1. Field of the Invention
The present invention relates to sheet material dispensers in general. More particularly, the present invention relates to sheet material dispensers capable of dispensing individual sheets from a roll of sheet material. The individual sheets are defined by rows of perforations in the sheet material.
2. Background of the Invention
Sheet material dispensers are designed to dispense individual sheet material from various sources including folded sheet material and rolled sheet material. Each type of sheet material source requires a different means of dispensing the sheet material. As a result, each source has unique problems in controlling how much sheet material is dispensed, and how quickly more sheet material is made available.
Folded sheet material dispensers contain separate sheets of folded sheet material that are dispensed through an opening. When a user removes a single sheet from the opening, another individual sheet is instantly made available. As a result, several sheets can be removed at once. Because the sheets are so readily available, there is no real limit to how many sheets can be removed by the user. Therefore, folded sheet material dispensers must by constantly checked to make sure they are full.
One common type of sheet dispensers dispenses sheet material wound on rolls. These dispensers have several different means of dispensing paper. The sheets can be removed by either pulling on a free end of a sheet or actuating a lever to advance the sheet. These dispensers usually have a cutter to sever the individual sheet from the source of sheet material. The cutter can be arranged adjacent to the opening, in which case the user removing the sheet must force the sheet against the cutter. Otherwise, the cutter is formed as part of a cutting drum mechanism.
The most simple dispensers rely on the user to pull on a free end of sheet material, thereby causing the sheet material to be dispensed. The amount of force necessary to dispense the sheet material depends in part on the location of the cutter. It takes more force to remove an individual sheet where the cutter is part of a cutting drum mechanism as compared to when the cutter is located adjacent to the opening. When the cutter is part of the cutting drum mechanism, it is the rotational momentum of the cutting drum that severs the individual sheet from the sheet material roll. To obtain the required amount of rotational momentum, the user has to apply more force than simply pulling the sheet material against the cutter.
Due to relatively recent advances in paper making technology that permit relatively easy formation of perforations in sheet material, there are now a number of dispensers capable of dispensing sheet material having spaced rows of preformed perforations. Such perforations weaken the sheet material, making it easier to separate an individual sheet from the remainder of sheet material. Some conventional dispensers for this type of sheet material have drawbacks and disadvantages. For example, these dispensers are designed so that after an individual sheet is dispensed, a sufficient length (tail end) of sheet material normally remains extended from the dispensing outlet to be grasped by the next user. Sometimes, however, when the sheet material tears along a perforation line positioned inside the dispenser, there is little or no exposed length of sheet material that can be grasped. In some cases, this requires the next user to actuate a manual lever or crank that could spread germs or other contaminants from one user to another.
The present inventors have proposed to improve sheet material dispensing by providing a sheet material dispenser with perforation detecting capability, for example. Such detection, however, is challenging because the translucence of the some types of sheet material may provide false indications of perforations.
In light of the foregoing, there is a need in the art for an improved dispenser and method for dispensing sheet material.
Accordingly, the present invention is directed to a dispenser for dispensing sheet material and a method of dispensing that substantially obviate one or more limitations of the related art. In one advantageous aspect, the present invention facilitates dispensing of individual sheets from a source of sheet material having a plurality of spaced perforations.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention includes a dispenser for dispensing sheet material including a plurality of spaced perforations. The dispenser includes a housing defining an interior for accommodating a source of the sheet material, and an outlet through which the sheet material is dispensed. A perforation sensor is configured to sense perforations in the sheet material, and this perforation sensor is disposed in the interior of the housing. The perforation sensor includes at least one light receptor, and at least a portion of the perforation sensor is positioned in the housing to contact sheet material traveling from the source to the outlet, thereby spreading perforations in the sheet material.
In another aspect, the portion of the perforation sensor is a light emitter configured to emit light capable of being detected by the light receptor. The light emitter and the light receptor are spaced apart from one another such that the sheet material can be positioned between the light emitter and light receptor. This allows light to pass from the emitter to the receptor via the perforations, where the spreading of the perforations increases the amount of light passing through the perforations.
In yet another aspect, the sheet material is dispensed in a first direction. The perforation sensor is located in the housing such that the portion of the perforation sensor contacts the approximate middle of the sheet material in a second direction perpendicular to said first direction.
In another aspect, the dispenser further includes at least one rotatable roller in the housing. At least a portion of the sheet material is in contact with the roller when the sheet material travels from the source to the outlet.
In a further aspect, the roller includes at least two spaced sections and the portion of the perforation sensor is positioned between the roller sections to contact sheet material on the rollers.
In an additional aspect, the dispenser includes a brake configured to brake rotational movement of the roller and a controller for controlling the brake. The controller is in electrical communication with the perforation sensor.
In yet another aspect, the brake includes a detent member coupled to the roller, and a solenoid mounted to the housing. The detent member has a plurality of detents provided thereon, the solenoid has a plunger configured to selectively engage a respective one of the detents.
In another aspect, there are two light receptors. The perforation sensor also includes a differential trans-impedance amplifier for detecting light incident upon the two light receptors.
In a further aspect the differential trans-impedance amplifier is configured as a balanced bridge for amplifying the difference in intensity of light detected by the two light receptors.
In an additional aspect the differential trans-impedance amplifier includes a first operational amplifier, a second operational amplifier, a feed back resistor, a scaling resistor, and a gain resistor. The first operational amplifier has an inverting input node, a non-inverting input node, and an output node. The second operational amplifier has an inverting input node, a non-inverting input node, and an output node. The feedback resistor has a first end and a second end, wherein the first end is electrically coupled to the inverting input node of the first operational amplifier. The scaling resistor has a first end and a second end. The first end of the scaling resistor is electrically coupled to the second end of the feedback resistor and the second end of the scaling resistor is electrically coupled to the inverting input node of the second operational amplifier. The gain resistor has a first end and a second end. The first end of the gain resistor is electrically coupled to the inverting input node of the second operational amplifier and the second end of the gain resistor is electrically coupled to the output node of the second operational amplifier.
In another aspect of the present invention, the dispenser includes a housing defining an interior for accommodating a source of the sheet material, and an outlet through which the sheet material is dispensed. A perforation sensor is configured to sense perforations in the sheet material. The perforation sensor is disposed in the interior of the housing. The perforation sensor includes a pair of light receptors which are aligned in substantially the direction of sheet material travel from the source to the outlet. The pair of light receptors are arranged such that one of the receptors receives light passing through one of the perforations before the other receptor.
In another aspect, the perforation sensor includes a light emitter spaced from the pair of receptors such that the sheet material passes between the light emitter and the pair of light receptors during travel of the sheet material to the outlet.
In yet another aspect, the sheet material includes lines of the perforations defining individual sheets. The receptors are arranged such that the receptors are aligned along an axis substantially perpendicular to lines of perforations on the sheet material traveling adjacent to the receptors.
In another aspect, the dispenser includes a controller. The controller compares the amount of light detected by each light receptor.
In yet another aspect of the invention, the dispenser includes a housing defining an interior for accommodating a source of the sheet material, and an outlet through which the sheet material is dispensed. A perforation sensor is disposed in the interior of the housing. The perforation sensor is configured to sense perforations in the sheet material and includes at least one light receptor and a light emitter. The light receptor and the light emitter are spaced apart from one another such that the sheet material travels between the light emitter and light receptor. This allows light to pass from the emitter to the receptor via the perforations.
In another aspect, the dispenser includes a first rotatable roller in the housing. The first roller includes at least two spaced roller sections, where at least a portion of the sheet material is in contact with the first roller when the sheet material travels from the source to the outlet. Either the light receptor or the light emitter is positioned between the roller sections.
In an additional aspect, the dispenser includes a second rotatable roller in the housing, the first and second rollers defining a nip for the sheet material.
In another aspect, the dispenser includes a controller in said housing. The controller selectively activates the perforation sensor.
In an additional aspect, the dispenser further includes at least one rotatable roller in the housing. At least a portion of the sheet material is in contact with the roller when the sheet material travels from the source to the outlet. A rotation monitor is configured to monitor rotation of the roller. The controller is in electrical communication with the rotation monitor and activates the perforation sensor when the monitor detects a first predetermined amount of rotation of the roller.
In an even further aspect, the dispenser includes a brake configured to brake rotational movement of the roller, where the controller selectively activates the brake.
In an additional aspect, the controller is configured to activate the brake when the perforation sensor senses a perforation in the sheet material.
In another aspect of the present invention, the dispenser includes a housing defining an interior for accommodating a source of the sheet material, and an outlet through which the sheet material is dispensed. At least one rotatable roller in the housing, and at least a portion of the sheet material being in contact with the first roller when the sheet material travels from the source to the outlet. The dispenser also includes a rotation monitor configured to monitor the amount of rotation of the roller to thereby determine the amount of sheet material traveling downstream from the roller.
In yet another aspect, the present invention includes a method of dispensing sheet material. The method includes providing a dispenser containing a source of sheet material including a plurality of spaced perforations. The dispenser includes a perforation sensor including at least one light receptor and a light emitter, at least one rotatable roller, a brake configured to selectively brake rotation of the roller, and an outlet for dispensing sheet material. The method includes passing sheet material from the source to the outlet wherein the sheet material contacts the roller and the roller rotates. The sheet material passes between the light receptor and the light emitter. The method includes detecting a perforation in the sheet material by sensing an increased amount of light reaching said light receptor from said light emitter. The method includes activating the brake to cause tension in the sheet material when an end portion of the sheet material is pulled.
In another aspect, the method includes monitoring the amount of rotation of the roller and activating the perforation sensor when the roller rotates a first predetermined amount.
In an additional aspect, the method includes activating the brake when the perforation sensor detects a perforation and the roller rotates a second predetermined amount.
In another aspect, the brake includes a detent member and a solenoid having an arm configured to selectively engage the detent member when the solenoid is activated. The method includes activating the solenoid.
In yet another aspect, the present invention includes a method of dispensing sheet material. The method includes providing a dispenser for containing a source of sheet material including a plurality of spaced perforations. The dispenser includes at least one rotatable roller, a rotation monitor configured to monitor the amount of rotation of the roller to thereby determine the amount of sheet material traveling downstream from the roller, a brake configured to selectively brake rotation of the roller, and an outlet for dispensing sheet material. The method includes passing sheet material from the source to the outlet, wherein the sheet material contacts the roller and the roller rotates. The method includes monitoring the amount of rotation of the roller to thereby determine the amount of sheet material dispensed. The method includes activating the brake when a predetermined amount of sheet material is dispensed, said activation causing tension in the sheet material when an end portion of the sheet material is pulled.
In another aspect, the dispenser further includes a perforation sensor including at least one light receptor and a light emitter. The method further includes detecting an initial rotation of the roller. The perforation sensor is activated when the roller rotates a first predetermined amount of rotation. The brake is activated when at least one of the perforation sensor detects a perforation and the roller rotates a second predetermined amount.
In yet another aspect, the present invention includes a method of dispensing individual sheets from a dispenser containing a source of sheet material having a plurality of spaced perforations. The dispenser includes at least one rotatable roller, a rotation monitor configured to monitor the amount of rotation of the roller to thereby determine the amount of sheet material traveling downstream from the roller, a perforation sensor for sensing perforations in the sheet material, and an outlet for dispensing sheet material. The method includes detecting the amount of rotation of the roller, and sensing a perforation in the sheet material. In response to detection of said perforation, the method includes stopping the advancing of the sheet material when the roller rotates a first predetermined amount.
In a further aspect, the method includes detecting an initial rotation of the roller.
In an additional aspect, the method includes activating the perforation sensor after a second predetermined amount of rotation of the roller.
In yet another aspect, in a response to no perforation being detected when the roller rotates a third predetermined amount, the method includes stopping the advancing of the sheet material.
In an additional aspect, the dispenser includes a brake configured to selectively brake rotation of the roller, and wherein the stopping of sheet material advancing includes activating the brake.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In the preferred embodiment, the sheet material source 20 is a roll of sheet material 21 wound on a core 30. The sheet material 21 can be paper towel, toilet paper, tissue paper, wrapping paper, or any other sheet material. In this embodiment, the sheet material 21 includes spaced apart zones of weakness, such as perforations 32, that permit tearing off of individual sheets 34 when they are dispensed. The perforations are preferably arranged in spaced rows. In each row, the perforations 32 could have substantially the same size, or the perforations 32 closer to the middle of the sheet material 21 could be larger than the perforations 32 at the edges of the sheet material 21. There are also many other ways the perforations could be arranged. As shown in
The sheet material source 20 is rotatably supported in an upper portion 38 of the housing 12 on a pair of spaced support members 40, 42. The housing 12 could be configured to accommodate additional sheet material sources. For example, the lower portion 44 could be configured to accommodate a partially used source, such as a stub roll.
As shown in
The dispensing roller 18, as shown in
In the preferred embodiment, as shown in
Although the rotational monitor described above includes a counting wheel and counter, other suitable rotational monitors could be used. In addition, one of ordinary skill in the art should recognize that the nib roller and/or dispenser roller could be eliminated. Accordingly, certain aspects of the invention could be practiced without including these elements and also without using any type of rotational monitoring structure.
On the second end 62 of the shaft 54, as shown in
As shown in
In the preferred embodiment, the receptor housing 80 passes through an opening 25 in the paper guard 23 that allows the dual detector 85 to be placed above the light emitter 86. The paper guard 23 is located behind the dispensing roller 18 to maintain sheet material 21 in contact with the dispensing roller 18
In the preferred embodiment, the light emitter diode 86 is arranged in the space between two roller sections 52 of the dispensing roller 18, and approximately 5 mm away from the light receptors 82, 84. In addition, the light emitter diode 86 (or some other portion of the perforation sensor) is positioned in the dispenser so that it contacts sheet material traveling from the source to the outlet and thereby spreads perforations in the sheet material, especially when the sheet material is placed in tension, such as by pulling the sheet material during dispensing.
The two light receptors 82 and 84 of detector 85 could be photodiodes. One may use a conventional Centro CD-25T dual detector available from Centrovision, for example. The Centro CD 25T provides a substantially close match to the shape of a perforation. Light receptors 82 and 84 are preferably spaced apart in the direction of sheet material travel by a predetermined distance, such as about 0.02 mm, for example, so that the light receptors are arranged to detect a difference in light caused by a perforation passing by one of the receptors. Dual detector 85 is arranged such that the differential bridge formed by two transimpedance amplifiers 830 and 840 is balanced. A tiny amount of current is generated even when sheet material is blocking the light from a light emitter. This is because sheet material is translucent and at least some light falls on light receptor 82, for example, causing it to permit a flow of current. This current flows across resistor Rgain 842, where first end of the gain resistor is coupled to inverting input node of amplifier 840 and the second end of the gain resistor is coupled to output node of amplifier 840, and results in an application of voltage at the output node of transimpedance amplifier 840.
Transimpedance amplifier 830 also includes a feedback resistor Rfb 832, where one end of the feedback resistor is connected to inverting input node of the amplifier. The voltage generated across Rfb is further scaled by another resistor Rscale 834, where one end of the scaling resistor is connected to the second end of feedback resistor Rfb 832 and the other end is connected to the inverting input node of amplifier 830. Because the output of transimpedance amplifier 830 is inverted with respect to the output of the other photocurrent, the voltages substantially cancel each other out. By mechanically positioning the dual detector one can balance the bridge, such that the two voltages cancel each other out substantially. Preferably, the balance is obtained by mechanically positioning the light emitter 86 such that substantially equal amounts of light fall on both light receptors 82 and 84 when sheet material is not positioned between the light emitter 86 and the pair of light receptors 82 and 84. In this embodiment, a electrical adjustment is preferably avoided. One skilled in the art will appreciate that the differential transimpedance amplifier may be balanced using a variable Rbalance resistor, instead of using the fixed value resistors Rfb and Rscale and mechanically balancing the bridge.
As mentioned earlier, comparators 850 and 860 are used to generate logic signals, which are processed by controller 28, based on the output of transimpedance amplifiers 830 and 840, respectively. In the embodiment shown in
Comparator 860 is used to generate a signal when the differential bridge formed by the two transimpedance amplifiers is unbalanced. One skilled in the art will appreciate that a single light receptor, such as a photodiode may be used to detect presence of light caused by a perforation. The disclosed preferred embodiment, however, uses two light receptors. This is because translucent sheet material, such as paper towels, may have variation in thickness and other irregularities, which may cause a single detector to erroneously signal presence of a perforation. To accommodate sheet material having some degree of variation, the present invention preferably uses a balanced bridge including two light receptors. Accordingly, if an irregularity in sheet material causes more light to fall on both light receptors, the bridge stays balanced and no spurious detection signal is generated, in particular when the light receptors are spaced apart by a predetermined distance. In addition, the preferred embodiment preferably permits use of different types of sheet material, for example sheet materials with different web strengths without adjusting the perforation sensor and associated components.
One skilled in the art will appreciate that other components may be added to the circuit shown in
Once the perforation sensor is activated, the controller determines whether the perforation sensor has detected a perforation while the dispensing roller rotates a second predetermined amount of rotation (step 906). The second predetermined amount of rotation ensures that the perforation sensor will have a sufficient window of time to detect a perforation. If a perforation is detected during the time period corresponding to the second predetermined amount of rotation, the controller issues a command to brake assembly 24 to set the brake and stop the advancement of the sheet material after a third predetermined amount of rotation (step 908). The third predetermined amount of rotation is set to ensure that when the brake is actuated and tearing along the perforations commences, the tail end of the sheet material extending from the outlet of the towel dispenser will have a length sufficient to allow it to be grasped by the next user. If, however, a perforation is not detected during the time period corresponding to the second predetermined amount of rotation, the controller issues a command to brake assembly 24 to set the brake and stop the advancement of the roll of sheet material after a fourth predetermined amount of rotation (step 910). The fourth predetermined amount of rotation is based on the length of each individual sheet separated by the perforations. In one embodiment, the fourth predetermined amount of rotation is determined by controller 28 in response to counts received from counter 68. This aspect of the present invention acts as a backup feature to ensure that the brake is set and that the advancement of the sheet material is stopped even if the perforation sensor fails to detect a perforation for some reason.
One skilled in the art will appreciate that even though, as described above, the controller uses the rotation monitor to determine the length of sheet material passing toward the dispenser outlet, other mechanisms or methods may be used. For example, one may measure the linear displacement of sheet material directly.
After the brake is applied, the controller issues a command to the brake assembly to hold the brake for a predetermined time (step 912). This ensures that the user has enough time to apply a pulling or tugging force to the sheet material and tear an individual segment of the material. The controller then issues a command to the brake assembly to release the brake (step 914). In addition, the controller deactivates the perforation sensor and light emitter to conserve energy (step 916).
To load the dispenser 10, the sheet material source 20 is placed into the pair of support members 40, 42. A tail end 36 of an individual sheet 34 of the sheet material 21 is placed over a portion of the nib roller 16. The tail end 36 is fed into the nip between the nib roller 20 and dispensing roller 18. After passing in the nip, the sheet material 21 is fed between the housing 80 and the light emitter 86. The sheet material 21 contacts the light emitter 86, such that the light emitter 86 spreads perforations 32 as the individual sheets 34 are dispensed. The tail end 36 is fed out through the outlet 14 and extends approximately 2 inches from the outlet to place the dispenser 10 in a condition ready for dispensing.
Once the motor is activated, the controller detects the advancement of the sheet material via the rotational monitor. The process proceeds in a manner similar to that shown in
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. For example, the perforation sensor could be eliminated, so that only a rotational monitor could be used to collect information regarding the dispensing of the sheet material. It is intended that the specification and examples be considered as exemplary only, with a true scope, and spirit of the invention being indicated by the following claims.
This application is a continuation application of U.S. application Ser. No. 09/793,077, filed Feb. 27, 2001 now U.S. Pat. No. 6,766,977, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1026128 | Rydquist | May 1912 | A |
2121346 | Harvey | Jun 1938 | A |
2135767 | Price et al. | Nov 1938 | A |
2193759 | Birr | Mar 1940 | A |
2215052 | Price et al. | Sep 1940 | A |
2957264 | Ruff | Oct 1960 | A |
2957636 | Lesavoy | Oct 1960 | A |
3065889 | Grosser | Nov 1962 | A |
3361021 | Toth | Jan 1968 | A |
3425306 | Wetzler | Feb 1969 | A |
3626491 | Grosser | Dec 1971 | A |
3687397 | Suzuki et al. | Aug 1972 | A |
3730409 | Ratti | May 1973 | A |
3741663 | Nevins | Jun 1973 | A |
3951485 | Schnyder et al. | Apr 1976 | A |
4137805 | DeLuca et al. | Feb 1979 | A |
4142431 | Jespersen | Mar 1979 | A |
4165138 | Hedge et al. | Aug 1979 | A |
4186633 | Baumann et al. | Feb 1980 | A |
4188844 | DeLuca | Feb 1980 | A |
4189077 | Hartbauer et al. | Feb 1980 | A |
4192442 | Bastian et al. | Mar 1980 | A |
4206858 | DeLuca et al. | Jun 1980 | A |
4213363 | Granger | Jul 1980 | A |
4307638 | DeLuca et al. | Dec 1981 | A |
4307639 | DeLuca | Dec 1981 | A |
4358169 | Filipowicz et al. | Nov 1982 | A |
4378912 | Perrin et al. | Apr 1983 | A |
4403748 | Cornell | Sep 1983 | A |
4404880 | DeLuca | Sep 1983 | A |
4441392 | DeLuca | Apr 1984 | A |
4552315 | Granger | Nov 1985 | A |
4569467 | Kaminstein | Feb 1986 | A |
4635837 | Granger | Jan 1987 | A |
4664304 | Wendt et al. | May 1987 | A |
4666099 | Hoffman et al. | May 1987 | A |
4699304 | Voss et al. | Oct 1987 | A |
4712461 | Rasmussen | Dec 1987 | A |
4716799 | Hartmann | Jan 1988 | A |
4732306 | Jesperson | Mar 1988 | A |
4738176 | Cassia | Apr 1988 | A |
4786005 | Hoffman et al. | Nov 1988 | A |
4834309 | Raymond | May 1989 | A |
4984530 | Dutton | Jan 1991 | A |
5048386 | DeLuca et al. | Sep 1991 | A |
5078033 | Formon | Jan 1992 | A |
5107734 | Armbruster | Apr 1992 | A |
5135179 | Morano | Aug 1992 | A |
5161723 | Wirtz-Odenthal | Nov 1992 | A |
5244161 | Wirtz-Odenthal | Sep 1993 | A |
5257711 | Wirtz-Odenthal | Nov 1993 | A |
5441189 | Formon et al. | Aug 1995 | A |
5452832 | Niada | Sep 1995 | A |
5573318 | Arabian et al. | Nov 1996 | A |
5772291 | Byrd et al. | Jun 1998 | A |
5833104 | Horniak et al. | Nov 1998 | A |
5868343 | Granger | Feb 1999 | A |
5873542 | Perrin et al. | Feb 1999 | A |
5915645 | Granger | Jun 1999 | A |
5924617 | LaCount et al. | Jul 1999 | A |
5937718 | Granger | Aug 1999 | A |
6412679 | Formon et al. | Jul 2002 | B2 |
6578790 | Campagna | Jun 2003 | B1 |
Number | Date | Country |
---|---|---|
1 101 434 | May 2001 | EP |
WO 9959457 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040251375 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09793077 | Feb 2001 | US |
Child | 10881467 | US |