The invention relates to sheet-metal elements made of flexibly rolled material strip having different thicknesses in the longitudinal direction of the strip.
Flexibly rolled material strip is produced by rolling starting material having an initially constant thickness with variable roller gap thickness. Such rolling methods to produce flexibly rolled material strip and reshaping methods to produce sheet-metal elements therefrom are known from the prior art.
DE-PS 104 875 describes how a strip-shaped or flat piece of sheet-metal is brought to different wall thicknesses by rolling out, and from the piece of sheet-metal having variable wall thicknesses thus obtained, a tube having different wall thickness in the longitudinal direction is bent round and soldered along the slit.
From EP 0 788 849 A1 it is known to first roll a metal sheet such that parallel indentations are formed transverse to the direction of rolling, wherein the rolled sheet-metal is then cut to size and the pieces of sheet-metal are finished to form tubes having variable wall thickness in the longitudinal direction by reshaping the rolled metal sheet and joining the butting edges.
Sheet-metal elements having uniform cross-section or variable cross-section in one longitudinal direction can be exposed to different loadings in different longitudinal and circumferential sections when used as intended. When manufacturing sheet-metal elements from material having uniform wall thickness, the areas exposed to lower loading are thus over-dimensioned and result in excessive weight of the component. This is especially undesirable in vehicle construction.
It is furthermore known that in vehicle construction a defined deformation behavior is required of sheet-metal elements when exceeding their strength limit, that is in the case of a vehicle crash. Such deformation behavior can be brought about by shaping the sheet-metal elements and/or by using sheet-metal elements having wall thickness varying over the length or over the circumference.
The object of the present invention is to provide sheet-metal elements made of flexibly rolled material strip which allow extended usage of such sheet-metal elements in vehicle construction, especially as chassis and vehicle components and as bodywork parts.
Insofar as flexibly rolled material strip is discussed here, this includes both the possibility of reshaping the material strip, which has not been divided, after rolling to form sheet-metal elements and then cutting to length. Also the material strip may be cut to length after the flexible rolling and then reshaped to form sheet-metal elements. And finally, the material strip may be cut to length before the flexible rolling, and then reshaping flexibly rolled blanks to form sheet-metal elements.
The sheet-metal elements described hereinafter preferably comprise sheet-metal elements manufactured of cold-rolled material strip.
A first solution according to the invention consists in a sheet-metal element reshaped about the longitudinal direction of the strip from a flexibly rolled material strip having different thicknesses in the longitudinal direction of the strip to form a tube or profile body having an out-of-round cross-section and variable wall thickness over the length.
A second solution consists in a sheet-metal element reshaped transverse to the longitudinal direction of the strip from flexibly rolled material strip having different thicknesses in the longitudinal direction of the strip to form a tube or profile body having an out-of-round cross-section and variable wall thickness over the circumference.
The out-of-round profile cross-section can mean uniform or symmetrical cross-sections, for example, polygonal or oval cross-sections, or also completely asymmetric cross-sections. The alternatives of a longitudinally welded closed profile or a profile which is open in cross-section are included here. The sheet-metal elements according to the first solution especially under axial loading show regionally different deformation behavior while the sheet-metal elements according to the second solution can especially exhibit different behavior under bending in different planes. Both can be specifically used for the purposes of saving weight and pre-defined deformation in longitudinal vehicle supporting members or in lateral supporting members (side impact protection).
In a particular embodiment, it is provided that the sheet-metal elements have a variable cross-section in the longitudinal direction, especially a continuously and similarly varying cross-section. This can be brought about by cutting the material strip to length where one or two wedge-shaped elements are cut away or by joining the material strip such that it overlaps, with increasing overlapping.
According to a further embodiment, it is provided that the sheet-metal elements have longitudinal sections which differ from the uniform, for example, a round cross-section. This can be accomplished by subsequently reshaping originally uniformly shaped profiles, for example, using an internal high-pressure deformation process in which individual profile sections are radially expanded or using a conventional reshaping method such as rolling or pressing in which individual profile sections are reduced in cross-section or deformed.
Furthermore, the sheet-metal elements can run curved in the longitudinal direction wherein preferably straight profiles are first manufactured which are then bent.
The sheet-metal elements can have a constant inner cross-section with differences in wall thickness on the outside or a constant outer cross-section with differences in wall thickness on the inside. Both can be achieved by suitable flexible rolling of the starting material and suitable deformation steps. If the material strip is produced with symmetrical variations in thickness at one longitudinal plane, the differences in wall thickness on the finished component are made noticeable on the inside and on the outside.
For the aforementioned purposes of saving weight and defined deformation behavior, especially large and especially flowing differences in thickness can be particularly advantageous. For this purpose it is proposed that the difference in wall thickness relative to the maximum thickness should be at least 25% on the flexibly rolled starting material and thus on the sheet-metal element.
In order to further increase the saving in weight and the differentiated deformation behavior, it can be advantageous if the sheet-metal elements are provided with punched holes in their wall surface, these preferably being produced on the flexible material strip before the reshaping to form the sheet-metal element. On the other hand, in order to increase the strength, it can be advantageous if the wall surfaces are provided with structures, for instance, indentations in a uniform grid arrangement, and this can also favorably influence the self-oscillation behavior of the sheet-metal elements.
Further advantageous embodiments consist in the fact that the sheet-metal elements may have an end section with greater wall thickness which allows favorable axial connection and/or that at least one of the end sections is expanded in cross-section as a push-fit fitting in order to make plug connections between components of the same kind.
Another solution comprises a sheet-metal element with variable wall thickness in one direction, which is reshaped in a direction substantially parallel to the longitudinal direction of the strip from a flexibly rolled material strip having different thicknesses in the longitudinal direction. The strip forms a curved or corrugated surface element so that regions of equal wall thickness run perpendicular to the direction of beads, edges or cylinder lines.
Another solution comprises a sheet-metal element with variable wall thickness in one direction, which is reshaped substantially perpendicular to the longitudinal direction of the strip from a flexibly rolled material strip having different thicknesses in the longitudinal direction. The strip forms a curved or corrugated surface element so that regions of equal wall thickness run parallel to the direction of beads, edges or cylinder lines.
A last solution comprises a sheet-metal element with variable wall thickness in one direction, which is reshaped from flexibly rolled material strip having different thicknesses in the longitudinal direction. The strip forms a spatially deformed surface element, for example, in this case, lines of intersection deviating from a straight line are formed in the direction of two perpendicularly intersecting sections. This also includes matching lines of intersection in rotationally symmetrical sheet-metal elements.
In the sheet-metal elements hereby defined the regions of greater wall thickness running parallel to one another can also serve to increase the strength with a simultaneous saving in weight as a result of the interposed regions of smaller wall thickness. The regions of smaller wall thickness can also be used as predefined deformation regions in the event of the strength limit being exceeded. In the aforesaid spatially deformed sheet-metal elements the self-osciallaiton behavior can especially be influenced with a simultaneous saving of material.
In a preferred embodiment, a plurality of the sheet-metal elements can be brought together along longitudinal edges to form a surface element or a plurality of the sheet-metal elements can be brought together along a plurality of parallel longitudinal edges to form a hollow body. In this case, open-ended hollow bodies are formed. Finally, a plurality of said sheet-metal elements can be brought together along circumferential edges to form a hollow body.
Hollow bodies closed on three or four sides may be produced. The hollow bodies can also have a variable cross-section in one longitudinal direction, especially a continuously and similarly varying cross-section. The sheet-metal elements can also have longitudinal sections which differ from a uniform cross-section in one longitudinal direction. Finally, they can also run curved in one longitudinal direction. In the case of the sheet-metal elements in the form of hollow bodies, constant inner cross-sections with differences in wall thickness on the outside and constant outer cross-sections with differences in wall thickness on the inside can also be realized.
For the aforesaid reasons, a difference in wall thickness of at least 25% relative to the maximum thickness is also to be preferred here. To save weight, the wall surfaces can again be provided with punched holes or to increase strength, they can have a wall structure, such as indentations in a uniform grid. The sheet-metal elements hereby described can also have sections of greater wall thickness to improve the connection, especially by welded joints. In the case of oblong sheet-metal elements of the type having closed cross-sections, in this case also, one of the end sections can be expanded in cross-seciton as a push-fit fitting.
Sheet-metal elements according to the invention as profile bodies having variable wall thickness in the longitudinal direction can especially be used as vehicle supporting members having defined graded loading or deformation behavior in the longitudinal direction in motor vehicles. In this case, a bending strength which differs over length is also appropriate when different bending loads act on the supporting members, such as a compressive or buckling strength which differs over the length for supporting members exposed to axial forces in the case of a crash. In addition, sheet-metal elements with said properties can also be used as impact absorbers having defined graded deformation behavior in the longitudinal direction. A design based on controlled axial shortening in the case of a crash is hereby made possible.
According to another proposal, sheet-metal elements according to the invention as profile bodies having variable wall thickness in the circumferential direction can also be used as vehicle supporting members having defined graded deformation behavior or buckling behavior over the circumference. In this case, a higher geometrical moment of inertia is to be provided in the main bending plane of the supporting member while a lower geometrical moment of inertia can be provided in the bending planes exposed to lower loading in order to save material.
Without being restrictive, the following applications of profiles according to the invention in vehicles may be mentioned: longitudinal supporting members (front, back), shock absorbers (front, back), axle cross members, seat cross members, sills, tunnel reinforcement profiles, A, B and C pillars, roof frames and roof cross members.
Flat sheet-metal elements according to the invention can also be used as bodywork outer panels, where cross-pieces having greater wall strength can also take on the function of beads or grooves with regard to increased form stability. In this case, even a specific reinforcement of the structure can be brought about for the case of a side-on crash.
Another preferred use of flat sheet-metal elements comprises a vehicle floor pan including the tunnel which can be composed of various sheet-metal elements which can be optimized with respect to their strength and their weight by using flexibly rolled material. The structural strength for various cases of crashes can also hereby be improved with reduced usage of material.
Preferred embodiments of the invention are shown in the drawings and are described hereinafter.
In
In
In
In
In
In
In
In
In
In
In
In
Number | Date | Country | Kind |
---|---|---|---|
10323693.7-24 | May 2003 | DE | national |