Information
-
Patent Grant
-
6321963
-
Patent Number
6,321,963
-
Date Filed
Monday, February 2, 199826 years ago
-
Date Issued
Tuesday, November 27, 200122 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P.
-
CPC
-
US Classifications
Field of Search
US
- 242 560
- 225 2
- 225 16
- 225 34
- 225 36
- 225 39
- 225 46
- 225 51
- 225 67
-
International Classifications
-
Abstract
A dispensing apparatus and method are disclosed for dispensing sheet material from at least one roll of the sheet material. Dispensing is transferred from a stub roll to a reserve roll automatically in response to sensing a predetermined quantity of the stub roll. An isolating element is provided to lift the reserve roll out of contact with dispensing rollers during dispensing of sheet material from the stub roll, and a nipping element is provided to nip sheet material of the reserve roll when dispensing is transferred from the stub roll to the reserve roll. A cam controls movement of both the isolating element and the nipping element. Structure is also provided for sensing the diameter of the reserve roll of sheet material and providing an indication when the reserve roll is a predetermined diameter. The dispenser is quiet and capacity efficient.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a sheet material dispensing apparatus and method. More particularly, the present invention relates to an apparatus and method for dispensing sheet material from at least one source of sheet material.
2. Description of Related Art
A number of different types of sheet materials are dispensed from dispensers. Typically they are wound into a roll either with or without a core to provide a maximum amount of material in a relatively small amount of space. Some examples of these materials include paper towels, toilet tissue, wrapping paper, aluminum foil, wax paper, and plastic wrap. Rolled sheet materials are typically dispensed from dispensers having structure for allowing the roll of sheet material to rotate while the material is removed from the roll. Although these dispensers have been in existence for a long period of time, some of them have many drawbacks and disadvantages.
In many conventional dispensers for sheet material, a user must rotate a crank or move a lever each time the user desires to remove material from the dispenser. This crank or lever typically rotates a roller mechanism for feeding the sheet material from the dispenser. Although these types of dispensers are effective at dispensing sheets of material, a user must make physical contact with the crank or lever each time the user desires to dispense the sheet material from the dispenser. For example, during a single day in an extremely busy washroom, hundreds or even thousands of users may physically contact a dispenser to dispense paper toweling therefrom. This leads to possible transfer of germs and a host of other health concerns associated with the spread of various contaminants from one user to another.
Another problem associated with conventional dispensers is that of maintaining an adequate supply of the rolled sheet material in the dispenser. In one type of dispensing system, a housing contains a single roll of material during dispensing. This type of dispenser requires frequent monitoring by a service attendant to determine when substantially all of the material has been dispensed so that a new roll of material may be loaded in the dispenser. When the new roll is loaded, the partially consumed roll is often discarded in place of the new roll, resulting in the waste of a significant amount of usable material left on the partially consumed roll.
In an attempt at solving the problem of maintaining an adequate supply of sheet material, some conventional dispensers have a transfer mechanism allowing for subsequent dispensing from multiple rolls of sheet material. Although these types of dispensers are sometimes effective at dispensing substantially all of the material from each of the rolls, they are often very complex, leading to increased cost and reduced reliability.
Lack of control of the length of material dispensed is another problem associated with some conventional dispensers. For example, some conventional dispensers include a cutter allowing a user to select a particular length of sheet material before cutting it away from the remainder of the roll of material. Because a continuous sheet of material can be rapidly removed from these types of dispensers, more material than is necessary may be removed from the dispenser, resulting in waste.
In an effort to overcome these problems, conventional dispensers include automatic cutting knives or blades, which cut a predetermined length of sheet material. However, due to their design, dispensers of these types are often noisy and bulky.
Further attempts have been made to limit the amount of sheet material continuously dispensed. For example, U.S. Pat. No. 5,630,526 to Moody, and pending U.S. patent application Ser. No. 08/851,937 to Moody, filed on May 6, 1997, the entire disclosures of which are incorporated herein by reference, disclose a system for dispensing individual segments of sheet material from a roll of sheet material having perforated tear lines separating the individual segments. Pulling an end-most segment of the sheet material tears the end-most segment away from the remaining material along a perforated tear line separating the end-most segment from the remainder of the material. Although this type of dispenser is effective, additional features such as multiple roll capacity are lacking.
In light of the foregoing, there is a need in the art for an improved dispenser and method for dispensing sheet material.
SUMMARY OF THE INVENTION
Accordingly, the present invention is directed to a sheet material dispensing apparatus and method that substantially obviate one or more of the limitations of the related art.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention includes an apparatus for dispensing sheet material from at least one source of sheet material. The apparatus includes a housing defining an interior including a first section for a first source of sheet material and a second section for a second source of sheet material, and an outlet though which an end portion of sheet material is dispensed from at least one of the sources. At least one nipping surface is disposed in the housing. A nipping element is pivotally mounted in the housing so that the nipping element pivots between a first position in which a first portion of the nipping element and the nipping surface form a nip for the end portion of sheet material, and a second position in which at least a second portion of the nipping element and the nipping surface form a nip for the end portion of sheet material.
In another aspect, the apparatus includes a sensor for sensing the amount of sheet material of the first source of sheet material, the sensor includes at least one cam surface moving in response to a change in size of the first source of sheet material. At least one cam follower cooperates with the nipping element. The cam follower contacts the cam surface and the cam surface moves with respect to the cam follower to control movement of the nipping element.
In an additional aspect, the apparatus includes at least one isolating element movably mounted in the housing. The isolating element moves between a second source isolating position in which the isolating element positions the second source out of contact with the nipping surface and a second source dispensing position placing the second source in contact with the nipping surface.
In another aspect, the apparatus includes a housing defining an interior accommodating a quantity of sheet material therein and an outlet through which the sheet material is dispensed. The housing includes a first housing member, a second housing member, and at least one hinge member allowing the first housing member to pivot with respect to the second housing member between a closed position limiting access to the interior of the housing and an open position allowing access to the interior of the housing. A latch is provided on the housing for selectively retaining the first housing member in the closed position. At least one biasing element cooperates with the first and second housing members. The biasing element biases the first housing member toward the closed position when the first housing member moves to the open position so as to limit free movement of the first housing member to the open position.
In yet another aspect of the invention, the apparatus includes a housing defining an interior including a first section for a source of sheet material and a second section for the source of sheet material, the second section being larger than the first section, and an outlet through which the sheet material is dispensed. A sensor is disposed in the housing for sensing the size of the source while the source is in the second section. An indicator cooperates with the sensor to provide an indication when the size of the source is small enough to place the source of sheet material in the first section of the housing.
In a further aspect, the apparatus includes a lever pivotally coupled to the housing and cooperating with a roller so that pivoting of the lever rotates the roller, the lever being located with respect to the outlet so that sheet material dispensed through the outlet passes substantially over the lever.
In another aspect, the present invention includes a method of dispensing sheet material, including dispensing sheet material from the first source, the dispensing including passing an end portion of sheet material from the first source through a nip formed between the nipping element and the nipping surface and through the outlet. The nipping element is moved with respect to the nipping surface to place an end portion of sheet material from the second source in the nip formed between the nipping element and the nipping surface. The method also includes dispensing sheet material from the second source, the dispensing of sheet material from the second source including passing the end portion of the sheet material from the second source through the nip and through the outlet.
In another aspect, the method includes the steps of positioning the second source away from the nipping surface and dispensing sheet material from the first source, the dispensing including passing an end portion of sheet material from the first source through a nip formed between the nipping element and the nipping surface and through the outlet. The quantity of the first source is sensed and the second source is placed in contact with the nipping surface when a predetermined quantity of the first source is sensed. The method also includes dispensing sheet material from the second source, the dispensing of sheet material from the second source including passing an end portion of sheet material from the second source through the nip and through the outlet.
In another aspect, the method includes the steps of sensing the quantity of a source of sheet material in the second section and providing an indication when the quantity of the source is small enough to place the source in the first section of the housing interior.
In a further aspect of the invention, the apparatus includes a contacting element for contacting an outer surface of a stub roll to apply a force capable of resisting rotational movement of the stub roll and preventing translational movement of the stub roll throughout the dispensing of sheet material from the stub roll.
In an even further aspect of the invention, there is provided a system including a dispenser and at least two rolls of sheet material having a width of at least about 5 inches. The system is capable of dispensing a single segment of the sheet material by a user grasping only the sheet material of the system, and the dispensing of a single segment of the sheet material produces a maximum sound level below about 81 decibels.
In another aspect of the invention, there is provided a system including a dispenser and at least two rolls of sheet material having a width of at least about 5 inches. The system is capable of dispensing a single segment of the sheet material by a user grasping only the sheet material of the system, and the ratio, expressed as a percentage, of the maximum sheet material volume to the total enclosed volume of the dispenser is at least about 35%.
In yet another aspect of the invention, the nip and the outlet are configured such that at least one angle defined by a first line extending along an exit of the nip and a second line formed between the outermost lateral exit end of the nip along the first line that contains the sheet material and the point of contact between the sheet material and the edge of the outlet is from about 26° to about 39°, and the closest point on a line extending along an exit of the nip is spaced a distance of from about 0.1 inch to about 3 inches to the point of contact between the sheet material and the edge of the outlet.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
FIG. 1
is a front perspective view of the sheet material dispensing apparatus with a front cover of the apparatus in a closed position;
FIG. 2
is a front perspective view of the apparatus illustrating sheet material being dispensed through a dispensing outlet in the front cover;
FIG. 3
a
is a front perspective view of the apparatus with the front cover opened to reveal the interior of a housing of the apparatus;
FIG. 3
b
is an exploded perspective view showing components mounted to the rear casing of the housing;
FIG. 4
is a front perspective view similar to
FIG. 3
a
showing a reserve roll of sheet material accommodated in a section of the housing;
FIG. 5
is a view similar to
FIG. 4
with a sheet advancing lever of the apparatus pressed toward a rear of the housing to rotate rollers;
FIG. 6
is a view similar to
FIGS. 4 and 5
showing a cam pressed toward a bottom of the housing and the sheet advancing lever pivoted away from the rear of the housing to allow a core of a stub roll to be removed from the housing interior while the reserve roll is in the housing;
FIG. 7
is a front perspective view of the apparatus with the front cover open and a stub roll sensor in a position allowing placement of the stub roll in a section of the housing interior;
FIG. 8
is an exploded perspective view of a mechanism for rotating the reserve roll in the housing;
FIG. 9
is a perspective view of the rotating mechanism of
FIG. 8
;
FIG. 10
is a perspective view of a one way clutch mechanism shown in
FIGS. 8 and 9
;
FIGS. 11 and 12
are exploded perspective views of the one way clutch mechanism shown in
FIGS. 8-10
;
FIG. 13
is an exploded perspective view of a transfer mechanism and reserve roll sensor for the apparatus;
FIG. 14
is a partially exploded, perspective view of components of the front cover including the mechanism and sensor shown in
FIG. 13
;
FIG. 15
is a perspective view of the front cover shown in
FIG. 14
;
FIG. 16
is a schematic side view of the interior of the housing during initial dispensing from the reserve roll of sheet material;
FIG. 17
is a view, similar to
FIG. 16
, showing dispensing from the reserve roll when the reserve roll reaches a diameter sufficient to place the reserve roll in a stub roll compartment of the housing interior;
FIG. 18
is a view, similar to
FIG. 16
, showing dispensing from a stub roll after the stub roll is placed in the stub roll compartment and a new reserve roll is loaded in the housing;
FIG. 19
is a view, similar to
FIG. 16
, showing dispensing from the stub roll just before transfer to the reserve roll;
FIG. 20
is a view, similar to
FIG. 16
, showing dispensing from both the stub roll and the reserve roll after transfer to the reserve roll;
FIG. 21
is a view, similar to
FIG. 16
, showing the reserve roll sensor and an indicator located in the housing during initial dispensing from the reserve roll;
FIG. 22
is a view, similar to
FIG. 17
, showing the indicator extending through an opening in the housing when the reserve roll is a predetermined size sufficient to place the reserve roll in the stub roll compartment;
FIG. 23
is a partially schematic side view of the interior of the housing with the front cover opened to place the indicator in a nonindication position;
FIG. 24
is a schematic internal front view showing sheet material passing through a nip and the outlet of the apparatus;
FIG. 25
is a partially schematic side view showing testing conditions for measuring sound level during dispensing from the apparatus; and
FIG. 26
is a schematic side view of an alternate embodiment of the apparatus in which mating rollers form a nip for sheet material.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same parts.
In accordance with the invention, there is provided an apparatus for dispensing sheet material. As shown in
FIGS. 1
,
2
, and
3
a,
apparatus
10
includes a housing
12
having a first housing member
14
, a second housing member
16
, and a hinge member
18
. Preferably, the first housing member
14
is a front cover having a sheet material dispensing outlet
38
in a lower portion of the cover
14
, the second housing member
16
is a rear casing, and the hinge
18
member is located at the lower portion of the front cover
14
. Preferably, the rear casing
16
includes mounting holes
17
, shown in
FIGS. 3
a
and
7
, so that the housing
12
can be secured directly or indirectly to a mounting surface with fasteners and/or a releasable mounting bracket (not shown).
The hinge member
18
allows the front cover
14
to pivot with respect to the rear casing
16
between an open position, shown in
FIGS. 3
a
,
4
-
7
, and
23
, allowing access to an interior of the housing
12
, and a closed position, shown in
FIGS. 1
,
2
, and
16
-
22
, limiting access to the interior of the housing
12
. The hinge member
18
includes hinge pins
20
a
and
20
b
, shown in
FIGS. 3
a
,
14
, and
15
, extending respectively through first hinge brackets
22
a
and
22
b
on the front cover
14
and through second hinge brackets
24
a
and
24
b,
shown in
FIG. 1
, on the rear casing
16
. The front cover
14
pivots about a common axis of the hinge pins
20
a
and
20
b
during movement between the open position and the closed position.
As shown in
FIGS. 14 and 15
, biasing elements
26
a
and
26
b
are provided respectively about the hinge pins
20
a
and
20
b.
The biasing elements
26
a
and
26
b
are preferably torsion springs having ends contacting the rear casing
16
and the front cover
14
when the front cover
14
is connected to the rear casing
16
. During movement of the front cover
14
to the open position, the biasing elements
26
a
and
26
b
rotationally bias the front cover
14
toward the closed position. This rotational biasing of the biasing elements
26
a
and
26
b
restricts free rotation of the front cover
14
toward the open position and thereby limits forcible impacting of the front cover
14
against a mounting surface when the front cover
14
is opened. In contrast to conventional dispensers, the biasing elements
26
a
and
26
b
minimize the risk of structural and/or cosmetic damage to both the front cover
14
and a mounting surface during opening of the front cover
14
.
A releasable latch mechanism
28
, shown in
FIGS. 3
a
,
3
b
,
4
-
6
,
14
, and
15
, is provided on the front cover
14
to retain the front cover
14
selectively in the closed position shown in FIG.
1
. The releasable latch mechanism
28
engages a catch
30
, shown in
FIGS. 3
a
and
3
b
, on the top of the rear casing
16
when the front cover
14
is closed. The latch mechanism
28
and catch
30
may be any type of conventional latching structure used for dispensers. For example, the latch mechanism
28
may be a lock actuated by a corresponding key (not shown) to limit unauthorized access to the interior of the housing
12
.
Preferably, the housing
12
defines an interior for accommodating one or more sources of sheet material. Each source preferably includes sheet material wound in a cylindrical shaped roll either with or without a core. Alternatively, each source of sheet material is in an accordion folded stack or any other form allowing for uninterrupted, continuous feed.
As shown in
FIGS. 18-20
and
23
, the housing
12
defines an interior having a section for accommodating a stub roll of sheet material S and section for accommodating a reserve roll of sheet material R. The stub roll of sheet material S rests on a lower surface of the rear casing
16
. This lower surface of the rear casing
16
includes a plurality of ribs
32
, shown in
FIG. 7
, to limit friction between the rear casing
16
and the stub roll S when the stub roll S rotates in the housing
12
during dispensing of sheet material from the stub roll. The ribs
32
also elevate the stub roll S from the bottom of the housing
12
to limit possible contact of the stub roll S with any moisture or dirt accumulated in the housing
12
.
As shown in
FIGS. 3
a
,
3
b
, and
7
, the interior of the housing
12
includes a pair of arms
34
a
and
34
b
having respective mounts
35
a
and
35
b
for mounting the reserve roll R in the interior of the housing
12
so that the reserve roll is placed on rollers
44
a
-
44
d
, described below, during dispensing of sheet material from the reserve roll R. The arms
34
a
and
34
b
are pivotally mounted to a rear wall of the rear casing
16
, as shown in
FIGS. 16-22
, to move the reserve roll R in an arc-shaped path during dispensing of sheet material from the reserve roll R, as shown in
FIGS. 16 and 17
. As shown in
FIG. 3
b
, the pair of arms
34
a
and
34
b
are preferably end portions of a U-shaped wire structure mounted to the back wall of the rear casing
16
so that the pair of arms
34
a
and
34
b
pivot in unison. The mounts
35
a
and
35
b
allow the reserve roll R to rotate about its axis of rotation during dispensing of sheet material therefrom. The mounts
35
a
and
35
b
are preferably connected to end portions of the arms
34
a
and
34
b
and are shaped to fit within a core of the reserve roll R.
Tensioning elements
36
a
and
36
b
, shown in
FIGS. 3
a
,
3
b
, and
7
, are also connected to end portions of the arms
34
a
and
34
b
, respectively. The tensioning elements
36
a
and
36
b
each have a surface for contacting a respective end of the reserve roll R mounted in the mounts
35
a
and
35
b
. These surfaces of the tensioning elements
36
a
and
36
b
apply frictional thrust forces to opposite ends of the reserve roll R to limit free rotation of the reserve roll R and thereby induce tension in sheet material pulled from the reserve roll R during dispensing. As shown in
FIGS. 3
a
,
3
b
, and
7
, the tensioning elements
36
a
and
36
b
have portions
37
a
and
37
b
for extending beyond the diameter of the reserve roll R in the vicinity of where the reserve roll R contacts the rollers
44
a
-
44
d
to limit lateral travel of sheet material dispensed from the reserve roll R.
In a preferred practice of the invention, each of the stub roll S and the reserve roll R is a continuous web of sheet material wound into a roll either with or without a core. The sheet material has two side edges, a terminal end, and an initial end. The sheet material is preferably divided into a plurality of individual sheets by a plurality of perforation tear lines including frangible bonds and perforations spaced along each tear line and extending from one edge to the other. The spacing and size of the frangible bonds may be constant or variable across the width of the roll. The perforation tear lines are preferably aligned substantially parallel to each other and substantially perpendicular to the edges of the roll. For example, the sheet material may be constructed like the sheet material disclosed in above mentioned U.S. Pat. No. 5,630,526, or like the sheet material disclosed in U. S. Pat. No. 5,704,566 to Schutz et al. and in pending U.S. patent application Ser. No. 08/942,771, filed on Oct. 2, 1997 to Schultz et al., the entire disclosures of which are incorporated herein by reference. Although rolls of sheet material having perforation tear lines are preferred, other types of sheet material may be used in the apparatus
10
. The sheet material preferably has a width B shown in
FIG. 4
(extending orthogonal to the edges of the sheet material) of from about 4 inches to about 14 inches.
Preferably, the sheet material of the reserve roll R and stub roll S is absorbent paper toweling. However, many different types of sheet material are capable of being dispensed from the apparatus
10
. The sheet material may be formed in many different ways by many different processes. Sheet material can be classified as a woven material or fabric, like most textiles, or a non-woven material. For example, the sheet material could be a non-woven fabric-like material composed of a conglomeration of fibrous materials and typically non-fibrous additives. Non-wovens may be classified further into wet-formed materials and dry-formed materials. As used herein, wet-formed materials are those materials formed from an aqueous or predominantly aqueous suspension of synthetic fibers or natural fibers, such as vegetable, mineral, animal, or combinations thereof by draining the suspension and drying the resulting mass of fibers; and dry-formed materials are those materials formed by other means such as air-laying, carding, or spinbonding without first forming an aqueous suspension. Non-wovens may further include composites of wet and dry formed materials where the composite is formed such as by hydroentangling or laminating.
Preferably, the sheet material of the stub roll S and reserve roll R is constructed like the sheet material disclosed in U.S. patent application Ser. No. 09/017,482, filed on Feb. 2, 1998, entitled Perforated Sheet Material and a Dispensing System for Dispensing the Material (pending) [inventors: Douglas W. Johnson, Dale T. Gracyalny, and Thomas N. Kershaw], the entire disclosure of which is incorporated herein by reference.
As shown in
FIG. 2
, the sheet material is dispensed from the interior of the housing
12
via the dispensing outlet
38
in the lower portion of the front cover
14
. As shown in
FIGS. 2 and 4
, the dispensing outlet
38
is defined at least partially by a lower edge of the front cover
14
including vertical curved walls
40
a
and
40
b
and horizontal planar walls
42
a
and
42
b.
The curved walls
40
a
and
40
b
provide ease of access to the dispensing outlet
38
and make it easier for a user to grasp an end portion of sheet material extending from the outlet
38
without touching the housing
12
. End edges of the curved surfaces
40
a
and
40
b
are preferably located equidistant from the centerline of sheet material being dispensed from the outlet
38
.
Preferably, the width of the dispensing outlet
38
is narrower than the width of sheet material being dispensed through the outlet
38
so that the edges of the sheet material experience increased tensile forces induced by frictional forces as the sheet material passes through the outlet
38
, as shown in FIG.
2
. The distance A, shown in
FIGS. 4 and 24
, between the edge
43
a
of the wall
42
a
and the edge
43
b
, of the wall
42
b
is preferably from about 20 percent to about 90 percent of the sheet material width B, more preferably from about 55 percent to about 85 percent of the sheet material width B, even more preferably from about 65 percent to about 75 percent of the sheet material width B, and most preferably about 70 percent of the sheet material width B.
As described below, the apparatus
10
reliably dispenses individual sheets from a wound roll of perforated sheet material without normally requiring a user to contact a portion of the apparatus
10
other than the sheet material itself. After a sheet is dispensed, a sufficient length of sheet material or tail remains exposed from the dispensing outlet
38
so the next user can easily grasp and dispense the next sheet without contacting the apparatus
10
. In the event that the tail of sheet material extending from the outlet
38
is not long enough for a user to easily grasp it, a lever
66
, shown in FIG.
1
and described below, can be depressed, as shown in
FIG. 5
, to expose additional sheet material.
FIG. 2
illustrates a sheet of the perforated sheet material being dispensed from the dispensing apparatus
10
. As a user pulls the terminal end T
1
of the sheet material from the dispensing outlet
38
, tensile stresses are induced in the sheet material as a result of the opposed drag force and frictional forces generated within the apparatus
10
. As described below, when sheet material is dispensed from the reserve roll R, the friction forces are generated by the core support mounts
35
a
and
35
b
shown in
FIGS. 3
a
,
3
b
, and
7
, tensioning elements
36
a
and
36
b
shown in
FIGS. 3
a
,
3
b
, and
7
, the weight of the roll on the outer surfaces of rollers
44
a
,
44
b
,
44
c
, and
44
d
shown in
FIGS. 3
a
,
7
, and
9
, a nip (restricted passageway) formed between a biased nipping element
70
shown in
FIGS. 3
a
,
4
-
7
, and
13
-
15
and friction bands
50
a
,
50
b
,
50
c
and
50
d
shown in FIG.
8
, and the edges
43
a
and
43
b
, of the outlet
38
. As also described below, when sheet material is dispensed from the stub roll S, the friction forces are generated by a biased contact element
86
shown in
FIGS. 3
b
,
7
, and
16
-
23
, the bottom of the compartment for the stub roll S in rear casing
16
, the nip, and the outlet edges
43
a
and
43
b.
Before the perforation tear line L reaches the narrowed outlet
38
, the pulling force exceeds the drag and friction forces. When a perforation tear line L passes through and contacts the edges of the dispensing outlet
38
during pulling of the sheet material, the tensile stresses are concentrated at the edges of the sheet material. This causes the drag and friction forces to exceed the strength of the sheet material at the perforation tear line L. Separation at the perforation tear line L typically initiates from one or both of the edges of the sheet material because this is where concentrated tensile stresses exceed the maximum tensile strength of the frangible perforation bonds along the perforation tear line L. As the user continues to pull the sheet material from the dispensing apparatus
10
, separation of the perforation tear line L propagates across the sheet material from the edges of the sheet material toward the center of the sheet material. Eventually, a single sheet is separated from the remainder of the sheet material, and a sufficient length of a tail of sheet material T
2
remains for a subsequent user to easily grasp and dispense the next sheet.
As shown in
FIGS. 3
a
,
4
, and
7
, the dispensing rollers
44
a
,
44
b
,
44
c
, and
44
d
are mounted for rotation in the housing
12
between the dispensing outlet
38
and the section of the housing
12
for accommodating the reserve roll of material R. Preferably, the dispensing rollers
44
a
-
44
d
are limited to only those rollers that rotate about the same rotational axis. However, additional rollers rotating about a different rotational axis are also possible. As shown in
FIG. 8
, the dispensing rollers
44
a
and
44
b
are formed by joining two half sections
46
a
and
46
b
together around a shaft
48
, and the dispensing rollers
44
c
and
44
d
are formed by joining two half sections
46
c
and
46
d
together around the shaft
48
. End portions
47
a
and
47
b
of half sections
46
a
and
46
b
are coupled to end portions
47
c
and
47
d
of half sections
46
c
and
46
d
so that the rollers
44
a
-
44
d
rotate together. L-shaped bearing clips
63
a
and
63
b
, shown in
FIGS. 8 and 9
, are provided at opposite ends of the shaft
48
to mount the shaft
48
for rotation in the rear casing
16
.
The circumferential surfaces of the rollers
44
a
,
44
b
,
44
c
, and
44
d
include respective friction bands
50
a
,
50
b
,
50
c
, and
50
d
made of a relatively high friction material, such as an elastomeric rubber material. The friction bands
50
a
,
50
b
,
50
c
, and
50
d
reduce slippage between the rollers
44
a
,
44
b
,
44
c
, and
44
d
and sheet material contacting the rollers
44
a
,
44
b
,
44
c
, and
44
d
during dispensing, as described below. Guides
64
a
and
64
b
located on a front portion of the L-shaped bearing clips
63
a
and
63
b
, are spaced respectively from the outer circumferential surfaces of the rollers
44
a
and
44
d
to guide an end portion of sheet material from the reserve roll R prior to dispensing of the reserve sheet material, as described below.
A one-way clutch assembly
52
, shown in
FIGS. 8-12
, is located on the shaft
48
and on the end portions
47
a
-
47
d
, shown in
FIG. 8
, between the middle dispensing rollers
44
b
and
44
c
to allow for rotation of the shaft
48
and rollers
44
a
-
44
d
in a single rotational direction by actuating the lever
66
shown in
FIGS. 1
,
3
a
,
3
b
, and
4
-
7
. The clutch assembly
52
also allows the rollers
44
a
-
44
d
and shaft
48
to rotate independent of the movement of the lever
66
. Locating the clutch assembly
52
between rollers
44
b
and
44
c
minimizes torsion and bending deflection of the shaft
48
. As shown in
FIGS. 11 and 12
, the clutch assembly
52
preferably includes a drive gear
54
, pawl
56
, sprocket
58
, driver
60
, spring housing
62
, and return spring
64
. However, other clutch configurations are possible.
The lever
66
, shown in
FIGS. 1
,
3
a
,
3
b
, and
4
-
7
, is pivotally coupled to the lower portion of the rear casing
16
so that the lever
66
may be pressed inward toward the rear casing
16
, as shown in
FIG. 5
, to cause the clutch assembly
52
to rotate the dispensing rollers
44
a
-
44
d
and thereby dispense sheet material from the dispensing outlet
38
. Pressing the lever
66
inwardly urges the lever
66
against the driver
60
, shown in
FIGS. 11 and 12
, to pivot the driver
60
. When the driver
60
pivots, teeth on the driver
60
engage teeth on the sprocket
58
, and the driver
60
rotates the sprocket
58
. Rotation of the sprocket
58
pivots the pawl
56
in the sprocket
58
to thereby place the pawl
56
in rotational driving engagement with the drive gear
54
. The drive gear
54
includes radial projections
55
, shown in
FIGS. 8 and 12
, placed in engagement with corresponding radial slots
57
(one of the slots
57
is shown in
FIG. 8
) formed in half sections
46
a
and
46
b
shown in FIG.
8
. Because the end portions
47
a
-
47
d
shown in
FIG. 8
are coupled together, the rotation of the engaged sprocket
58
and drive gear
54
transmit rotational motion to the rollers
44
a
-
44
d.
The sprocket
58
is coupled to the spring housing
62
so that the rotation of the sprocket
58
winds the return spring
64
, and the return spring
64
biases and returns the lever
66
to its original position shown in
FIGS. 1
,
3
a
,
4
, and
7
.
Because the dispensing apparatus
10
normally allows for dispensing of sheet material by pulling an end portion of the sheet material, the lever
66
is preferably used as a secondary feeding mechanism only. In other words, the lever
66
is preferably used to dispense sheet material only when the sheet material does not extend from the dispensing outlet
38
or when the end portion of sheet material extending from the outlet
38
is too short to be grasped by a user. For example, each depression of the lever
66
rotates the rollers
44
a
-
44
d
to advance the sheet material about one inch.
The lever
66
is pivotally coupled to the housing
12
below the rollers
44
a
-
44
d
and extends behind the dispensing outlet
38
to define a rear edge of the dispensing outlet
38
. As sheet material is dispensed from the outlet
38
, the sheet material passes substantially over the lever
66
and covers the lever
66
. This location of the lever
66
helps to limit user contact with the lever
66
when the sheet material is pulled from the opening
38
. Because the lever
66
is normally hidden by the tail of sheet material, a user will normally remove sheet material from the apparatus
10
by pulling the end portion of the sheet material rather than actuating the lever
66
.
As shown in
FIG. 1
, a pair of protuberances
68
a
and
68
b
extend outward from the front surface of the lever
66
. The protuberances
68
a
and
68
b
each have a concave surface and are tapered from a respective side edge of the lever
66
toward a middle portion of the lever
66
. The protuberances
68
a
and
68
b
are also tapered from a lower portion of the protuberances
68
a
and
68
b
toward the outlet
38
. The protuberances
68
a
and
68
b
guide the sheet material outwardly away from the lever
66
as the sheet material passes through the outlet
38
to make the end portion of sheet material easier to grasp. In addition, the protuberances
68
a
and
68
b
limit pinching of the sheet material between the lever
66
and the front cover
14
when the lever
66
is depressed. Pressing the lever
66
forms a gap between the lever
66
and the edges of the front cover
14
defining the outlet
38
. The protuberances
68
a
and
68
b
push the sheet material out away from the gap to prevent sheet material from passing in the gap.
As shown in
FIGS. 3
a
and
6
, the lever
66
extends in front of the portion of rear casing
16
for accommodating the stub roll S. Preferably, the pivotal coupling of the lever
66
allows the lever
66
to be pivoted upwards away from the rear casing
16
, as shown in FIG.
6
. This movement of the lever
66
allows access to the stub roll in the rear casing
16
.
The outer circumferential surfaces of the dispensing rollers
44
a
-
44
d
shown in
FIGS. 3
a
,
4
, and
7
provide a nipping surface. As shown in
FIGS. 16-20
, a nipping element
70
cooperates with these outer surfaces of the dispensing rollers
44
a
-
44
d
to form a nip (i.e., restricted pathway) therebetween for passage of the sheet material before the sheet material passes through the outlet
38
.
As described below and shown in
FIGS. 3
a
,
4
-
7
, and
13
-
15
, the nipping element
70
is a curved nipping plate pivotally coupled to the front cover
14
of the housing
12
so that the nipping element
70
pivots between different positions depending upon whether sheet material is being dispensed primarily from the stub roll S or the reserve roll R. In particular, the nipping element
70
pivots between a first position, shown in
FIGS. 18 and 19
, and a second position, shown in
FIGS. 16
,
17
, and
20
. In the first position, shown in
FIGS. 18 and 19
, an upper portion of the nipping element
70
is spaced from the rollers
44
a
-
44
d
, and a lower portion of the nipping element
70
and the outer nipping surfaces of the rollers
44
a
-
44
d
form a nip for an end portion of sheet material from the stub roll S. In the second position, shown in
FIGS. 16
,
17
, and
20
, the upper and lower portions of the nipping element
70
and the outer nipping surfaces of the rollers
44
a
-
44
d
form a nip for an end portion of sheet material from the reserve roll R. When sheet material is initially dispensed from the reserve roll R, as shown in
FIG. 20
, the nipping element
70
is in the second position, and the upper and lower portions of the nipping element
70
and the rollers
44
a
-
44
d
form a nip for both an end portion of sheet material from the reserve roll R and an end portion of sheet material of the stub roll S.
Although the nip is preferably formed between the nipping element
70
and each of the outer surfaces of the rollers
44
a
-
44
d
, the nip could be formed between many different structural elements. For example, as shown schematically in
FIG. 26
, the nip could be formed between one or more of the rollers
44
a
-
44
d
and one or more additional rollers
45
mating with the rollers
44
a
-
44
d
, or the nip could be formed between a surface of the housing
12
and one or more of the rollers
44
a
-
44
d
. Alternatively, the nip could be formed between the nipping element
70
and a single roller (not shown) or any other number of rollers.
As shown in
FIGS. 3
a
,
4
,
14
, and
15
, a mounting plate
72
is attached to the inside of the front cover
14
. As shown in
FIG. 13
, the mounting plate
72
includes opposite side portions
74
a
and
74
b
having respective elongated slots
76
a
and
76
b.
As is also shown in
FIG. 13
, the nipping element
70
includes pivoting projection pins
78
a
and
78
b
extending in opposite directions from a lower portion of the nipping element
70
. The nipping element
70
is coupled to the mounting plate
72
, as shown in
FIGS. 14 and 15
, so that the projection pins
78
a
and
78
b
are rotationally and axially movable in the slots
76
a
and
76
b
, respectively, to allow for both pivotal movement of the nipping element
70
and axial movement of the nipping element
70
toward and away from the dispensing rollers
44
a
-
44
d
shown in
FIGS. 3
a
,
4
, and
7
.
The pivotal movement of the nipping element
70
allows the nipping element
70
to be moved between the first and second pivot positions shown in
FIGS. 18 and 19
and
FIGS. 16
,
17
, and
20
, respectively. The axial and rotational movement of the nipping element
70
allows axial and rotational biasing (described below) of the nipping element
70
toward the dispensing rollers
44
a
-
44
d
to form the nip.
As shown in
FIGS. 13 and 14
, a first pair of biasing elements
80
a
and
80
b
are connected between a top portion of the nipping element
70
and a portion of the mounting plate
72
to bias the nipping element
70
rotationally toward the dispensing rollers
44
a
-
44
d
shown in
FIGS. 3
a
,
4
, and
7
. In addition, a second pair of biasing elements
82
a
and
82
b
shown in
FIG. 13
are provided about the projection pins
78
a
and
78
b
to bias the nipping element
70
axially toward the dispensing rollers
44
a
-
44
d
. Preferably, the first pair of biasing elements
80
a
and
80
b
are axial coil springs and the second pair of biasing elements
82
a
and
82
b
are torsion springs.
As shown in
FIGS. 16-20
, the biasing elements
80
a
,
80
b
and
82
a
,
82
b
maintain at least a portion of the nipping element
70
biased toward the dispensing rollers
44
a
-
44
d
to form a nip between the nipping element
70
and the dispensing rollers
44
a
-
44
d
when the front cover
14
is closed. Because the rollers
44
a
-
44
d
are mounted in the rear casing
16
and the nipping element
70
is mounted in the front cover
14
, the nipping element
70
moves away from the rollers
44
a
-
44
d
during opening of the front cover
14
, as shown in
FIGS. 3
a
,
4
, and
23
. In other words, the opening of the front cover
14
“opens” (eliminates) the nip formed between the nipping element
70
and rollers
44
a
-
44
d
. This opening of the nip permits sheet material to be positioned on an outer surface of the rollers
44
a
-
44
d
, and this sheet material is eventually placed in the nip automatically after the front cover
14
is closed, as explained below. Although the preferred embodiment shown in the drawings includes the nipping element
70
mounted in the front cover
14
and the rollers
44
a
-
44
d
mounted in the rear casing
16
, other mounting configurations are possible.
The inventors have discovered that certain characteristics of the sheet material and the apparatus
10
improve reliability of dispensing and/or separation of individual material sheets. As described below, these characteristics include the relationship between the width A of the outlet
38
(see FIGS.
4
and
24
), the overall sheet material width B, a distance C shown in
FIG. 24
, and angles X and Y.
When the front cover
14
is closed, at least an inner surface of a lower edge
84
, shown in
FIG. 4
, of the nipping element
70
and an outer surface of the rollers
44
a
-
44
d
form the nip. The exit end of the nip (the downstream portion of the nip in the direction of travel of the sheet material) is preferably spaced the same distance away from the edge
43
a
of the horizontal planar wall
42
a
and the edge
43
a
of the horizontal planar wall
42
b
partially defining the dispensing outlet
38
. As shown schematically in
FIGS. 16 and 24
, an imaginary line E is defined as a line extending along the exit of the nip (the downstream end of the nip in the direction of travel of the sheet material). Points H and J shown in
FIG. 24
are points of contact between sheet material dispensed through outlet
38
and the respective edges
43
a
and
43
b
, (see
FIG. 4
) of wall surfaces
42
a
and
42
b
defining the outlet
38
. Points H and J are preferably spaced a distance C of from about 0.1 inch to about 3 inches, more preferably from about 0.8 inch to about 1.1 inches, and most preferably from about 0.9 inch to about 1 inch, to the respective closest point on line E. Points F and G shown in
FIG. 24
are defined by the outermost (in the direction of the width B) lateral end of the nip that contains the sheet material along line E. Angles X and Y are defined as angles formed between line E and the lines connecting points G and J and points F and H, respectively.
In accordance with the invention, the angles X and Y are preferably from about 26° to about 39°, more preferably from about 29° to about 36°, and most preferably from about 32° to about 33°.
A sensor is provided in the dispensing apparatus
10
for sensing the diameter of the stub roll S and for controlling the pivoting of the nipping element
70
in response to sensing a predetermined diameter for the stub roll S. The sensor preferably includes a contact element
86
and cam
88
pivotally mounted in the rear casing
16
, as shown in
FIGS. 3
b
,
7
, and
16
-
23
. The contact element
86
is pivotally connected to the bottom rear interior surface of the rear casing
16
. As sheet material is dispensed from a stub roll S in the rear casing
16
, the contact element
86
pivots counterclockwise, as shown in the views of
FIGS. 16-23
, from a first position shown in
FIGS. 18 and 23
to a second position shown in
FIGS. 16
,
17
,
21
, and
22
. During this pivoting, a lower contacting surface of the contact element
86
contacts the outer circumferential surface of the stub roll S.
The cam
88
is pivotally connected to a rear wall of the rear casing
14
. As shown in
FIGS. 16-22
, a projection pin
92
extends from the cam
88
into an elongated slot
90
in the contact element
86
to couple pivotal movement of the contact element
86
and the cam
88
. As the sheet material is dispensed from the stub roll S, the cam
88
pivots clockwise, as shown in the views of
FIGS. 16-22
, from a first position shown in
FIG. 18
to a second position shown in
FIGS. 16
,
17
, and
20
-
22
. During this pivoting, the projection pin
92
moves along the length of the slot
90
.
Preferably, one or more biasing elements
116
a
and
116
b
(see
FIG. 3
b
), such as torsion springs, are provided at the pivot point of the cam
88
to bias the cam
88
rotationally in the clockwise direction as shown in
FIGS. 16-22
. Because the movement of the cam
88
and contact element
86
are linked to one another, the biasing elements
116
a
and
116
b
also bias the contact element
86
toward the stub roll S in the rear housing
16
. This ensures that the lower contacting surface of the contact element
86
remains in contact with the stub roll S to track the diameter of the stub roll S as sheet material is dispensed therefrom. The biasing of the contact element
86
against the stub roll S also provides a force that maintains the stub roll S between the contact element
86
and ribs
32
, shown in
FIGS. 6 and 7
, in the rear casing
16
without allowing the stub roll S to translate upwards toward the dispensing rollers
44
a
-
44
d
throughout the dispensing of sheet material from the stub roll S. In addition, the biasing of the contact element
86
against the stub roll S limits free rotation of the stub roll S throughout the dispensing from the stub roll S. To limit free rotation of the stub roll S even more, the contact element
86
also may include ribs (not shown) to increase friction between the stub roll S and the contact element
86
.
As shown in
FIGS. 3
a
,
3
b
, and
7
, the cam
88
includes a pair of arms
94
a
and
94
b
spaced apart so that the tensioning elements
36
a
and
36
b
are positioned therebetween. The arms
94
a
and
94
b
include tabs
96
a
and
96
b
, respectively. When the front cover
14
is open, the tabs
96
a
and
96
b
may be pressed by a user to pivot the cam
88
and contact element
86
away from the stub roll compartment of the rear housing
16
, as shown in
FIGS. 6 and 7
. This allows for insertion of a stub roll into the stub roll compartment of the rear casing
16
. In addition, the movement of the cam
88
and contact element
86
allows for removal of a core D of a stub roll (see
FIGS. 16 and 17
) after pivoting the lever
66
away from the rear casing
16
, as shown in FIG.
6
.
As shown in
FIGS. 3
a
,
3
b
, and
7
, cam surfaces
98
a
and
98
b
are provided on the front of the arms
94
a
and
94
b
to control pivoting of the nipping element
70
. Cam followers
100
a
and
100
b
, shown in FIGS.
4
and
13
-
15
, extend from opposite ends of the nipping element
70
and contact the cam surfaces
98
a
and
98
b
during dispensing of sheet material from the stub roll S. To maintain the contact between the cam followers
100
a
and
100
b
and the cam surfaces
98
a
and
98
b
, the biasing elements
80
a
and
80
b
and
82
a
and
82
b,
shown in
FIG. 13
, bias the cam followers
100
a
and
100
b
toward the cam surfaces
98
a
and
98
b.
As shown in
FIGS. 18 and 19
, when the sheet material is dispensed from the stub roll S, the cam surfaces
98
a
and
98
b
slide with respect to the cam followers
100
a
and
100
b
away from the rollers
44
a
-
44
d
while the arms
94
a
and
94
b
pivot. When almost all of the sheet material is removed from the stub roll S, as shown in
FIG. 20
, the cam surfaces
98
a
and
98
b
slide past the cam followers
100
a
and
100
b.
This places the cam followers
100
a
and
100
b
out of engagement with the cam surfaces
98
a
and
98
b
and thereby allows the biasing elements
80
a
and
80
b
, shown in
FIG. 13
, to bias the nipping element
70
pivotally toward the dispensing rollers
44
a
-
44
d
, as shown in
FIGS. 16 and 17
.
Prior to pivoting of the nipping element
70
, the guides
64
a
and
64
b
extending from the L-shaped bearing clips
63
a
and
63
b
, shown in
FIGS. 3
b
,
8
, and
9
, align an end portion of sheet material from the reserve roll between the nipping element
70
and stub roll sheet material contacting the dispensing rollers
44
a
-
44
d.
Preferably, the cam surfaces
98
a
and
98
b
, shown in
FIGS. 3
a
,
3
b
, and
7
, are shaped so that the pivoting of the nipping element
70
toward the rollers
44
a
-
44
d
occurs just prior to when all of the sheet material is removed from the stub roll S. When the nipping element
70
pivots toward the rollers
44
a
-
44
d
into the position shown in
FIG. 20
, the upper portion of the nipping element
70
places the end portion of sheet material from the reserve roll R in a nip formed between the nipping element and rollers
44
a
-
44
d
. Continued dispensing of material from the stub roll S causes rotation of the rollers
44
a
-
44
d
to also dispense the sheet material of the reserve roll R from the outlet
38
, as shown in FIG.
20
.
The dispensing apparatus
10
also preferably includes structure for limiting contact of the reserve roll R with the outer surface of the rollers
44
a
-
44
d
and stub roll sheet material on the rollers
44
a
-
44
d
during dispensing of sheet material from the stub roll S, as shown in
FIGS. 18 and 19
. As shown in
FIGS. 3
a
and
13
-
15
, isolating elements
102
a
and
102
b
are pivotally coupled to the mounting plate
72
attached to the inside of the front cover
14
. The isolating elements
102
a
and
102
b
include respective side slots
104
a
and
104
b
, shown in
FIG. 13
, for controlling pivoting of the isolating elements
102
a
and
102
b.
Projection pins
106
a
and
106
b
extending from a top portion of nipping element
70
move in the slots
104
a
and
104
b
, respectively, during pivoting of the nipping element
70
to control movement of the isolating elements
102
a
and
102
b.
The slots
104
a
and
104
b
are shaped so that the top end portions of the isolating elements
102
a
and
102
b
move upwards in the housing
12
above a top surface of the nipping element
70
when the nipping element
70
pivots away from the rollers
44
a
-
44
d
, as shown in
FIGS. 18 and 19
. In this position, the isolating elements
102
a
and
102
b
lift the reserve roll R above the outer surface of the dispensing rollers
44
a
-
44
d
so that the reserve roll R does not rotate along with dispensing rollers
44
a
-
44
d
during dispensing of the stub roll sheet material.
When the nipping element
70
pivots toward the dispensing rollers
44
a
-
44
d,
as shown in
FIG. 20
, the projection pins
106
a
and
106
b
, shown in
FIG. 13
, slide in the slots
104
a
and
104
b
, and the top end portions of the isolating elements
102
a
and
102
b
move downwards in the housing
12
approximately level with a top surface of the nipping element
70
. In this position, shown in
FIGS. 16
,
17
, and
20
, the reserve roll R is placed on stub roll sheet material covering the dispensing rollers
44
a
-
44
d
so that the reserve roll R and rollers
44
a
-
44
d
rotate together. Because the isolating elements
102
a
and
102
b
extend and retract in response to pivoting of the nipping element
70
, the pivotal movement of the contact element
86
and cam
88
and movement of the camming surfaces
98
a
and
98
b
control the movement of the isolating elements
102
a
and
102
b.
During placement of the reserve roll R on the rollers
44
a
-
44
d
, the guides
37
a
and
37
b,
shown in
FIGS. 3
a
,
3
b
, and
7
, guide the sheet material of the reserve roll R to limit lateral sheet material tracking in the dispenser
10
. In addition, the friction bands
50
a
,
50
b
,
50
c
, and
50
d
, shown in
FIGS. 8 and 9
, on respective rollers
44
a
,
44
b
,
44
c
, and
44
d
increase friction between the reserve roll R and the rollers
44
a
-
44
d.
As shown in
FIGS. 13
,
14
, and
21
-
23
, a movable reserve roll diameter sensor
108
and indicator
110
are provided for respectively monitoring the diameter of the reserve roll R and providing an indication when the reserve roll R is a predetermined diameter. The indicator
110
extends from the roll diameter sensor
108
and includes a projection
118
(see
FIGS. 21-23
) placed in a slot
112
(see FIGS.
13
and
21
-
23
) formed in the mounting plate
72
for controlling movement of the indicator
110
. As shown in
FIGS. 21-23
, the roll diameter sensor
108
has a surface for contacting the reserve roll R during dispensing of sheet material from the reserve roll R. When sheet material is removed from the reserve roll R, the roll diameter sensor
108
pivots due to gravity toward the reserve roll R and thereby pivots the projection
118
in the slot
112
.
As shown in
FIGS. 3
a
and
4
, a bottom portion of the front cover
14
includes an indicator opening
114
. When the reserve roll R is a predetermined diameter, the indicator
110
and projection
118
pivot so that the slot
112
allows a portion of the indicator
110
to drop through the indicator opening
114
, as shown in FIG.
22
.
As shown in
FIGS. 16-23
, the interior section of the housing
12
for accommodating the stub roll S is smaller than the interior section of the housing
12
for accommodating the reserve roll R. Preferably, the slot
112
, shown in FIGS.
13
and
21
-
23
, is shaped so that the portion of the indicator
110
drops through the indicator opening
114
when the diameter of the reserve roll R is small enough to place the reserve roll R in the stub roll compartment of the housing
12
. In other words, the indicator
110
provides a discrete, visual indication of when the reserve roll R will fit and can be placed in the stub roll compartment and a new reserve roll can be loaded in the housing
12
. The indicator
110
differs from conventional sheet material dispensers including a display proportional to the diminishing diameter of a product roll, because these conventional displays do not indicate a definitive time when the reserve roll will fit in the stub roll compartment, but rather leave the decision about whether a new roll of material can be loaded up to the subjective discretion of an operator person. Thus, the present invention reduces problems associated with premature opening of the cabinet by inexperienced operators.
The indicator
110
extends from the indicator opening
114
until the front cover
14
is opened and a new reserve roll R is loaded in the housing
12
. Opening the front cover
14
moves the indicator
110
in the housing
12
via the opening
114
, as shown in
FIG. 23
, and resets the indicator
110
for sensing the diameter of the new reserve roll R.
Methods of dispensing sheet material from at least one roll of sheet material are discussed below with reference to
FIGS. 1
,
2
,
3
a
,
3
b
, and
4
-
23
. The roll of sheet material includes a plurality of individual sheets separated by perforation tear lines including frangible perforation bonds and perforations. Although the invention is described in connection with the structure shown in
FIGS. 1
,
2
,
3
a
,
3
b
, and
4
-
23
and in connection with the dispensing of rolled sheet material having perforation tear lines including frangible perforation bonds and perforations, it should be understood that the invention in its broadest sense is not so limited.
To load the dispensing apparatus
10
initially with sheet material, an operator moves the front cover
14
to the open position, as shown in
FIG. 3
a
, so that the nipping element
70
moves away from the rollers
44
a
-
44
d
to open the nip. The operator then mounts a roll of sheet material R in the mounts
35
a
and
35
b
on the arms
34
a
and
34
b
, as shown in
FIG. 4
, and allows the roll of sheet material R to rest on the surface of the rollers
44
a
-
44
d
. While the cover
14
is still in the open position, the operator extends a tail end portion of sheet material from the reserve roll R and passes this tail end portion along the surface of the rollers
44
a
-
44
d
, between the rollers
44
a
and
44
d
and the guides
64
a
and
64
b
, and through the dispensing outlet
38
.
Then, the operator pivots the front cover
14
to the closed position shown in
FIGS. 1 and 2
. When the front cover
14
is closed, upper and lower portions of the nipping element
70
form a nip for passage of the sheet material between the nipping element
70
and the outer nipping surface of the rollers
44
a
-
44
d
, as shown in
FIG. 16
, and the biasing elements
80
a
,
80
b
,
82
a
, and
82
b
, shown in
FIG. 13
, bias the nipping element
70
toward the rollers
44
a
-
44
d
. The nip, friction bands
50
a
,
50
b
,
50
c
, and
50
d
shown in
FIGS. 8 and 9
, and tensioning elements
36
a
and
36
b
shown in
FIGS. 3
a
,
3
b
, and
7
apply frictional braking forces on the sheet material to limit free rotation of the sheet material roll R and to restrain lateral translation of the sheet material relative to the rollers
44
a
-
44
d
during dispensing of the sheet material through the dispensing outlet
38
.
When a user pulls the end portion of sheet material extending from the dispensing outlet
38
, the roll of sheet material rotates and tension induced in the sheet material is concentrated at the edges of the sheet material by the narrowed dispensing outlet
38
, initiating separation at the perforation tear line from one or both edges. Continued pulling of the end portion of sheet material propagates the perforation separation across the sheet from the edges toward the center to dispense a single sheet, as shown in FIG.
2
. During pulling of the sheet material, the rollers
44
a
-
44
d
, shown in
FIGS. 3
a
,
4
, and
7
-
9
, and the sheet material roll R rotate in the housing
12
.
If the end portion of sheet material does not extend a sufficient distance out from the dispensing outlet
38
, a user may depress the lever
66
, as shown in
FIG. 5
, while the front cover
14
is maintained in the closed position. Actuating the lever
66
rotates the rollers
44
a
-
44
d
and thereby passes sheet material in the nip out from the dispensing outlet
38
.
As the diameter of the roll R of sheet material is reduced, the roll diameter sensor
108
monitors the diameter of the roll R and, when the diameter of the roll R is small enough to place the roll R in the stub roll compartment of the rear casing
16
, a portion of the indicator
110
extends from the housing
12
, as shown in FIG.
22
. This provides a visual indication of the need to place a new reserve roll in the housing
12
.
To load a new reserve roll of sheet material in the apparatus
10
, the operator pivots the front cover
14
to the open position shown in
FIGS. 3
a
and
23
. When the front cover
14
is opened, the indicator
110
moves in the housing
12
via the opening
114
, as shown in
FIG. 23
, so that the indicator
110
and roll diameter sensor
108
are reset to the position shown in
FIG. 21
upon loading of the new reserve roll and closing of the front cover
14
.
Opening the front cover
14
also moves the nipping element
70
away from the rollers
44
a
-
44
d
to remove the sheet material nip. If a core D, shown in
FIGS. 16
,
17
,
21
, and
22
, of a previously expired stub roll is present in the stub roll compartment of the rear casing
16
, one or both of the tabs
96
a
and
96
b
, shown in
FIGS. 3
a
,
3
b
, and
7
, are pressed to pivot the contact element
86
away from the core D, and the lever
66
is pivoted up and away from the rear casing
16
, as shown in FIG.
6
. The core D is then passed under the rollers
44
a
-
44
d
to remove it from the rear casing
16
.
To move the partially consumed reserve roll R to the stub roll compartment of the rear casing
16
, the operator presses one or both of the tabs
96
a
and
96
b
shown in
FIGS. 3
a
,
3
b
, and
7
to pivot the cam
88
and contact element
86
away from the stub roll compartment, as shown in
FIGS. 6 and 7
. The operator then removes the partially consumed reserve roll R shown in
FIGS. 17 and 22
from the mounts
35
a
and
35
b
and moves this roll into the stub roll compartment of the rear casing
16
to act as a stub roll S, as shown in
FIGS. 18
and
23
. When the stub roll S is moved into the stub roll compartment, the end portion of sheet material extending from the stub roll S remains on the exterior surface of the rollers
44
a
-
44
d
and continues to extend from the dispensing outlet
38
. Releasing the pressure applied to the tabs
96
a
and
96
b
allows the biasing elements
116
a
and
116
b
, shown in
FIG. 3
b
, to bias the contact element
86
against the outer surface of the stub roll S, as shown in
FIGS. 18 and 23
.
The operator then places a new reserve roll R in the mounts
35
a
and
35
b
and passes a relatively short end portion of sheet material from the reserve roll R between the guides
64
a
and
64
b
shown in
FIGS. 3
a
and
4
and the end portion of stub roll sheet material passing on the outer surface of the rollers
44
a
-
44
d
. When the front cover
14
is pivoted to the closed position, as shown in
FIG. 18
, the cam followers
100
a
and
100
b
contact the respective cam surfaces
98
a
and
98
b
on the arms
94
a
and
94
b
. This pivots the upper portion of the nipping element
70
away from the rollers
44
a
-
44
b
to prevent nipping of the end portion of sheet material extending from the reserve roll R. The pivoted position of the nipping element
70
, shown in
FIG. 18
, also extends the isolating elements
102
a
and
102
b
above a top surface of the nipping element
70
. This causes the isolating elements
102
a
and
102
b
to lift the reserve roll R away from the outer surface of the rollers
44
a
-
44
d
and thereby limits contact between the reserve roll R and the rollers
44
a
-
44
d
and between the reserve roll R and stub roll sheet material on the rollers
44
a
-
44
d.
As shown in
FIG. 18
, a lower portion of the nipping element
70
and the outer nipping surface of the rollers
44
a
-
44
d
form a nip for the end portion of sheet material from the stub roll S only. The sheet material is dispensed from the stub roll S in the same way in which sheet material was dispensed from the reserve roll R—by pulling the end portion of sheet material extending from the dispensing outlet
38
, or by pressing the lever
66
to rotate the rollers
44
a
-
44
d
. As the diameter of the stub roll S is reduced, the contact element
86
is biased against the outer surface of the stub roll S and pivots toward the stub roll S, as shown in
FIGS. 19 and 20
. The biasing of the contact element
86
restricts free rotation of the stub roll S and prevents upward movement of the stub roll S in the casing
16
throughout dispensing from the sub roll S. The pivoting of the contact element
86
causes the cam
88
to pivot, as shown in the views of
FIGS. 19 and 20
, thereby moving the cam surfaces
98
a
and
98
b
with respect to the cam followers
100
a
and
100
b.
When almost all of the sheet material is dispensed from the stub roll S, the cam surfaces
98
a
and
98
b
move past the cam followers
100
a
and
100
b
and place the cam followers
100
a
and
100
b
out of contact with the cam surfaces
98
a
and
98
b
, as shown in FIG.
20
. The biasing of the biasing elements
80
a
and
80
b
shown in
FIG. 13
pivots the upper portion of the nipping element
70
toward the rollers
44
a
-
44
d
, as shown in
FIG. 20
, to place the end portion of sheet material from the reserve roll R in the nip between the nipping element
70
and the outer nipping surface of the rollers
44
a
-
44
d
. The pivoting of the nipping element
70
also causes the isolating elements
102
a
and
102
b
to retract and lower the reserve roll R into contact with the end portion of stub roll sheet material passing on the outer circumferential surface of the rollers
44
a
-
44
d.
When the nipping element
70
initially pivots toward the rollers
44
a
-
44
d,
end portions of sheet material from both the reserve roll R and the stub roll S are placed in the nip, as shown in FIG.
20
. When a user pulls the remaining sheets from the stub roll or actuates the lever
66
to dispense sheet material of the stub roll, the rollers
44
a
-
44
d
rotate and feed the sheet material of the reserve roll R through the nip and out from the dispensing aperture
38
along with the last few sheets from the stub roll. Sheet material is then dispensed from the reserve roll R in the same manner as described above in connection with the initial roll R.
The dispensing apparatus
10
of the present invention holds a high capacity of sheet material in a compact space. The capacity of a dispenser is important to purchasers of such systems since the capacity is directly related to costs associated with refilling the dispenser with sheet material. Purchasers of sheet material dispensing systems are also concerned with the space that the sheet material dispenser occupies when in use, i.e., the wall space. The space that a dispenser occupies can be expressed in a variety of ways. One way is by the total volume that the dispenser occupies. Another way is by the projected area of the sheet material dispenser on the mounting surface, i.e., the wall area. Yet another way is by the area of the profile of the side of the dispenser, i.e., the profile area. A “capacity efficient” sheet material dispenser is one which maximizes the ratio of the sheet material volume (capacity) to the total enclosed dispenser volume. One way of evaluating the “capacity efficiency” is by calculating the ratio of the sheet material volume (capacity) to the projected area of the dispenser on the mounting surface. Another way of evaluating the “capacity efficiency” is by calculating the ratio of the sheet material volume (capacity) to the profile area of the side of the dispenser. In effect, the maximum amount of sheet material in the smallest amount of space is ideal.
In one aspect of the invention, the stub roll S and reserve roll R are rotatably positioned in the apparatus
10
, the sheet material of the rolls has a width of at least about 5 inches, and the ratio, expressed as a percentage, of the maximum sheet material volume to the total enclosed volume of the apparatus
10
is preferably at least about 35%, more preferably at least about 40%, and most preferably at least about 45%.
In another aspect of the invention, the stub roll S and reserve roll R are rotatably positioned in the apparatus
10
, the sheet material of the rolls has a width of at least about 5 inches, and the ratio of the maximum sheet material volume expressed in cubic inches to the projected area of the apparatus
10
on the mounting surface expressed in square inches is preferably at least about 3.0 cubic inches/square inch, more preferably at least about 3.1 cubic inches/square inch, and most preferably at least about 3.2 cubic inches/square inch.
In a further aspect of the invention, the stub roll S and reserve roll R are rotatably positioned in the apparatus
10
, the sheet material of the rolls has a width of at least about 5 inches, and the ratio of the maximum sheet material volume expressed in cubic inches to the side profile area of the apparatus
10
expressed in square inches is preferably at least about 4.5 cubic inches/square inch, more preferably at least about 5.0 cubic inches/square inch, and most preferably at least about 5.5 cubic inches/square inch.
In a majority of the areas where sheet material dispensers are typically used, dispensers that produce a low sound level are preferable, particularly in health care facilities and office buildings. The sound level produced by the sheet material dispenser can be magnified depending on the mounting surface material and construction and dispensing environment. Therefore, it is desirable to have a sheet material dispenser that minimizes the sound produced when it is used to dispense sheet material. Known sheet material dispensers were compared to the apparatus
10
of the present invention to determine the level of sound generated when a segment of sheet material was dispensed from the dispensers. The sound was measured in decibels (dBA).
FIG. 25
illustrates the testing conditions used to measure the sound level of the apparatus
10
of the present invention and to measure the sound level of commercial dispensers in tests described below. Each sheet material dispenser was securely mounted to a portable stand
200
constructed of ¾″ thick plywood. The tests were performed in a soundproof enclosure manufactured by: Industrial Acoustics Co., Bronx, N.Y., Model IC 250 Mini Booth. A dosimeter
210
, such as the Permissible Noise Dosimeter manufactured by Quest Electronics, Model Micro-14, was used to record the maximum sound level detected during each dispensing trial. The dosimeter
210
was placed five inches from the center of the dispenser outlet. Ten readings were taken and averaged for each dispenser. A similar type of sheet material was dispensed from each dispenser within a given example.
The apparatus
10
of the present invention produces a maximum sound level preferably less than about 81 dBA, more preferably less than about 79 dBA, and most preferably less than about 76 dBA, when dispensing sheet material therefrom.
EXAMPLE 1
|
Recorded Sound Level in dBA
|
Dispensing
Dispenser
Dispenser
Dispenser
|
Trial
A
B
1
|
|
1
84.7
84.3
72.7
|
2
88.5
84.3
77.6
|
3
85.5
86.2
75.3
|
4
82.5
85.5
75.3
|
5
87.7
84.3
75.7
|
6
85.1
87.3
78.3
|
7
87.O
85.5
76.5
|
8
87.O
82.8
77.6
|
9
88.5
82.1
75.3
|
10
87.0
85.5
76.5
|
Avg.
86.4
84.8
76.1
|
Std Dev.
1.89
1.55
1.60
|
|
Example 1 illustrates a comparison of the compilation of test results of the recorded maximum sound level of individual towel dispensing from different dispensers in a controlled acoustical environment. Comparative Dispensers A and B are commercially available dispensers each including a rotating cut off roll. A rotating cut-off roll is a roller containing a knife or blade that is activated once per revolution to cut the sheet. Non-perforated white paper roll toweling was dispensed from Dispensers A and B. Dispenser
1
is a dispensing apparatus according to the present invention. Perforated white paper roll toweling was dispensed from Dispenser
1
.
|
Recorded Sound Level in dBA
|
Dispensing
Example
Example
|
Trial
2
3
|
|
1
81.3
79.1
|
2
80.6
71.6
|
3
82.5
78.7
|
4
81.7
74.6
|
5
81.7
71.6
|
6
78.7
77.6
|
7
80.6
75.7
|
8
81.3
79.1
|
9
83.2
75.7
|
10
81.3
75.7
|
Avg.
81.3
75.9
|
Std. Dev.
1.20
2.78
|
|
Examples 2 and 3 illustrate a compilation of test results of the recorded maximum sound level of individual towel dispensing in a controlled acoustical environment. Examples 2 and 3 were performed with Dispenser
1
of Example 1. The same perforated white paper roll toweling used in Dispenser
1
of Example 1 was dispensed from Dispenser
1
in Example 3. Brown perforated paper roll toweling having a higher tensile modulus than the white paper toweling used in Example 3 was dispensed from Dispenser
1
in Example 2.
EXAMPLE 4
|
Dispenser 1
Dispenser C
Dispenser D
Dispenser E
|
|
|
v/tev
43%
32%
28%
27%
|
v/pa
3.2
2.9
2.2
2.1
|
v/spa
5.7
4.1
3.4
3.3
|
|
In Example 4, the capacity efficiency of Dispenser
1
according to the present invention and comparative Dispensers C, D, and E was calculated. Comparative Dispenser C is a dispenser described in U.S. patent application Ser. No. 08/384,923, filed on Feb. 7, 1995. Comparative Dispensers D and E are commercially available dispensers each including a rotating cut off roll. The Maximum Sheet Material Volume per Total Enclosed Volume (v/tev) is expressed as a percentage. The ratio of Maximum Sheet Material Volume to Projected Area (v/pa) is expressed in cubic inches/square inch. The ratio of Maximum Sheet Material Volume to Side Profile Area (v/spa) is expressed in cubic inches/square inch.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure and methodology of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Claims
- 1. An apparatus for dispensing sheet material from at least one source of sheet material, the apparatus comprising:a housing defining an interior including a first section for a first source of sheet material and a second section for a second source of sheet material, and an outlet though which an end portion of sheet material is dispensed from at least one of the sources; at least one nipping surface disposed in the housing; and a nipping element pivotally mounted in the housing so that the nipping element pivots between a first position in which a first portion of the nipping element and the nipping surface form a nip for the end portion of sheet material, and a second position in which at least a second portion of the nipping element and the nipping surface form a nip for the end portion of sheet material.
- 2. The apparatus of claim 1, further comprising at least one roller disposed in the housing, wherein the nipping surface is on the roller.
- 3. The apparatus of claim 1, further comprising a plurality of rollers in the housing, wherein the nipping surface is on at least one of the rollers and each of the rollers is mounted in the housing so that the rollers rotate about the same rotational axis.
- 4. The apparatus of claim 1, wherein the nipping element is a plate pivotally mounted in the housing so that the plate pivots between a first position in which an upper portion of the plate is spaced from the nipping surface and a lower portion of the plate and the nipping surface form a nip for an end portion of the sheet material of the first source, and a second position in which the upper and lower portions of the plate and the nipping surface form a nip for at least an end portion of the sheet material of the second source.
- 5. The apparatus of claim 1, further comprising at least one biasing element rotationally biasing the nipping element toward the nipping surface.
- 6. The apparatus of claim 1, wherein the first source of sheet material is a roll of sheet material, and wherein the apparatus further comprises a sensor for sensing the diameter of the roll of sheet material, the sensor comprising at least one surface moving in response to a change in diameter of the roll of sheet material.
- 7. The apparatus of claim 6, further comprising at least one cam follower cooperating with the nipping element, the cam follower contacting a cam surface on the sensor to control pivoting of the nipping element between the first and second positions.
- 8. The apparatus of claim 7, wherein the cam surface is shaped so that the nipping element pivots from the first position to the second position before all of the sheet material is dispensed from the roll, the second portion of the nipping element and the nipping surface forming a nip for at least the sheet material from the second source when the nipping element is in the second position.
- 9. The apparatus of claim 6, wherein the sensor further comprises a contacting element pivotally mounted in the housing, the contacting element including a contacting surface for contacting the roll when the roll is in the first section of the housing, the cam surface cooperating with the contacting element to move in response to pivoting of the contacting element.
- 10. The apparatus of claim 9, wherein the sensor further comprises a cam element having the cam surface thereon, the cam element being pivotally mounted in the housing and being coupled to the contacting element so that pivotal movement of the contacting element moves the cam element.
- 11. The apparatus of claim 10, wherein the contacting element includes at least one slot and wherein the cam element includes at least one projection extending in the slot to guide movement of the cam element.
- 12. The apparatus of claim 9, further comprising at least one biasing element for biasing the contacting element against the roll when the roll is in the first section of the housing.
- 13. The apparatus of claim 1, further comprising at least one isolating element movably coupled to the housing, the isolating element preventing dispensing of sheet material from the second source until a predetermined amount of sheet material from the first source remains.
- 14. The apparatus of claim 13, wherein the apparatus further comprises at least one roller disposed in the housing, the nipping surface being on the roller, the second source being a roll of sheet material, and the isolating element being coupled to the nipping element so that the isolating element moves between a first position placing the roll out of contact with the nipping surface of the roller and a second position placing the roll on the nipping surface of the roller.
- 15. The apparatus of claim 13, wherein the isolating element includes at least one slot and wherein the nipping element further comprises at least one projection extending in the slot to control movement of the isolating element.
- 16. The apparatus of claim 1, further comprising at least one guide in proximity to the nipping surface, the guide positioning an end portion of sheet material from the second source such that the end portion of sheet material from the second source is positioned in the nip formed between the nipping surface and the second portion of the nipping element when the nipping element pivots to the second position and outside the nip formed between the nipping surface and the first portion of the nipping element when the nipping element is in the first position.
- 17. The apparatus of claim 1, wherein the housing further comprises a first housing member, a second housing member, and at least one hinge allowing the first housing member to pivot with respect to the second housing member between a closed position and an open position, one of the nipping element and the nipping surface being located in the first housing member and the other of the nipping element and the nipping surface being located in the second housing member such that the nipping element and the nipping surface form a nip for the end portion of the sheet material when the first housing member is in the closed position and such that the nip opens when the first housing member is in the open position.
- 18. The apparatus of claim 17, wherein the apparatus further comprises at least one roller having the nipping surface thereon, and wherein the first housing member is a front cover and wherein the second housing member is a casing, the nipping element being located in the front cover and the roller being located in the casing.
- 19. The apparatus of claim 1, wherein the housing includes a first elongated slot and a second elongated slot and wherein the nipping element includes a first projection movable in the first slot and a second projection movable in the second slot such that the nipping element is capable of moving axially toward and away from the nipping surface.
- 20. The apparatus of claim 19, further comprising at least one biasing element axially biasing the nipping element toward the nipping surface.
- 21. The apparatus of claim 20, further comprising at least one additional biasing element rotationally biasing the nipping element toward the nipping surface.
- 22. The apparatus of claim 1, further comprising at least one roll of sheet material for being placed in one of the first section and the second section, the sheet material including perforations.
- 23. The apparatus of claim 1, further comprising at least one roll of wound sheet material for being placed in one of the first section and the second section, the sheet material comprising a web of sheet material having two side edges, a terminal end, and an initial end, the sheet material being divided into a plurality of individual sheets by a plurality of perforation tear lines including frangible bonds spaced along the tear line and extending from one edge to the other.
- 24. The apparatus of claim 1, wherein the outlet has a width narrower than a width of the sheet material of both the first and second sources.
- 25. The apparatus of claim 24, wherein the outlet has a width of from about 20% to about 90% of the width of the sheet material.
- 26. The apparatus of claim 24, wherein the outlet has a width of from about 55% to about 85% of the width of the sheet material.
- 27. The apparatus of claim 24, wherein the outlet has a width of from about 65% to about 75% of the width of the sheet material.
- 28. The apparatus of claim 24, wherein the outlet has a width of about 70% of the width of the sheet material.
- 29. The apparatus of claim 1, wherein the closest point on a line extending along an exit end of the nip formed between the first portion of the nipping element and the nipping surface is spaced a distance of from about 0.1 inch to about 3 inches to a point of contact between the sheet material and the edge of the outlet.
- 30. The apparatus of claim 29, wherein said distance is from about 0.8 inch to about 1.1 inches.
- 31. The apparatus of claim 29, wherein said distance is from about 0.9 inch to about 1 inch.
- 32. The apparatus of claim 1, wherein the second source is a roll of sheet material, and wherein the apparatus further comprises at least one tensioning element for contacting an end of the roll of sheet material, the tensioning element limiting free rotation of the reserve roll of sheet material in the second section to induce tension in sheet material being dispensed from the roll.
- 33. The apparatus of claim 1, wherein the second source is a roll of sheet material, and wherein the apparatus further comprises at least one roller having the nipping surface thereon and at least one arm for mounting the roll of sheet material in the second section, the arm allowing the roll of sheet material to contact the roller during dispensing of sheet material from the roll.
- 34. The apparatus of claim 33, further comprising a tensioning element on the arm, the tensioning element contacting an end of the roll of sheet material to limit free rotation of the roll of sheet material, a portion of the tensioning element extending beyond the diameter of the roll of sheet material in the vicinity of a point of contact between the roll of sheet material and the roller to limit lateral travel of sheet material dispensed from the roll.
- 35. The apparatus of claim 1, further comprising at least one roller disposed in the housing and a lever pivotally coupled to the housing, the lever cooperating with the roller so that movement of the lever rotates the roller to feed the end portion of sheet material through the outlet.
- 36. An apparatus for dispensing sheet material from at least one source of sheet material, the apparatus comprising:a housing defining an interior including a first section for a first source of sheet material and a second section for a second source of sheet material, and an outlet though which an end portion of sheet material is dispensed from at least one of the sources; at least one nipping surface disposed in the housing; a sensor for sensing the amount of sheet material of the first source of sheet material, the sensor comprising at least one cam surface moving in response to a change in size of the first source of sheet material; a nipping element cooperating with the nipping surface to form a nip between the nipping element and the nipping surface, the nipping element being movably mounted in the housing to move toward and away from the nipping surface; and at least one cam follower cooperating with the nipping element, the cam follower contacting the cam surface and the cam surface moving with respect to the cam follower to control movement of the nipping element.
- 37. The apparatus of claim 36, further comprising at least one roller disposed in the housing, the nipping surface being on the roller.
- 38. The apparatus of claim 36, further comprising a plurality of rollers in the housing, the nipping surface being on at least one of the rollers and each of the rollers being mounted in the housing so that the rollers rotate about the same rotational axis.
- 39. The apparatus of claim 36, further comprising at least one biasing element for biasing the cam follower toward the cam surface.
- 40. The apparatus of claim 36, wherein the nipping element is movable between a first position and a second position, the nipping element and the nipping surface forming a nip for at least the sheet material of the second source when the nipping element is in the second position, the nip for the sheet material of the second source being opened when the nipping element is in the first position.
- 41. The apparatus of claim 40, wherein the cam surface is shaped so that the nipping element moves from the first position to the second position before all of the sheet material is dispensed from the first source.
- 42. The apparatus of claim 36, wherein the sensor further comprises a contacting element pivotally mounted in the housing, the contacting element including a contacting surface for contacting the first source when the first source is in the first section of the housing, the cam surface cooperating with the contacting element to move in response to pivoting of the contacting element.
- 43. The apparatus of claim 42, wherein the sensor further comprises a cam having the cam surface thereon, the cam being movably mounted in the housing and being coupled to the contacting element so that pivotal movement of the contacting element moves the cam.
- 44. The apparatus of claim 43, wherein the contacting element includes at least one slot and wherein the cam includes at least one projection extending in the slot to guide movement of the cam.
- 45. The apparatus of claim 42, further comprising at least one biasing element for biasing the contacting element against the first source when the first source is in the first section of the housing.
- 46. The apparatus of claim 36, further comprising at least one isolating element pivotally coupled to the housing, the isolating element preventing dispensing of sheet material from the second source until a predetermined amount of sheet material from the first source remains.
- 47. The apparatus of claim 46, wherein the apparatus further comprises at least one roller having the nipping surface thereon, and wherein the isolating element is coupled to the nipping element so that the isolating element moves between a first position placing the second source out of contact with the nipping surface of the roller and a second position placing the second source on the nipping surface of the roller.
- 48. The apparatus of claim 46, wherein the isolating element includes at least one slot and wherein the nipping element further comprises at least one projection extending in the slot to control movement of the isolating element.
- 49. The apparatus of claim 36, further comprising at least one roll of sheet material for being placed in one of the first section and the second section, the sheet material including perforations.
- 50. The apparatus of claim 36, further comprising at least one roll of wound sheet material for being placed in one of the first section and the second section, the sheet material comprising a web of sheet material having two side edges, a terminal end, and an initial end, the sheet material being divided into a plurality of individual sheets by a plurality of perforation tear lines including frangible bonds spaced along the tear line and extending from one edge to the other.
- 51. The apparatus of claim 36, wherein the outlet has a width narrower than a width of the sheet material of both the first and second sources.
- 52. The apparatus of claim 36, wherein the nipping element is a plate pivotally mounted in the housing.
- 53. An apparatus for dispensing sheet material from at least one source of sheet material, the apparatus comprising:a housing defining an interior including a first section for a first source of sheet material and a second section for a second source of sheet material, and an outlet though which an end portion of sheet material is dispensed from at least one of the sources; at least one nipping surface disposed in the housing; a nipping element disposed in the housing, the nipping element cooperating with the nipping surface to form a nip for passage of the sheet material; and at least one isolating element movably mounted in the housing, the isolating element moving between a second source isolating position in which the isolating element positions the second source out of contact with the nipping surface and a second source dispensing position placing the second source on the nipping surface.
- 54. The apparatus of claim 53, further comprising at least one roller disposed in the housing, the nipping surface being on the roller.
- 55. The apparatus of claim 53, further comprising a plurality of rollers in the housing, the nipping surface being on at least one of the rollers and each of the rollers being mounted in the housing so that the rollers rotate about the same rotational axis.
- 56. The apparatus of claim 53, wherein the nipping element is movably mounted in the housing so that the nipping element moves between a first position and a second position, the nipping element and the nipping surface forming a nip for at least the sheet material of the second source when the nipping element is in the second position, the nip for the sheet material of the second source being opened when the nipping element is in the first position.
- 57. The apparatus of claim 56, wherein the isolating element is coupled to the nipping element so that the isolating element pivots from the second source isolating position to the second source dispensing position when the nipping element moves from the first position to the second position.
- 58. The apparatus of claim 57, wherein the isolating element includes at least one slot and wherein the nipping element further comprises at least one projection extending in the slot to control movement of the isolating element.
- 59. The apparatus of claim 53, further comprising a sensor for sensing the amount of sheet material of the first source of sheet material, the isolating element being coupled to the sensor so that the isolating element pivots from the second source isolating position to the second source dispensing position before all of the sheet material has been dispensed from the first source.
- 60. The apparatus of claim 59, wherein the sensor comprises a contacting element pivotally mounted in the housing, the contacting element including a contacting surface for contacting the first source when the first source is in the first section of the housing.
- 61. The apparatus of claim 59, wherein the sensor comprises a movable cam having at least one cam surface thereon, and wherein the apparatus further comprises at least one cam follower cooperating with the isolating element, the cam follower contacting the cam surface to control movement of the isolating element.
- 62. The apparatus of claim 59, wherein the second source is a roll of sheet material, and wherein apparatus further comprises a roller having the nipping surface thereon, the isolating element being positioned under the roll when the roll is in the second section of the housing, the isolating element lifting the roll from the nipping surface of the roller when the isolating element is in the second source isolating position.
- 63. The apparatus of claim 53, further comprising at least one roll of sheet material for being placed in one of the first section and the second section, the sheet material including perforations.
- 64. The apparatus of claim 53, further comprising at least one roll of wound sheet material for being placed in one of the first section and the second section, the sheet material comprising a web of sheet material having two side edges, a terminal end, and an initial end, the sheet material being divided into a plurality of individual sheets by of perforation tear lines including frangible bonds spaced along the tear line and extending from one edge to the other.
- 65. The apparatus of claim 53, wherein the outlet has a width narrower than a width of the sheet material of both the first and second sources.
- 66. A method of dispensing sheet material from a dispenser comprising a housing, at least one nipping surface, and a movable nipping element, the housing defining an interior including a first section accommodating a first source of sheet material and a second section accommodating a second source of sheet material, and an outlet, the method comprising the steps of:dispensing sheet material from the first source, the dispensing comprising passing an end portion of sheet material from the first source through a nip formed between the nipping element and the nipping surface and through the outlet; moving the nipping element with respect to the nipping surface to place an end portion of sheet material from the second source in the nip formed between the nipping element and the nipping surface; and dispensing sheet material from the second source, the dispensing of sheet material from the second source including passing the end portion of the sheet material from the second source through the nip and through the outlet.
- 67. The method of claim 66, wherein the dispensing of sheet material from the first source comprises dispensing sheet material from a stub roll of sheet material and wherein the dispensing of sheet material from the second source comprises dispensing sheet material from a reserve roll of sheet material.
- 68. The method of claim 66, wherein the dispensing of sheet material from the second source occurs before all of the sheet material is dispensed from the first source.
- 69. The method of claim 66, wherein the moving of the nipping element further comprises pivoting the nipping element between a first position in which a first portion of the nipping element and the nipping surface form a nip for the end portion of sheet material from the first source and a second position in which at least a second portion of the nipping element and the nipping surface form a nip for at least the end portion of sheet material from the second source.
- 70. The method of claim 66, wherein the nipping element is a plate, and wherein the moving of the nipping element further comprises pivoting the plate from a first position, in which a first portion of the plate is spaced from the nipping surface and a second portion of the plate and the nipping surface form a nip, and a second position, in which the first and second portions of the plate and the nipping surface form a nip.
- 71. The method of claim 66, further comprising rotationally biasing the nipping element toward the nipping surface.
- 72. The method of claim 66, further comprising axially biasing the nipping element toward the nipping surface.
- 73. The method of claim 66, further comprising sensing the size of the first source of sheet material, and wherein the moving step further comprises moving the nipping element when a predetermined size of the first source is sensed.
- 74. The method of claim 73, wherein the dispenser further comprises a cam surface and a cam follower, and wherein the method further comprises moving the cam surface with respect to the cam follower to control movement of the nipping element.
- 75. The method of claim 74, further comprising the step of biasing the cam follower toward the cam surface.
- 76. The method of claim 74, wherein the dispenser further comprises a contacting element contacting the first source, and wherein the method further comprises moving the contacting element when sheet material is dispensed from the first source and moving the cam surface in response to movement of the contacting element.
- 77. The method of claim 76, further comprising biasing the contacting element against the first source.
- 78. The method of claim 66, wherein the method further comprises the step of placing the second source out of contact with the nipping surface during at least a portion of the dispensing of sheet material from the second source and placing the second source on the nipping surface during the dispensing of sheet material from the second source.
- 79. The method of claim 78, wherein the second source is a roll of sheet material and wherein the dispenser further comprises a roll isolating element and at least one roller having the nipping surface thereon, the method further comprises moving the isolating element between a first position in which the isolating element moves the roll out of contact with the roller and a second position in which the roll is on the roller.
- 80. The method of claim 66, further comprising the step of positioning the end portion of sheet material from the second source so that the end portion of sheet material from the second source is placed in the nip formed between the nipping element and the nipping surface when the nipping element moves to the second position.
- 81. The method of claim 66, wherein the housing comprises a first housing member, a second housing member, and at least one hinge allowing the first housing member to pivot with respect to the second housing member, and wherein the method further comprises the steps of pivoting the first housing member with respect to the second housing member to place the first housing member in an open position allowing access to the interior of the housing and pivoting the first housing member with respect to the second housing member to place the first housing member in a closed position limiting access to the interior of the housing, the nip formed between the nipping element and the nipping surface being open when the first housing member is in the open position.
- 82. The method of claim 66, wherein the dispenser further comprises at least one roller having the nipping surface thereon, and wherein the method further comprises rotating the roller during the dispensing of sheet material from the first source and during the dispensing of sheet material from the second source.
- 83. The method of claim 82, wherein the dispenser further comprises a lever cooperating with the roller and wherein the step of rotating the roller further comprises moving the lever.
- 84. The method of claim 83, wherein the first source is a stub roll of sheet material and wherein the method further comprises the steps of pivoting the lever to allow access to the first portion of the housing and removing an unused portion of the stub roll from the first portion of the housing.
- 85. The method of claim 66, wherein the dispensing of sheet material from the first source further comprises pulling the end portion of sheet material from the first source, and wherein the dispensing of sheet material from the second source further comprises pulling the end portion of sheet material from the second source.
- 86. The method of claim 85, wherein the outlet has a width less than a width of sheet material of the first and second sources, and wherein the method further comprises inducing tension forces in the sheet material at the outlet when the sheet material is pulled.
- 87. The method of claim 85, wherein the sheet material of both the first and second sources includes perforation tear lines, and wherein the method further comprises separating a sheet of material from the sheet material by tearing the sheet material along one of the perforation tear lines.
- 88. The method of claim 66, wherein the second source is a roll of sheet material and wherein the method further comprises the step of limiting free rotation of the roll during the dispensing of sheet material from the roll.
- 89. A method of dispensing sheet material from a dispenser comprising a housing, at least one nipping surface, and a nipping element, the housing defining an interior including a first section accommodating a first source of sheet material and a second section accommodating a second source of sheet material, and an outlet, the method comprising the steps of:positioning the second source out of contact with the nipping surface; dispensing sheet material from the first source, the dispensing comprising passing an end portion of sheet material from the first source through a nip formed between the nipping element and the nipping surface and through the outlet; sensing the quantity of the first source; placing the second source on the nipping surface when a predetermined quantity of the first source is sensed; and dispensing sheet material from the second source, the dispensing of sheet material from the second source comprising passing an end portion of sheet material from the second source through the nip and through the outlet.
- 90. The method of claim 89, wherein the first source is a stub roll of sheet material and the second source is a reserve roll of sheet material, and wherein the step of sensing the quantity of the first source comprises sensing the diameter of the stub roll of sheet material.
- 91. The method of claim 89, further comprising the step of moving the nipping element, when the predetermined quantity of the first source is sensed, from a first position, in which a first portion of the nipping element cooperates with the nipping surface to form the nip, to a second position, in which at least a second portion of the nipping element cooperates with the nipping surface to form the nip.
- 92. The method of claim 89, wherein the dispenser further comprises at least one roller having the nipping surface thereon, and wherein the method further comprises rotating the roller during the dispensing of sheet material from the first source and during the dispensing of sheet material from the second source.
- 93. The method of claim 92, wherein the dispensing of sheet material from the first source further comprises pulling the end portion of sheet material from the first source to rotate the roller, and wherein the dispensing of sheet material from the second source further comprises pulling the end portion of sheet material from the reserve roll to rotate the roller.
- 94. The method of claim 92, wherein the dispenser further comprises a lever cooperating with the roller, wherein the step of dispensing the sheet material from the first source and the step of dispensing sheet material from the second source comprise moving the lever to rotate the roller.
- 95. The method of claim 94, wherein the first source is a stub roll of sheet material and wherein the method further comprises the steps of pivoting the lever to allow access to the first portion of the housing and removing an unused portion of the stub roll from the first portion of the housing.
- 96. The method of claim 89, wherein the dispenser further comprises a cam surface and a cam follower, and wherein the method further comprises moving the cam surface with respect to the cam follower to control placement of the second source on the nipping surface.
- 97. The method of claim 96, further comprising biasing the cam follower toward the cam surface.
- 98. The method of claim 96, wherein the dispenser further comprises a contacting element contacting the first source, and wherein the method further comprises moving the contacting element when sheet material is dispensed from the first source and moving the cam surface in response to movement of the contacting element.
- 99. The method of claim 98, further comprising the step of biasing the contacting element against the outer portion of the first source.
- 100. The method of claim 89, wherein the second source is placed on the nipping surface before all of the sheet material is dispensed from the first source.
- 101. The method of claim 91, further comprising the step of positioning a terminal end of sheet material from the second source so that the end portion of sheet material from the second source is placed in the nip formed between the nipping surface and the nipping element when the nipping element moves to the second position.
- 102. The method of claim 89, wherein the dispensing of sheet material from the first source further comprises pulling the end portion of sheet material from the first source, and wherein the dispensing of sheet material from the second source further comprises pulling the end portion of sheet material from the second source.
- 103. The method of claim 102, wherein the outlet has a width less than a width of sheet material of the first and second sources, and wherein the method further comprises inducing tension forces in the sheet material at the outlet when the sheet material is pulled.
- 104. The method of claim 102, wherein the sheet material of both the first and second sources includes perforation tear lines, and wherein the method further comprises separating a sheet of material from the sheet material by tearing the sheet material along one of the perforation tear lines.
- 105. The method of claim 89, wherein the second source is a roll of sheet material and wherein the method further comprises the step of limiting free rotation of the roll during the dispensing of sheet material from the second source.
- 106. The method of claim 89, wherein the housing comprises a first housing member and a second housing member movable with respect to the first housing member between a closed position limiting access to the interior of the housing and an open position allowing access to the interior of the housing, and wherein the step of positioning the second source out of contact with the nipping surface further comprises placing the second housing member in the open position to open the nip and placing the second housing member in the closed position to place sheet material from the first source in the nip.
- 107. The method of claim 89, wherein the housing comprises a first housing member and a second housing member movable with respect to the first housing member between a closed position limiting access to the interior of the housing and an open position allowing access to the interior of the housing, and wherein the step of positioning the second source out of contact with the nipping surface further comprises placing the second housing member in the closed position and isolating the second source out of contact with the nipping surface when the second housing member is placed in the closed position.
- 108. A method of dispensing sheet material from a dispenser comprisinga housing defining an interior including a first section for a source of sheet material and a second section for the source of sheet material, the second section being larger than the first section, and an outlet through which the sheet material is dispensed, the method comprising the steps of: dispensing the sheet material of the source from the housing while the source is in the second section, the dispensing comprising passing the sheet material of the source through the outlet; sensing the quantity of the source of sheet material in the second section; and providing an indication when the quantity of the source in the second section is small enough to place the source of sheet material in the first section of the housing interior.
- 109. The method of claim 108, wherein the indication is provided before all of the sheet material of the second source is dispensed from the housing.
- 110. The method of claim 108, wherein the providing of the indication includes passing at least a portion of an indicator through an opening in the housing.
- 111. The method of claim 110, wherein the housing comprises a first housing member, a second housing member, and at least one hinge member allowing the first housing member to pivot with respect to the second housing member between a closed position limiting access to the interior of the housing and an open position allowing access to the interior of the housing to replenish the sheet material in the interior of the housing, and wherein the method further comprises moving the first housing member to the open position after the portion of the indicator passes through the opening in the housing and resetting the indicator so that the portion of the indicator is within the housing.
- 112. The method of claim 108, wherein the source of sheet material is a reserve roll of sheet material when the source is in the second section, and wherein the sensing comprises sensing the diameter of the reserve roll of sheet material.
- 113. The method of claim 108, wherein the dispenser further comprises at least one nipping surface and a nipping element in the housing, the nipping element cooperating with the nipping surface to form a nip for the sheet material, and wherein the dispensing further comprises passing the sheet material through the nip.
- 114. The method of claim 108, wherein the dispensing of sheet material further comprises pulling an end portion of the sheet material.
- 115. The method of claim 114, wherein the outlet has a width less than a width of the sheet material, and wherein the method further comprises inducing tension forces in the sheet material at the outlet when the sheet material is pulled.
- 116. The method of claim 114, wherein the sheet material includes perforation tear lines, and wherein the method further comprises separating a sheet of material from the sheet material by tearing the sheet material along one of the perforation tear lines.
- 117. An apparatus for dispensing perforated sheet material, the apparatus comprising:a housing defining an interior for accommodating at least one source of sheet material therein and an outlet through which an end of the sheet material is dispensed from the at least one source, the outlet having a width less than the overall width of the sheet material; and a first surface and a second surface forming a nip through which the sheet material passes, wherein the nip and the oulet are configured such that a least one angle defined by a first line extending along an exit of the nip and a second line formed between the outermost lateral exit end of the nip along the first line that contains the sheet material and the point of contact between the sheet material and the edge of the outlet is from about 26° to about 36°, and wherein the closest point on a line extending along an exit of the nip is spaced a distance of from about 0.1 inch to about 3 inches to the point of contact between the sheet material and the edge of the outlet.
- 118. The apparatus of claim 117, further comprising a nipping element and at least one roller, said first surface being on the nipping element and said second surface being on the roller.
- 119. The apparatus of claim 117, wherein the distance is from about 0.9 inch to about 1 inch.
- 120. The apparatus of claim 117, wherein the at least one angle is from about 29° to about 36°.
- 121. The apparatus of claim 117, wherein the at least one angle is from about 32° to about 33°.
- 122. The apparatus of claim 117, wherein the outlet has a width of from about 20% to about 90% of the width of the sheet material.
- 123. The apparatus of claim 117, wherein the outlet has a width of from about 55% to about 85% of the width of the sheet material.
- 124. The apparatus of claim 117, wherein the outlet has a width of from about 65% to about 75% of the width of the sheet material.
- 125. The apparatus of claim 117, wherein the outlet has a width of about 70% of the width of the sheet material.
- 126. The apparatus of claim 117, wherein said source of sheet material is a roll of sheet material.
- 127. The apparatus of claim 126, wherein said roll of sheet material includes a web of sheet material comprising two side edges, a terminal end and an initial end, wound into a roll and divided into a plurality of individual sheets by a plurality of perforation tear lines including frangible bonds spaced along the tear line and extending from one edge of the roll to the other.
- 128. The apparatus of claim 126, wherein the roll of sheet material is rotatably mounted in said housing.
- 129. The apparatus of claim 117, wherein the overall width of the sheet material is from about 4 inches to about 14 inches.
- 130. The apparatus of claim 117, wherein the sheet material comprises paper toweling.
- 131. The apparatus of claim 117, wherein the sheet material comprises nonwoven material.
- 132. The apparatus of claim 117, wherein the sheet material comprises airlaid material.
- 133. The apparatus of claim 1 further comprising:a sensor for sensing the amount of sheet material of the first source of sheet material, the sensor comprising at least one cam surface moving in response to a change in size of the first source of sheet material; and at least one cam follower cooperating with the nipping element, the cam follower contacting the cam surface and the cam surface moving with respect to the cam follower to control movement of the nipping element.
- 134. The apparatus of claim 1 further comprising at least one isolating element movably mounted in the housing, the isolating element moving between a second source isolating position in which the isolating element positions the second source out of contact with the nipping surface and a second source dispensing position placing the second source on the nipping surface.
- 135. The apparatus of claim 1, wherein the second section is larger than the first section, and wherein the apparatus further comprises:a sensor disposed in the housing for sensing the size of the second source while the second source is in the second section; and an indicator cooperating with the sensor to provide an indication when the size of the second source is small enough to place the second source of sheet material in the first section of the housing interior.
- 136. An apparatus for dispensing sheet material from at least one source of sheet material, the apparatus comprising:a housing defining an interior including a first section for a first source of sheet material and a second section for a second source of sheet material, the second section being larger than the first section, and an outlet though which an end portion of sheet material is dispensed from at least one of the sources; at least one nipping surface disposed in the housing; a nipping element pivotally mounted in the housing so that the nipping element pivots between a first position in which a first portion of the nipping element and the nipping surface form a nip for the end portion of sheet material, and a second position in which at least a second portion of the nipping element and the nipping surface form a nip for the end portion of sheet material; at least one isolating element movably mounted in the housing, the isolating element moving between a second source isolating position in which the isolating element positions the second source out of contact with the nipping surface and a second source dispensing position placing the second source on the nipping surface a first sensor for sensing the amount of sheet material of the first source of sheet material, the first sensor comprising at least one cam surface moving in response to a change in size of the first source of sheet material; at least one cam follower cooperating with the nipping element, the cam follower contacting the cam surface and the cam surface moving with respect to the cam follower to control movement of the nipping element; a second sensor disposed in the housing for sensing the size of the second source while the second source is in the second section; and an indicator cooperating with the second sensor to provide an indication when the size of the second source is small enough to place the second source of sheet material in the first section of the housing interior.
US Referenced Citations (132)
Foreign Referenced Citations (30)
Number |
Date |
Country |
1121769 |
Apr 1982 |
CA |
1137935 |
Dec 1982 |
CA |
1154411 |
Sep 1983 |
CA |
1117917 |
Feb 1984 |
CA |
1176609 |
Oct 1984 |
CA |
1211740 |
Sep 1986 |
CA |
1230865 |
Dec 1987 |
CA |
2011272 |
Mar 1990 |
CA |
1269351 |
May 1990 |
CA |
1288395 |
Sep 1991 |
CA |
2014209 |
Oct 1991 |
CA |
2036306 |
Feb 1992 |
CA |
1301712 |
May 1992 |
CA |
2039382 |
Sep 1992 |
CA |
1311222 |
Dec 1992 |
CA |
2073931 |
Jan 1993 |
CA |
2116671 |
Mar 1993 |
CA |
2067970 |
Aug 1993 |
CA |
2090776 |
Nov 1993 |
CA |
2075140 |
Dec 1993 |
CA |
2092585 |
May 1994 |
CA |
2154159 |
Aug 1994 |
CA |
2183524 |
Oct 1995 |
CA |
2162745 |
Jun 1996 |
CA |
2218427 |
Aug 1996 |
CA |
2199092 |
Sep 1997 |
CA |
2212940 |
Apr 1998 |
CA |
2706234A1 |
Aug 1978 |
DE |
0 319 166 |
Jun 1989 |
EP |
1325923 |
Aug 1973 |
GB |