This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-255458, filed on Nov. 6, 2009, the entire content of which is incorporated herein by reference.
Embodiments described herein relate generally to a sheet material cutting device which includes a rotatable blade and a fixed blade so as to cut a printed sheet material by engagement between the rotatable blade and the fixed blade, and a printer using the sheet material cutting device.
In a conventional sheet material cutting device, which is provided in a printer, a printed sheet material is cut in a transverse direction perpendicular to the feed direction of the sheet material while it is being conveyed. In such a sheet material cutting device, the sheet material is cut in a transverse direction perpendicular to the feed direction thereof by the engagement between a rotatable blade and a fixed blade located opposite the rotatable blade. The rotatable blade may include a blade unit provided on the outer circumference of a rotary shaft, the blade unit defining a predetermined angle relative to an axial direction of the rotary shaft while extending from one end of the rotary shaft to the other end thereof. In such a rotatable blade, the outer circumference (hereinafter, referred to as “forward shaft surface”) of the rotary shaft, which is defined in the direction in front of the blade unit as it rotates along the rotary shaft, also serves as a guide portion which feeds the sheet material toward the fixed blade in response to rotation of the rotary shaft. For this purpose, the forward shaft surface is formed in a circular arc shape along the rotational direction of the rotary shaft.
The forward shaft surface of the rotatable blade functions to press downward on a rear edge of the sheet material cut by the rotation of the rotatable blade. A conventional printer includes a conveying mechanism disposed in the downstream side of the sheet material cutting device to convey the sheet material in a state of being interposed therein. The cut sheet material is withdrawn and discharged to the outside by the conveying mechanism arranged in the downstream side of the cutting device.
However, the printer may have a complicated configuration due to the arrangement of the conveying mechanism in the downstream side of the sheet material cutting device. Particularly, a sheet discharge portion protrudes outward from the printer, which leads to an increase in an outer shape of the printer. For this reason, miniaturization of the printer is increasingly contemplated by arranging the conveying mechanism for withdrawing the cut sheet material in a position other than the downstream side of the sheet material cutting device.
This sheet material cutting device entails a problem in that when the leading edge of the cut sheet material is pressed downward by the forward shaft surface of the rotatable blade, it is bent downward and deformed, which frequently prevents the cut sheet material from being smoothly discharged to the outside. That is, the leading edge of the cut sheet material is suspended within the device, which contributes to the blockage of discharge or paper jam. In addition, if a user attempts to pull out the suspended leading edge portion of the cut sheet material which is caught between component parts within the device, the sheet material may be damaged.
According to one embodiment, a sheet material cutting device includes a rotatable blade including a blade unit, which extends from one end of the rotary shaft to the other end thereof and defining a predetermined angle relative to an axial direction of the rotary shaft, provided on the outer circumference of a rotary shaft rotatably supported by a support frame. The sheet material cutting device further includes a fixed blade mounted on the support frame so as to be opposite the rotatable blade and configured to cut a sheet material in a transverse direction perpendicular to the feed direction of the sheet material, in which the sheet material is fed by rotation of the rotatable blade in a direction perpendicular to the axial direction of the rotary shaft. The sheet material cutting device further includes a sheet-suspension prevention unit configured to prevent a rear edge of the sheet material in its feed direction, which is cut by the rotatable blade and the fixed blade, from being suspended within the support frame.
Now, exemplary embodiments will be hereinafter described in detail with reference to the accompanying drawings.
The sheet material cutting device 5 cuts the elongated sheet material 2 in a transverse direction perpendicular to the feed direction of the sheet material 2 when a leading edge of the sheet 2 is conveyed by a predetermined distance. Since the leading edge of the sheet material 2 is already discharged out of the discharge unit 6 when it is cut to a desired length, the cut sheet hangs down due to its own weight.
The sheet material cutting device 5 is constructed as shown in
In addition, the rotatable blade 11 has a blade unit 15 extending from one end 14a of the rotary shaft 14 to the other end 14b thereof as shown in
The fixed blade 12 is disposed within the support frame 10 so as to be opposed to the rotatable blade 11. The fixed blade 12 is configured to cut the sheet 2, which is being fed in a direction perpendicular to the axial direction of the rotary blade 11 by rotation of the rotatable blade 11 in the direction of an arrow X, in a transverse direction perpendicular to the feed direction of the sheet.
In one exemplary embodiment, a sheet-suspension prevention unit is provided which prevents a rear edge of the sheet 2 in its feed direction, which is cut by the rotatable blade 11 and the fixed blade 12, from being suspended within the support frame 10. The sheet-suspension prevention unit is formed at the rotary shaft 14 of the rotatable blade 11 so as to prevent the leading edge of the sheet 2, which is cut by cooperative operation between the rotatable blade 11 and the fixed blade 12, from being suspended within the support frame 10. In this exemplary embodiment, in the direction of forwarding the blade unit 15 in the rotational direction X of the rotary shaft 14, on the outer circumferential surface of the rotary shaft 14 constituting the rotatable blade 11 is formed a chamfered portion 16. The degree of being chamfered in the chamfered portion 16 is reduced gradually as it goes from a cutting termination portion (one end 14b of the rotary shaft 14) of the blade unit 15 toward a cutting start portion (the other end 14a of the rotary shaft 14) thereof. The chamfered portion 16 functions as the sheet-suspension prevention unit.
Under the above construction, one end of the sheet 2 wound in the shape of a roll is inserted into the printer main body 1 from the sheet material supply unit 3, and is printed on its surface with a given character or figure, or the like in the print unit 4 within the printer main body 1. The printed sheet 2 is fed to the sheet material cutting device 5. At this time, the rotatable blade 11 is in a state where the flat portion 13 formed on the rotary shaft 14 is directed downward. The leading edge of the sheet 2 is conveyed to the left side of
When a sensor (not shown) determines that a leading edge of an elongated sheet 2 is conveyed by a predetermined distance, the material cutting device 5 cuts the sheet 2 in the transverse direction perpendicular to the feed direction of the sheet 2. The leading edge of the sheet 2 is already discharged out of the discharge unit 6 when it is cut to have a desired length, the cut sheet hangs down outside due to its own weight.
The above-described cutting operation is performed by rotating the rotatable blade 11 in the direction of an arrow X of
On the other hand, in the present embodiment, in front of the blade unit 15 in the rotational direction X of the rotary shaft 14 on the outer circumferential surface of the rotary shaft 14 constituting the rotatable blade 11 is formed a chamfered portion 16 as a sheet-suspension prevention unit. The degree of being chamfered in the chamfered portion 16 is reduced gradually as it goes from a cutting termination portion (one end 14b of the rotary shaft 14) of the blade unit 15 toward a cutting start portion (the other end 14a of the rotary shaft 14) thereof as shown in
In
Next, a sheet material cutting device 5 according to another exemplary embodiment will be described hereinafter with reference to
As shown in
The rotatable blade 11 shown in
In addition, the rotatable blade 11 has a blade unit 25 extending from one end 24a of the rotary shaft 24 to the other end 24b thereof as shown in
The fixed blade 12 is disposed within the support frame 10 so as to be opposite the rotatable blade 11. The fixed blade 12 is configured to cut the sheet 2, which is being conveyed in a direction perpendicular to the axial direction of the rotary blade 11 by rotation of the rotatable blade 11 in the direction of an arrow X1, in a transverse direction perpendicular to the feed direction of the sheet 2.
In this exemplary embodiment, as a sheet-suspension prevention unit which prevents a rear edge of the sheet 2 in its feed direction, which is cut by the rotatable blade 11 and the fixed blade 12, from being suspended within the support frame 10, at the rear portion of the blade unit 25 in the rotational direction X1 on the outer circumferential surface of the rotary shaft 24 constituting the rotatable blade 11 is formed a stepped portion 26 along the axial direction of the rotary shaft 24. The stepped portion 26 is engaged with the rear edge of the cut sheet 2 by rotation of the rotatable blade 11 in the direction of an arrow X1.
Under the above construction, the printing and cutting operation is performed in the same manner as described in the above embodiment. That is, the sheet 2 wound in the shape of a roll is printed on its printing surface with a given character or figure, or the like in the print unit 4 and then is fed to the sheet material cutting device 5 adjacent to the print unit 4. In this case, the sheet material cutting device 5 is in a state in which the flat portion 23 formed on the rotary shaft 14 of the rotatable blade 11 is directed downward as shown in
When a sensor (not shown) determines that a leading edge of an elongated sheet 2 is conveyed by a predetermined distance, the material cutting device 5 cuts the sheet in the transverse direction perpendicular to the feed direction of the sheet. As such, the leading edge of the sheet 2 is already discharged out of the discharge unit 6 when it is cut to have a desired length, the cut sheet is discharged to the outside and hangs down due to its own weight.
The cutting operation is performed by rotating the rotatable blade 11 in the direction of an arrow X1 as shown in
The rotatable blade 11 has the stepped portion 26 formed on the outer circumferential surface of the rotary shaft 24 at the rear of the blade unit 25 in the rotational direction X1 of the rotary shaft 24, so that the stepped portion 26 is engaged with the rear edge of the cut sheet by rotation of the rotatable blade 11. In this engagement state, as the rotatable blade 11 is further rotated, the stepped portion 26 pushes the engaged rear edge of the sheet in the left direction in
In some embodiments, the rotational speed of the rotatable blade 11 is not limited to a specific speed, but may be variable. That is, a rotation drive unit (not shown) may be controlled such that the rotational speed of the rotatable blade 11 when the rear edge of the sheet is engaged with the stepped portion 26 is higher than the rotational speed of the rotatable blade 11 relative to the sheet 2 at the time of the cutting start operation.
In this manner, when the control operation is performed, the rotational speed of the stepped portion 26 engaged with the rear edge of the cut sheet 2 is increased, so that the cut sheet 2 receives a strong extruding force by the stepped portion 26 so as to be much more surely discharged to the outside through the discharge unit 6.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2009-255458 | Nov 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1653129 | Taylor | Dec 1927 | A |
3190163 | Bradley | Jun 1965 | A |
3230809 | Luck | Jan 1966 | A |
5690009 | Nakao et al. | Nov 1997 | A |
Number | Date | Country |
---|---|---|
663042 | Aug 1965 | BE |
3743530 | Jul 1989 | DE |
0204866 | Dec 1986 | EP |
1116241 | Jun 1968 | GB |
2009148875 | Jul 2009 | JP |
Entry |
---|
Extended European Search Report for Application No. 10173812.8 -2302 dated Feb. 25, 2011. |
Number | Date | Country | |
---|---|---|---|
20110107885 A1 | May 2011 | US |