Embodiments described herein relate generally to a technology of binding a plurality of sheets with glue.
In the past, there has been proposed a sheet post processing apparatus (Finisher) which sequentially receives the sheet subjected to printing processing discharged from an image forming apparatus and then carries out a binding processing. As a binding section carrying out a binding processing, there is a glue binding section. Every time a new sheet (sheet except the last one) is stacked in a processing tray, the glue binding section enables glue to be adhered to a specific position (a part corresponding to the binding margin) of the sheet at the uppermost position. Then, every time stacking a new sheet one by one on the sheet already discharged, a processing for adhering glue to the part corresponding to the binding margin is carried out.
The glue to be used by the glue binding section includes the liquid glue, the solid glue, the tape glue and the like. The glue waits in a state in which the adhering surface thereof is exposed so as to be capable of being adhered to a sheet quickly.
However, in a case in which the glue binding processing has not been carried out for a long time, the glue in the waiting state gets bad because the adhering surface thereof is dry, and the gluing strength is reduced. Thus, the gluing strength of the glue for bonding a first sheet and a second sheet is insufficient, and as a result, the first sheet may be peeled off.
Therefore, it is desired to bond the first sheet and the second sheet with sufficient gluing strength.
In accordance with one embodiment, a sheet post processing apparatus comprises: a processing tray, a gluing section and a control section. Sheets are placed one by one in the processing tray. The gluing section enables glue to be adhered to the glue binding margin part of the sheet already placed in the processing tray. The control section includes a glue supply mode for supplying glue parts in such a manner that a glue part, which is different from a waiting glue part waiting for a next gluing when the previous glue binding is ended, is supplied to a glue adhering section of a first sheet for gluing with a second sheet through the gluing section.
Hereinafter, the sheet post processing apparatus according to the present embodiment is described in detail with reference to the accompanying drawings.
In
For example, the sheet post processing apparatus F receives the sheet discharged from the image forming apparatus I which is connected to be capable of communicating with the sheet post processing apparatus F, and performs various processing such as a binding processing, a folding processing, a drilling processing and the like on the sheet.
The post processing apparatus F roughly comprises, for example, the binding processing section 1, a folding processing section, a stapler, a drilling section and the like as processing functions. However, the present invention is not limited to this. As long as it is provided with at least the binding processing section 1, the configuration of the post processing apparatus F is not limited.
The binding processing section 1 is provided with a gluing section 10 carrying out gluing processing on the top surface of the sheet S stacked in a processing tray 2 (refer to
The gluing section 10 includes a glue material imparting section 14 that is accommodated in a holder 11 in an exchangeable manner, and a cradle 12 which is fixedly arranged below the holder 11.
The glue material imparting section 14 enables the liquid glue, solid glue, tape glue and the like to be adhered to a sheet. An example of the glue material imparting section 14 using the tape glue is shown in
The glue material imparting section 14 shown in
The feed reel 142 and the winding reel 143 are rotatably supported by a substrate 146, and are stretched via rollers 147 and 148 that are arranged at the front end of the substrate 146. In a pressing transfer area T having a length between the roller 147 and the roller 148, the substrate 146 is pressed towards the direction indicated by an arrow 200, and the transferred glue part 145 of the adhesive tape 141 is pressed against a transferred surface 201, and then when the substrate 146 is returned upward, the transferred glue part 145 in the pressing transfer area T is to be transferred to a sheet serving as the transferred surface 201. Further, the substrate 146 is slid in a direction indicated by an arrow 202 in a state in which the transferred glue part 145 is pressed against the transferred surface 201, and then when the substrate 146 is returned upward, the transferred glue part 145 having a sliding length of the substrate 146 is to be transferred to the transferred surface 201.
In the present embodiment, the substrate 146 is arranged inside an exterior case 203 to be capable of moving in the vertical direction. In
A third gear G3 is arranged on the winding reel 143 through a one-way clutch mechanism (not shown) coaxially with the first gear G1. A rack gear G4 which is engaged with the third gear G3 is arranged on the inner side of the case 203.
If the third gear G3 is rotated clockwise, the one-way clutch connects the third gear G3 with the winding reel 143, and in this way, the winding reel 143 winds the adhesive tape 141 with the rotation force of the third gear G3.
On the contrary, if the winding reel 143 is rotated clockwise, the one-way clutch releases the connection of the third gear G3 with the winding reel 143, and then only the winding reel 143 rotates in the winding direction.
If the substrate 146 is pressed downward by the spring force of the spring member 204 against the exterior case 203, the third gear G3 is rotated clockwise through the engagement with the rack gear G4, and the adhesive tape 141 is wound on the winding reel 143. That is, during the period when the exterior case 203 is being moved upward after the base material 145 is transferred, in synchronization with the pressing of the substrate 146 downward by the spring force of the spring member 204, the adhesive tape 141 is wound on the winding reel 143 in a given amount (the position of the transferred glue part 145 in the pressing transfer area T, as shown in
Further, when the glue material imparting section 14 is slid in the direction indicated by the arrow 202 to adhere glue, even if the rotation force in the winding direction is applied to the winding reel 143, it is also guaranteed that the winding reel 143 can be rotated freely because the winding reel 143 is in a non-connected state with the third gear G3 through the action of the one-way clutch.
Though in the configuration shown in
Further, when carrying out glue binding after a next sheet is placed on the sheet already placed in the processing tray 2, the upper sheet is pressed downward by a pressing plate 13 before the transferred glue part 145 is adhered to the upper sheet. In this way, the upper sheet can be strongly adhered to a lower sheet with the transferred glue part 145 adhered therebetween. The pressing plate 13 is formed in a concave shape in its longitudinal section as shown in
As shown in
Thus, in a case in which the gluing processing on a next sheet has not been carried out for a long time, there is a possibility that the adhesive force is reduced because the “waiting glue part” is dry.
Thus, in the present embodiment, there provided is a glue supply mode including a re-coating mode in which the transferred glue part 145 is overlapped and coated on a glue adhering section G of the first sheet S for adhering glue for glue binding of the first sheet S, and a long-coating mode in which the transferred glue part 145 is coated from a position (start point) that is deviated from the glue adhering section G towards the glue adhering section G of the first sheet S.
In the re-coating mode, the transferred glue part 145 at uppermost position isn't exposed to air. Moreover, in the long-coating mode, the transferred glue part 145 in the pressing transfer area T which has a possibility that the gluing strength thereof is reduced is adhered to the part deviated from the glue adhering section G, while the transferred glue part 145 having sufficient gluing strength is adhered to the glue adhering section G. In this way, a first sheet S1 is firmly bound with a second sheet S2 through the transferred glue part 145 that is adhered to the glue adhering section G.
In the re-coating mode shown in
After the lifting process (d) for lifting the glue material imparting section 14, the lowering process (b) for lowering the glue material imparting section 14 is carried out again. Then, similar to the first time gluing process (c), a second gluing process is carried out. After the second time gluing process is completed, if a second time lifting process (e) is carried out, a transferred glue part 145 (a second transferred glue part 145b) is adhered to the first transferred glue part 145a on the first sheet S1. Then, the glue material imparting section 14 waits at the waiting position until the second sheet S2 is sent.
In the long-coating mode shown in
If the horizontal movement process (b) of the glue material imparting section 14 is ended, subsequently, the lowering process (c) for lowering the glue material imparting section 14 in the direction indicated by the arrow Y1 is carried out. When the lowering process (c) is ended, the glue material imparting section 14 is contacted with the first sheet S1 in a pressed state, and the front end of the transferred glue part 145 facing the pressing transfer area T is positioned at the long-coating start position H.
Next, in order to perform long-coating for the transferred glue part 145, the glue material imparting section 14 is horizontally moved in the direction indicated by an arrow X2, and a long-coating process (d) for adhering a transferred glue part 145 (a long-coating transferred glue part 145c) from the long-coating start position H to the end of the glue adhering section G is carried out.
If the long-coating process (d) is ended, the lifting process (e) for lifting the glue material imparting section 14 in the direction indicated by the arrow Y2 is carried out. Then, the glue material imparting section 14 waits at the waiting position until the second sheet S2 is sent.
As shown in
During the period from a moment at which the adhesion is started to a moment at which the long-coating transferred glue part 145c reaches the glue adhering section G, the long-coating transferred glue part 145c to be adhered to the sheet S from the long-coating start position H of which the part having low gluing strength is adhered, and the gluing strength of the transferred glue part to be adhered to the glue adhering section G will be sufficient.
Though the long-coating start position H is preset, it may also be changed according to manual operation.
Whether to execute re-coating mode or long-coating mode is set by the user. Further, when a given period elapses after the glue binding is carried out, a mode that is already set is executed automatically. The given period is considered to be a period during which the glue is dry and the gluing strength is reduced. Generally, such a period can be set to be a relative long period such as several days, several weeks or one month by the user. Further, through the manual operation, even in the given period, the transferred glue part 145 of which the gluing strength is guaranteed in the re-coating mode or the long-coating mode can be adhered to the glue adhering section G.
In the sheet post processing apparatus, a controller 50, a sheet feed section 58, a gluing section 10, a display section 55 and an operation section 56 are connected with a bus line 60, and a sheet feed signal 57 from an image forming apparatus is input to the controller 50.
Whether to set a re-coating mode or to set a long-coating mode is displayed on the display section 55 and is selected through the operation section 56. Further, a manual operation for manually operating the re-coating mode or the long-coating mode is displayed on the display section 55 and can be selected through the operation section 56. The position of the long-coating start position H in the long-coating mode can be changed through the operation section 56.
The controller 50 comprises a processor 51 including a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) and a memory 52.
The processor 51 which includes a timer starts the timer after the glue binding processing is ended. If the given period from the start of the timer elapses, either the re-coating mode or the long-coating mode is started. The given period is set to be a period equivalent to one during which the gluing strength is reduced in a state in which the glue to be used in the glue binding processing is exposed in the air. For example, it can be set to be a relative long period such as several days, several weeks or one month. The set processing of the given period is set by operating the operation section 56 by the user, or is recorded in the glue material imparting section 14 in advance and then is to be sent to the controller 50 if the glue material imparting section 14 is set in the holder 11.
The sheet feed signal 57 is output when the first sheet is to be sent to the sheet post processing apparatus after being printed by the image forming apparatus. When receiving the sheet feed signal 57, the controller 50 sets the re-coating mode or the long-coating mode. If the re-coating mode or the long-coating mode is executed on the first sheet S1, the time required for the gluing processing becomes longer. Thus, before the second sheet S2 is sent to the sheet processing tray 2, various processing in which the sheet feed section 58 is controlled to make the second sheet S2 to be temporarily stored in an intermediate tray and the like is carried out.
The memory 52, which is, for example, a semiconductor, comprises an ROM (Read Only Memory) 53 for storing various control programs and an RAM (Random Access Memory) 54 for providing a temporary work area for the processor 51. For example, the ROM 53 stores programs for executing the re-coating mode or the long-coating mode set based on various given periods.
In ACT 1, it is determined whether or not the glue binding processing is ended. If it is determined in ACT 1 that the glue binding processing is ended (YES in ACT 1), ACT 2 is taken.
The timer is started in ACT 2, and then ACT 3 is taken.
In ACT 3, it is determined whether or not a sheet feed signal is received. If it is determined in ACT 3 that the sheet feed signal is received (YES in ACT 3), ACT 4 is taken.
In ACT 4, it is determined whether or not the given period elapses. That is, in a case in which a next glue binding processing is started after the previous glue binding processing is ended, it is determined, based on the timing of the timer, whether or not the given period to be a measurement of whether or not the glue in the glue material imparting section 14 initially adhered to the sheet is dry elapses. If it is determined in ACT 4 that the given period elapses (YES in ACT 4), ACT 5 is taken. If it is determined in ACT 4 that the given period doesn't elapse (NO in ACT 4), ACT 10 is taken. In ACT 10, a general gluing processing is carried out and then ended.
In ACT 5, a first sheet S1 is sent to and placed in the processing tray 2, and then ACT 6 is taken.
In ACT 6, it is determined whether or not the re-coating mode is set, and ACT 7 is taken if the re-coating mode is set (YES in ACT 6), while ACT 8 is taken if the long-coating mode is set (NO in ACT 6).
In ACT 7, the gluing section 10 is driven to carry out a re-coating process so that a transferred glue part 145 is recoated to the glue adhering section G of the first sheet S1 for twice, and then ACT 9 is taken.
In ACT 8, the gluing section 10 is driven to carry out a long-coating process. The long-coating process means that the transferred glue part 145c is adhered from the glue adhering start position H that is set to be deviated from the glue adhering section G to the end of the glue adhering section G with respect to the glue binding margin part (where the glue of the first sheet S1 is adhered). Thus, the transferred glue part adhered to the glue adhering section G has a sufficient gluing strength.
In ACT 9, the processing of coating the second sheet and each of the subsequent sheets with glue is carried out for once, and the processing of coating the sheet just before the last page with glue is also carried out for once. If the sheet of which the last page is stacked in the processing tray 2 is placed at the uppermost position, the pressing plate 13 shown in
According to the present embodiment, if the liquid glue, the solid glue or the tape glue is exposed to air because it is exposed for a long period, the gluing strength is reduced due to the dryness of the liquid glue, the solid glue or the tape glue. The transferred glue part having low gluing strength cannot be directly used to contact with the second sheet unless a re-coating process or a long-coating process is carried out. Then, the glue having a sufficient adhesive strength is used to glue with a second sheet, and therefore, the first sheet cannot be peeled off from the second sheet.
It is exemplified that the processing described in
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5899649 | Kohtani | May 1999 | A |
20150063953 | Taguchi | Mar 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160207296 A1 | Jul 2016 | US |