surface 23a together with the guide surfaces 7a and 12a forms the thick-sheet guide surface 24 which is continuous and opposes the outer surface of the delivery cylinder 3 to be spaced apart from it, the sheet P which is being conveyed around the delivery cylinder 3 will not come into contact with the thick-sheet guide surface 24. Thus, the sheet P is conveyed in a stable state, and its printing surface will not be damaged or rubbed.
Immediately after the sheet P passes through the point C where the sprocket and the delivery chains 5 start to separate, the trailing edge of the sheet P is spaced apart from the outer surface of the delivery cylinder 3 by the remaining centrifugal force. The guide surface 13a of the linear guide member 13 is also spaced apart from the outer surface of the delivery cylinder 3 and the delivery chains 5. Thus, the sheet P does not come into contact with the guide surface 13a. After that, the sheet P on which the centrifugal force no longer acts is guided along the convey path by the linear guide members 14, 15, 26, and 27 to be substantially in contact with the delivery chains 5.
At this time, the downstream end of the guide surface 15a in the sheet convey direction and the upstream end of the guide surface 26a in the sheet convey direction are close to each other to form no step between them. Thus, the conveyed sheet P does not collide against the upstream end of the guide surface 26a in the sheet convey direction. Therefore, damages or rubbing to the printing surface of the sheet P can be prevented, and the instability of the sheet can be prevented, so the sheet P can be conveyed smoothly.
The second embodiment of the present invention will be described with reference to
When the rod 55a of the air cylinder 55 moves forward, the guide surface 51a of the curved portion 51 of the movable guide member 50 opposes the outer surface of the delivery cylinder 3 to be close to it. At this time, the guide surface 52a of the linear portion 52 opposes delivery chains 5 to be close to them, and an upstream end 51b of the curved portion 51 in the sheet convey direction moves close to a transfer cylinder 1. A stationary guide member 56 having a guide surface 56a is attached to the delivery frames, and the guide surface 56a opposes the outer surface of the delivery cylinder 3 to be spaced apart from it. In this case, only the guide surface 51a of the curved portion 51 of the movable guide member 50 forms a thin-sheet guide surface.
An upstream end 56b of the stationary guide member 56 in the sheet convey direction is arranged close to the transfer cylinder 1. The movable guide member 50 and stationary guide member 56 form a sheet guide structure 102.
In this arrangement, when the rod 55a of the air cylinder 55 moves backward, the movable guide member 50 pivots clockwise in
More specifically, when the movable guide member 50 separates from the delivery cylinder 3, the thick-sheet guide surface 57 is formed by one movable guide member 50 and one stationary guide member 56. Simultaneously, the stationary guide member 56 is positioned closer to the transfer cylinder 1 than the movable guide member 50. At this time, the guide surface 52a of the linear portion 52 which forms the movable guide member 50 opposes the outer surface of the delivery cylinder 3 to be spaced apart from it, and the guide surface 52a of the linear portion 52 separates from the delivery chains 5 to be gradually farther from them toward the delivery cylinder 3.
Sheet guide operation in the sheet guide apparatus having the above arrangement will be described. Prior to printing operation, when the thickness of a sheet P is input to a sheet thickness input device 41 prior to printing, a controller 40 checks whether the sheet P is a thick sheet or thin sheet. When the sheet P is determined to be a thin sheet, the controller 40 controls the solenoid valve unit 55b of the air cylinder 55 to move the rod 55a the air cylinder 55 forward. Thus, the guide surface 51a of the curved portion 51 of the movable guide member 50 opposes the outer surface of the delivery cylinder 3 to be close to it, as shown in
In this state, when the printing operation is started, the sheet (thin sheet) P which has been printed on its two surfaces and conveyed is gripping-changed from the grippers of the transfer cylinder 1 to delivery grippers 6 at an opposing point B of the delivery cylinder 3. When the sheet P which is gripping-changed to the delivery grippers 6 is to be conveyed around the delivery cylinder 3, the guide surface 51a of the curved portion 51 opposes the outer surface of the delivery cylinder 3 to be close to it. Thus, the instability of the thin sheet P is regulated by the Venturi effect of the air blown from the nozzle holes of the curved portion 51, so that the sheet P is conveyed stably without coming into contact with the guide surface 51a. When the sheet P passes through a point C where the sprocket and the delivery chains 5 start to separate, the guide surface 52a of the linear portion 52 opposes the delivery chains 5 to be close to them. Thus, the sheet P is linearly guided as it is guided by the guide surface 52a.
A case wherein a printed thick sheet is to be guided will be described. In this case, prior to the printing, when the thickness of a sheet P is input to the sheet thickness input device 41 as a pre-preparation, the controller 40 determines that the sheet P is a thick sheet. The controller 40 then controls the solenoid valve unit 55b to move the rod 55a of the air cylinder 55 backward. Thus, the guide surface 51a of the curved portion 51 separates from the delivery cylinder 3 while opposing it, and the end 51b of the curved portion 51 becomes adjacent to the stationary guide member 56, so the two guide surfaces 51a and 56a form the thick-sheet guide surface 57 having a continuous substantially arcuate section. The thick-sheet guide surface 57 has substantially the same curvature as that of the delivery cylinder 3, and opposes the outer surface of the delivery cylinder 3 to be spaced apart from it. Simultaneously, the guide surface 52a of the linear portion 52 which forms the movable guide member 50 separates from the delivery chains 5 to be gradually farther from them toward the delivery cylinder 3.
In this state, when the printing operation is started, the sheet (thick sheet) P which has been printed on its two surfaces and conveyed is gripping-changed from the grippers of the transfer cylinder 1 to the delivery grippers 6 at the opposing point B of the delivery cylinder 3. When the sheet P which is gripping-changed to the delivery grippers 6 is to be conveyed around the delivery cylinder 3, its trailing edge is largely separated from the delivery cylinder 3 by the centrifugal force. As the thick-sheet guide surface 57 has substantially the same curvature as that of the delivery cylinder 3 and opposes the outer surface of the delivery cylinder 3 to be spaced apart from it, the sheet P is conveyed stably without coming into contact with the thick-sheet guide surface 57.
Also, as the end 56b of the stationary guide member 56 moves close to the transfer cylinder 1, the trailing edge of the sheet P will not collide against the end 56b or enter between the transfer cylinder 1 and the right end 56b. Thus, the printing surface of the thick sheet P can be prevented from being damaged or rubbed. Immediately after the thick sheet P passes through the point C where the sprocket and the delivery chains 5 start to separate, the trailing edge of the sheet P is still kept away from the delivery cylinder 3 by the remaining centrifugal force. As the guide surface 52a of the linear portion 52 is spaced apart from the delivery chains 5 to be gradually farther from them toward the delivery cylinder 3, the thick sheet P can be prevented from coming into contact with the guide surface 52a.
The third embodiment of the present invention will be described with reference to
When the rods 65a and 66a of the air cylinders 65 and 66 move forward, the first and second movable guide members 63 and 64 move close to the outer surface of the transfer cylinder 60. Simultaneously, the first and second movable guide members 63 and 64 move close to each other. Thus, the guide surface 63a of the first movable guide member 63 and the guide surface 64a of the second movable guide member 64 form a thin-sheet guide surface 68 having a continuous substantially arcuate section. The thin-sheet guide surface 68 opposes the outer surface of the transfer cylinder 60 to be close to it and has substantially the same curvature as that of the outer surface of the transfer cylinder 60. While the first and second movable guide members 63 and 64 are close to the outer surface of the transfer cylinder 60, an upstream end 63b of the first movable guide member 63 in the sheet convey direction moves close to the impression cylinder 61.
A stationary guide member 67 having a guide surface 67a with substantially the same curvature as that of the outer surface of the transfer cylinder 60 is fixed to the printing press frames. When both the rods 65a and 66a of the air cylinders 65 and 66 move backward and both the first and second movable guide members 63 and 64 separate from the outer surface of the transfer cylinder 60, as shown in
In this arrangement, when a thin sheet is to be guided, the solenoid valve units 65b and 66b are controlled to move the rods 65a and 66a of the air cylinders 65 and 66 forward, as shown in
When a thick sheet is to be guided, the solenoid valve units 65b and 66b are controlled to move the rods 65a and 66a of the air cylinders 65 and 66 backward, as shown in
According to this embodiment, when the thick sheet which is gripping-changed from the grippers of the impression cylinder 61 to the grippers of the transfer cylinder 60 is to be conveyed around the transfer cylinder 60, its trailing edge is largely separated from the outer surface of the transfer cylinder 60 by the centrifugal force. The thick-sheet guide surface 69 has substantially the same curvature as that of the outer surface of the transfer cylinder 60, and opposes the outer surface of the transfer cylinder 60 to be spaced apart from it. Therefore, the thick sheet is conveyed stably without coming into contact with the thick-sheet guide surface 69. The end 63b of the first movable guide member 63 is close to the impression cylinder 61. Thus, the trailing edge of the sheet does not collide against the end 63b or enter between the impression cylinder 61 and end 63b. The printing surface of the thick plate can accordingly be prevented from being damaged or rubbed.
In the respective embodiments described above, the stationary guide surfaces 23a, 56a, and 67a of the stationary guide members 23, 56, and 67 need not always be arcuate surfaces but can be flat surfaces. Although a case has been described wherein the printing target is a sheet, the printing target can be a film-type sheet.
As has been described above, according to the present invention, the printing surface can be prevented from being damaged or rubbed. As the sheet separated from the convey means does not come into contact with the guide surface, the printing surface on the reverse side of the sheet can be prevented from being damaged or rubbed.
Number | Date | Country | Kind |
---|---|---|---|
2004-368999 | Dec 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5730055 | Dopke et al. | Mar 1998 | A |
5816155 | Stephan | Oct 1998 | A |
20030189286 | Shimizu et al. | Oct 2003 | A1 |
20040154491 | Stephan et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
0 695 715 | Feb 1996 | EP |
2004-137028 | May 2004 | JP |
2004-137028 | May 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20060181013 A1 | Aug 2006 | US |