Claims
- 1. Device for guiding a sheet having a leading edge which follows an imaginary conducting surface along a sheet-transport direction perpendicular to the leading edge, the sheet-guiding device being formed with a sheet-guiding surface spaced from the imaginary conducting surface, and having means for generating a plurality of air jets for applying an air flow to the sheet between a surface of the sheet and the sheet-guiding surface, the generating means being formed of respective flow channels for the air jets disposed at an angle to and merging with the sheet-guiding surface, comprising an integral guide plate having a surface constituting a predominant part of the sheet-guiding surface, said integral guide plate being formed with perforations, the air-jet generating means being formed of blast-air nozzles having blast-air nozzle end faces constituting a remaining part of the sheet-guiding surface complementing the predominant part of the sheet-guiding surface to form the entire sheet-guiding surface, said blast-air nozzles fitting into the respective perforations formed in said guide plate so that said blast-air nozzle end faces are flush with said surface of said guide plate, said blast-air nozzles, respectively, having the respective flow channels formed thereon, and being formed with a nozzle bore passing therethrough and communicating with the respective flow channel; and including a first assembly comprising said guide plate, and a second assembly comprising a blast air-conducting tube system, said first assembly being connected to said second assembly in a distortion-free manner, said nozzle bores, respectively, of said blast-air nozzles communicating directly with blast air conducted in said conducting tube system, said second assembly being disposed opposite the surface of said guide plate constituting the predominant part of the sheet-guiding surface; a respective one of said blast-air nozzles being form-lockingly integrated in said first assembly; said blast-air conducting tube system having respective openings formed therein opposite respective ones of said perforations; each of said blast-air nozzles projecting through a respective one of said openings formed in said blast-air conducting tube system and defining an annular gap between said opening and said blast-air nozzle; and sealing means disposed in and sealing said annular gap.
- 2. Guiding device according to claim 1, wherein said parts of the sheet-guiding surface formed by the guide plate and by the blast-air nozzle end faces are highly polished to a like surface quality.
- 3. Guiding device according to claim 1, including a cooling device connected to said guide plate for cooling the sheet-guiding surface.
- 4. Guiding device according to claim 1, wherein said blast-air nozzles are aligned in a like manner so that the air jets escaping from the respective flow channels generate an air flow in the same direction as the sheet-transport direction.
- 5. Guiding device according to claim 1, wherein said blast-air nozzles are distributed over the sheet-guiding surface and are combined into functional groups, and including a respective blast-air port having a respective functional group of blast-air nozzles associated therewith for supplying blast air to the blast-air nozzles of the respective functional group.
- 6. Device for guiding a sheet having a leading edge which follows an imaginary conducting surface along a sheet-transport direction perpendicular to the leading edge, the sheet-guiding device being formed with a sheet-guiding surface spaced from the imaginary conducting surface, and having means for generating a plurality of air jets for applying an air flow to the sheet between a surface of the sheet and the sheet-guiding surface, the generating means being formed of respective flow channels for the air jets disposed at an angle to and merging with the sheet-guiding surface, comprising an integral guide plate having a surface constituting a predominant part of the sheet-guiding surface, said integral guide plate being formed with perforations, the air-jet generating means being formed of blast-air nozzles having blast-air nozzle end faces constituting a remaining part of the sheet-guiding surface complementing the predominant part of the sheet-guiding surface to form the entire sheet-guiding surface, said blast-air nozzles fitting into the respective perforations formed in said guide plate so that said blast-air nozzle end faces are flush with said surface of said guide plate, said blast-air nozzles, respectively, having the respective flow channels formed thereon, and being formed with a nozzle bore passing therethrough and communicating with the respective flow channel, including a cooling device connected to said guide plate for cooling the sheet-guiding surface, said cooling device comprising a coolant trough having a coolant flowing therethrough, said guide plate forming a lid sealing said coolant trough, said coolant trough comprising a trough floor formed with recesses located opposite said perforations formed in said guide plate, a respective perforation of said guide plate and a respective recess of said trough floor located opposite the respective perforation being sealed by a respective blast-air nozzle against escape of said coolant from said coolant trough.
Priority Claims (1)
Number |
Date |
Country |
Kind |
43 08 276.9 |
Mar 1993 |
DEX |
|
Parent Case Info
This application is a continuation of application Ser. No. 08/214,965, filed Mar. 16, 1994, now abandoned.
US Referenced Citations (6)
Foreign Referenced Citations (11)
Number |
Date |
Country |
0094151 |
Nov 1983 |
EPX |
0427015 |
May 1991 |
EPX |
0502417 |
Sep 1992 |
EPX |
1907083 |
Apr 1975 |
DEX |
3713344 |
Feb 1988 |
DEX |
3936846 |
Apr 1991 |
DEX |
296053 |
Nov 1991 |
DEX |
3-7149 |
Jan 1991 |
JPX |
1007534 |
Oct 1965 |
GBX |
1042688 |
Sep 1966 |
GBX |
1301285 |
Dec 1972 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
214965 |
Mar 1994 |
|