This invention relates to a sheet processing apparatus for processing sheets, and to an image forming apparatus, more particularly to a technique of improving the alignment of sheets temporarily placed on a sheet tray.
Some of the image forming apparatuses for use in copiers, laser-beam printers, facsimiles and composite apparatuses, each comprising these, have a sheet processing apparatus that performs a sheet processing such as binding sheets each having an image formed on it.
In such an image forming apparatus, the sheet processing apparatus will make an untidy sheet bundle if the sheets are not aligned on the sheet tray. The untidy sheet bundle must be unbundled and bundled again. Therefore, it is important to align the sheets well in the sheet processing apparatus.
It is recently demanded that the sheet processing apparatus should hold many sheets and process them at high speed. An apparatus that may meet this demand is disclosed in Japanese Patent No. 4,298,360 (corresponding to U.S. Pat. No. 7,192,020 B2 and to Chinese Patent 100335388 C, hereinafter referred to as “patent documents”). This apparatus, shown in
In this apparatus, while the binding unit TSP is binding the sheets placed on the sheet tray T, the following sheets are kept waiting at a standby tray BT so that they may be processed in a large number and at high speed. The standby tray BT (generally called “buffer tray”) is designed to keep one to three sheets waiting. While the sheets are so kept waiting, the sheets on the sheet tray T are bound together, forming a bundle.
As shown in
Meanwhile, the following sheets (WP1 to WP3) are nipped by the delivery rollers R. At this time, the delivery rollers R are stopped for some time and then rotated in the reverse direction. The following sheets are thereby switched back above the sheet tray T and then placed on the sheet tray T. This method of delivering the sheets is generally called “simultaneous bundle delivering”, and enhances the speed of delivering the following sheets from the standby tray BT. Ultimately, the apparatus can operate at high speed.
In the apparatus disclosed in the above-identified patent document, the last following sheet WP3 is set nearer to the front end of the sheet bundle BP than the other following sheets WP1 and WP2 by distance wp11. This is because the following sheets may be conveyed in wrong order as the delivery rollers R rotate, and such wrong-order conveyance must be prevented. (See FIG. 47 of the above-identified patent document.)
In the apparatus disclosed in the above-identified patent document, only the third following sheet is set off toward the front end of the sheet bundle. Therefore, when 50 to 70 sheets are mounted, forming a bundle BP as shown in
Thus, the uppermost following sheet WP3 contacting the upper delivery roller R1 moves to the right as shown in
If there are two following sheets, they may be set off by a longer distance wp11. In this case, however, they will move too much, and it will take a long time to align them or they will not be aligned at all.
In view of the above, the object of this invention is to provide a sheet processing apparatus and an image forming apparatus, in which the offset distance of the following sheets is changed in accordance with the thickness of the sheet bundle (i.e., number of sheets forming the bundle) mounted on the sheet tray, thereby reducing the erroneous alignment of sheets, regardless of the thickness of the sheet bundle.
To achieve the above-mentioned object, there is provided a sheet processing apparatus which comprises: conveyance rollers configured to convey sheets in a prescribed conveyance direction; a sheet tray configured to collect the sheets conveyed from the conveyance rollers, thereby forming a sheet bundle, and to hold the sheet bundle at a prescribed position; a wait path provided upstream in the conveyance direction of the conveyance rollers, and configured to keep waiting the following sheets conveyed by the conveyance rollers; second conveyance rollers configured to cooperate with the conveyance rollers to make following sheets wait in the wait path and to convey the following sheet from the wait path; an outlet port configured to deliver the sheet bundle from the sheet tray in a prescribed direction; an accumulating tray configured to receive the sheet bundle delivered from the outlet port; delivery rollers configured to nip the sheet bundle mounted on the sheet tray and a plurality of following sheets including the following sheet conveyed from the wait path, while setting off the following sheets by a prescribed offset distance, to deliver the sheet bundle through the outlet port onto the accumulating tray, and to switch back the plurality of following sheets onto the sheet tray; and a conveyance member configured to convey the following sheets from the sheet tray toward the prescribed position. The offset distance between the following sheets nipped together with the sheet bundle is changed in accordance with the thickness of the sheet bundle delivered by the delivery rollers.
The configuration described above can provide a sheet processing apparatus and an image forming apparatus in which the offset distance between the following sheets is changed in accordance with the thickness of the sheet bundle (number of sheets forming a sheet bundle) mounted on the sheet tray, thereby reducing the erroneous alignment of sheets, regardless of the thickness of the sheet bundle.
Embodiments of the present invention will be described, with reference to the accompanying drawings.
In the drawings attached hereto, the components of an embodiment, which are similar to those of any other embodiment, shall be designated by the same reference numerals.
The image forming system shown in
The image forming apparatus A will be described with reference to
The image forming unit 2 incorporates, for example, an electrostatic drum 4, a printing head (i.e., laser-beam emitter) 5, a developing device 6, a transfer charger 7, and a fixing device 8. In the image forming unit 2, the laser-beam emitter 5 forms a latent electrostatic image on the electrostatic drum 4, and the developing device 6 applies toner to the electrostatic drum 4, forming a toner image. The transfer charger 7 transfers the toner image to a sheet. The fixing device 8 applies heat to the sheet, fixing the image on the sheet. The sheets, each having an image so fixed, are sequentially delivered through the fixing device 8. Numeral 9 indicates a circulating path, in which a sheet having an image printed on the obverse side is turned upside down while passing through a switch back path 10 and is delivered again to the image forming unit 2 to be printed on the reverse side. The sheet printed on both sides is turned upside down again in the switch back path 10 and is delivered through the sheet delivering port 3 of the image forming apparatus A.
Numeral 11 indicates an image reading device, in which a scanning unit 13 scans the original sheet set on a platen 12, and a photoelectric transducer (e.g., CCD) 14 electrically reads the image from the original sheet. The image data read from the original sheet is digital-processed in, for example, an image processing unit. The digital data generated in an image processing unit is transferred to a data storing unit 17 and then to the laser-beam emitter 5. Numeral 15 indicates an original feeder, which feeds original sheets from an original stacker 16 to the platen 12.
As shown in
At the control panel 18, sheet-processing modes are designated, along with the image-forming modes such as single-side/double side printing, enlarged/reduced printing, color/monochrome printing. The sheet-processing modes are, for example, “print-out mode”, “side-binding mode”, “jog-delivering mode” and “saddle-binding mode”. The sheet-processing modes will be described later.
As shown in
The sheet processing apparatus B has a feed-in path 32 and a conveyance path 42. The conveyance path 42 extends from the above-mentioned sheet inlet port 30, namely from the feed-in path 32, to the outlet port (sheet-delivering port) 50 of the sheet tray. In the feed-in path 32, a punching unit 31 is provided to punch the sides of a sheet and, if necessary, that part of a sheet, which is middle in the conveyance direction. Below that part of the punching unit 31, which lies below the above-mentioned feed-in path 32, a punch-chip box 31b is provided, detachably secured to the frame 20 of the apparatus B, to receive punch chips made in the punching process.
Downstream the punching unit 31, feed-in rollers 34 are arranged to feed sheets at a relatively high speed. In the conveyance path 42 located below the feed-in rollers 34, a sheet tray 54 and conveyance rollers 44 are provided. The sheet tray 54 is the first processing tray, and the conveyance rollers 44 can rotate in forward direction and reverse direction to guide sheets to the first accumulating tray 24 located downstream of the sheet tray 54. At the back of the conveyance rollers 44, a sheet-conveyance outlet port 46 is provided.
Downstream of the sheet-conveyance outlet port 46, delivery rollers 48 are provided. The delivery rollers 48 switch back a sheet and then deliver the sheet onto the sheet tray 54, deliver the sheet directly onto the first accumulating tray 24, or deliver a sheet bundle formed by side-binding the sheets on the sheet tray 54, from the sheet tray 54 to the first accumulating tray 24. Further, the delivery rollers 48 can perform jog-delivering to shift a sheet bundle without binding the sheets at the sheet tray 54 and to sort sheet bundles at the first accumulating tray 24.
[Escape Path and Branch path]
The conveyance path 42 is branched at a branch position 36 into an escape path 38 and a branch path 70. The escape path 38 guides sheets to the escape tray 22. The branch path 70 guides relatively long sheets to a stacker 84. The stacker 84 is the second processing tray (i.e., second sheet tray) at which relatively long sheet may be saddle-bound or folded. At the branch position 36, a switching gate 37 is provided to convey a sheet directly to the conveyance path 42 or to the escape path 38, or to switch back a sheet in the conveyance path 42 and then guide the sheet to the branch path 70.
As shown in
Below the sheet-conveyance outlet port 46 of the conveyance path 42, the sheet tray 54 (i.e., first processing tray) is arranged. Below the sheet tray 54, a side-binding unit 60 is provided to bind the sides of any sheet temporarily mounted on the sheet tray 54. The side-binding unit 60 will be described later, with reference to
Relatively long sheets are first conveyed in the conveyance path 42 toward the sheet tray 54, then conveyed to the downstream side of the switching gate 37, next switched back to the branch path 70, then conveyed from a branch outlet port 76, and collected in the stacker 84, i.e., second sheet tray. Near the stacker 84, a saddle-binding unit 80 is arranged. The saddle-binding unit 80 is configured to bind the sheets collected in the stacker 84, at part middle in the conveyance direction. As shown in
To the stacker 84, a stopper 85 is secured to hold a sheet at the position where the sheet should be fed in. The stopper 85 is moved in the direction of the arrow if a stopper-moving motor 85M drives a belt 88 wrapped around upper and lower pulleys 86, 87 at one side of the stacker 84. The stopper 85 can be held at the position where the flapper 78 may change the position of the rear end of the sheet delivered into the stacker 84, at the position where the saddle binder 82 performs saddle binding on sheets, binding the sheets together, at the part middle in the conveyance direction, and at the position where a folding blade 94 that makes reciprocating motion is pushed into the nip between a pair of holding rollers 92, thereby to hold a sheet bundle double. Two alignment plates 81 are provided above one folding roller 92 and below the other folding roller 92, respectively, to align each sheet conveyed into the stacker 84 with those already held in the stacker 84.
The saddle-binding unit 80 has an anvil 83 that opposes a driver provided in the saddle binder 82. The anvil 83 is configured to bend the leg parts of a stable driven by the driver. The saddle binder 82 is a well-known type, and will not be described here. The saddle-binding unit may not be limited to one that drives a stable through a sheet bundle, thereby binding the sheets together. Rather, it may be a mechanism that applies adhesive to each sheet at part middle in the conveyance direction and then bonds the sheets together.
The sheet bundle, saddle-bound at the saddle binder 82, is folded double by the folding roller 92 and the folding blade 94 pushing the sheet bundle. While being so folded, the sheet bundle is delivered onto the second accumulating tray 26 by the folding roller 92 and the bundle-delivery rollers 96 located downstream the folding roller 92. To the front end of the second accumulating tray 26, onto which the sheet bundle folded double and being delivered first at the front end may be dropped, free-rotatable rollers, a rotatable holding roller 102 and a holding lever 104 are secured. The lever 104 touches the upper side of a sheet bundle, preventing the sheets from moving sideways. The rotatable holding roller 102 and a holding lever 104 loosen the sheet bundle, lowering the sheet-bundling efficiency.
The branch position 36 and the side-binding unit 60 will be further described with reference to
In this embodiment, the switching gate 37 may assume the position indicated by solid lines in
In the conveyance path 42, the conveyance rollers 44 are arranged immediately before the sheet-conveyance outlet port 46, which is the final end and can rotate in forward direction and reverse direction and can contact and leave each other. Therefore, the conveyance rollers 44 can convey a sheet toward the sheet tray 54 if they contact and rotate in one direction, and can switch back a sheet toward the branch path (wait path) 70 located in the opposite direction if they contact and rotate in the other direction.
The switch-back conveyance is performed by rotating the conveyance rollers 44 in the reverse direction after the sheet sensor 42S arranged at the back of the switching gate 37 provided in the conveyance path 42 detects the passing of the rear end of a sheet. If the conveyance rollers 44 are rotated in the reverse direction, the switching gate 37 is positioned, closing the feed-in path 32 (see the broken lines in
The branch rollers 72 thus cooperate with the conveyance rollers 44, making one sheet to a few sheets wait in the branch path 70.
The delivery rollers 48 are arranged in the outlet port 50 (i.e., sheet-delivering port of the sheet tray 54) located downstream the conveyance rollers 44. The delivery rollers 48 rotate forward and backward and come into contact with and separated from each other. The delivery rollers 48 are an upper delivery roller 48a and a lower delivery roller 48b. These rollers 48a and 48b may contact each other and rotate in one direction to cooperate with the conveyance rollers 44, thereby to deliver a sheet onto the first accumulating tray 24. The delivery rollers 48 are used to deliver the sheet bundle from the sheet tray 54 onto the first accumulating tray 24 after the sheet bundle has been pushed out onto the first accumulating tray 24 by a pushing member that has a reference surface 57.
[Delivery onto the Sheet Tray 54]
How to deliver a sheet onto the sheet tray 54 will be explained. To deliver a sheet onto the sheet tray 54, the delivery rollers 48 located downstream are rotated in reverse direction, conveying a sheet from the conveyance rollers 44 to the right on the inclined surface of the sheet tray 54 as shown in
Every time a sheet is delivered from the conveyance rollers 44, the delivery rollers 48 and the gathering roller 56 rotate, conveying the sheet to the reference surface 57 to lay the sheet onto the uppermost sheet laid in the sheet tray 54. Further, as the sheet is laid so, alignment plates 58 are made to abut on both sides of the sheet, aligning the sheet with the other sheets that part of the sheet tray 54, which is middle in the widthwise direction of the sheet tray 54. This sheet aligning is repeated until sheets are piled in the sheet tray 54 to a prescribed number. When sheets are piled to the prescribed number, a side-binding unit 62 is moved on a table 63 in the widthwise direction of the sheets to the desired binding position. The side-binding unit 62 is so moved, as the motion pin 62b of the side-binding unit 62 slides in a groove cut in the table 63 and extending in the widthwise direction of the sheets.
The side-binding process, i.e., the process the side-binding unit 62 adapted for the first process of the present invention performs, is known in the art, and is not explained herein. When the side-binding unit 62 stops at the designated position, a side-binding motor 62M is driven, moving a driver (not shown) and driving a stable into the sheet bundle. The anvil bends the staple thus driven, performing side binding on the sheet bundle. The side binding is performed also at several parts of the sides and ends of the sheet bundle.
A reference-surface moving belt 64 is wrapped around a right pulley 65 and a left pulley 66 arranged below the sheet tray 54. As the reference-surface moving belt 64 is driven counterclockwise, the reference surface 57, as a moving member, of the sheet tray 54 coupled to the belt 64 moves to the left, pushing the sheet bundle with its bound end facing the first accumulating tray 24. As the sheet bundle is so pushed, the sheet bundle bound at the delivery rollers 48 (i.e., upper and lower delivery rollers 48b and 48b) located at the delivering port of the sheet tray 54 is pressed at both the obverse and reverse sides. As the delivery rollers 48 are rotated clockwise, the sheet bundle is delivered from the first accumulating tray 24.
The first accumulating tray 24 configured to receive a sheet bundle will be explained. As shown in
On the bottom of the first accumulating tray 24, a lift motor 24M is located to move the first accumulating tray 24 up and down. The drive force of the motor 24M is transmitted to a pinion 109. The pinion 109 meshes with two lift lacks 107 that are secured to the two lateral parts of the vertical wall 28 of the frame 20. The first accumulating tray 24 can move up and down on the rails (not shown) that are laid on the vertical wall 28 of the first accumulating tray 24.
The position of the first accumulating tray 24 or the position of the sheet laid in the first accumulating tray 24 are detected by a sheet-surface sensor 24S that is provided on the vertical wall 28. If the sheet-surface sensor 24S detects the surface of the sheet, the lift motor 24M is driven, rotating the pinion 109 and lowering the first accumulating tray 24.
How the conveyance rollers 44 and the delivery rollers 48 are rotated, and how the conveyance rollers 44 and the delivery rollers 48 respectively are moved toward and away from each other will be described with reference to
[Driving of the Upper Conveyance roller]
The upper conveyance roller 44a and the lower conveyance roller 44b are driven by a conveyance roller motor 44M. The conveyance roller motor 44M is a hybrid-type stepping motor. A speed detection sensor 44S is provided to detect the rotation speed of the shaft of the motor 44M. The rotation of the motor shaft is transmitted via transmission gears 120122 and a transmission belt 124 to an arm gear 126. The rotation of the arm gear 126 is transmitted by a transmission belt 128 to the upper roller shaft 44ui of an upper conveyance roller 44a supported by a conveyance roller supporting arm 136.
[Motion of the Upper Conveyance roller]
The upper conveyance roller 44a can rotate around the shaft of the arm gear 126, and can contact and leave the lower conveyance roller 44b fixed in place. The upper conveyance roller 44a can contact and leave the roller 44b, thanks to a conveyance roller moving arm 130. The arm 130 has a fan-shaped gear flaring backwards and fixed to the shaft of the arm gear 126 and a spring 134 biasing the upper conveyance roller 44a and attached to the moving arm tip at the end. That is, if an arm motor 130M for moving the conveyance rollers in mesh with the fan-shaped gear is driven in one direction, the arm 130 will move in the direction of arrow O, releasing the lower conveyance roller 44b. If the arm motor 130M is driven in the other direction, the arm 130 will move in the direction of arrow C to push the upper conveyance roller 44a onto the lower conveyance roller 44b. The arm motor 130M is a stepping motor, too. The position of the conveyance roller moving arm 130 is detected by a conveyance roller moving arm sensor 130S.
The lower conveyance roller 44b is rotated by transmitting the drive force of the conveyance roller motor 44M via the transmission gears 120 and a transmission belt 138 to a gear 142 mounted on a lower conveyance shaft 44sj.
As the gear 142 is driven, a gear 144 that has a one-way clutch gear and a belt 146 that has a projection and functions as transmission belt rotate the gathering roller 56. The gathering roller 56, which is driven via the gear 144, rotates in only one direction indicated by the solid-line arrow shown in
At the front end of the belt 146 having a projection, the gathering roller 56 rotates. The gathering roller 56 may be dispensed with, and a circular gathering belt may be rotated instead.
The drive force of the conveyance roller motor 44M is transmitted via the transmission gear 120 and a transmission belt 148, also to a lower branch roller shaft 72sj of the lower branch roller 72b of the branch roller 72 that conveys sheets in the branch path 70.
In the apparatus B configured as described above, as the conveyance roller motor 44M is driven in the forward direction and the reverse direction, the conveyance rollers 44 and the branch rollers 72 rotate in one direction indicated by the solid-line arrow and the other direction (i.e., switch back direction) indicated by the broken-line arrow, and the gathering roller rotates toward the reference surface 57 as indicated by the solid-line arrow. The conveyance roller motor 44M can be set to convey sheets at a prescribed speed toward the sheet tray 54 or to switch back sheets toward the branch path 70.
The delivery rollers 48, i.e., upper delivery roller 48a and lower delivery roller 48b, are driven by a delivery roller motor 48M. The delivery roller motor 48M is a hybrid-type stepping motor, too. A speed detection sensor 48S is provided to detect the rotation speed of the shaft of the motor 48M. The rotation of the motor shaft is transmitted via transmission gears 150 and 152 and a transmission belt 154 to an arm gear 156. The rotation of the arm gear 156 is transmitted by a transmission belt 158 to the upper roller shaft 48uj of the upper delivery roller 48a supported by a delivery roller supporting arm 166.
The upper delivery roller 48a can rotate around the shaft of the arm gear 156, and can contact and leave the lower delivery roller 48b fixed in place. The upper delivery roller 48a can contact and leave the lower delivery roller 48b, by virtue of a delivery roller moving arm 160. The arm 160 has a fan-shaped gear flaring backwards and fixed to the shaft of the arm gear 156 and a spring 164 biasing the upper delivery roller 48a and attached to the moving arm tip at the end. If an arm motor 160M in mesh with the fan-shaped gear is driven in one direction, the arm 160 will move in the direction of arrow O, releasing the lower conveyance roller 44b. If the arm motor 160M is driven in the other direction, the arm 160 will move in the direction of arrow C to push the upper delivery roller 48a onto the lower delivery roller 48b.
The arm motor 160M for moving the delivery roller is a stepping motor, too. The position of the delivery roller moving arm 160 is detected by a conveyance roller moving arm sensor 160S. The lower delivery roller 48b is rotated by transmitting the drive force of the delivery roller motor 48M via the transmission gear 150 and a transmission belt 168 to a gear 169 amounted on a lower delivery roller shaft 48sj.
In the configuration described above, as the delivery roller motor 48M rotates in the forward and reverse directions, the delivery rollers 48 rotate in one direction indicated by the solid-line arrow or in the other direction indicated by the broken-line arrow (thereby switching back the following sheet on the sheet tray 54 toward the reference surface 57 after the following sheet has been released from the conveyance rollers 44). The delivery roller motor 48M can be driven at a preset speed to drive the conveyance rollers 44 at a prescribed speed.
Referring back to
Hereinafter, the process of switching back a sheet from the conveyance path 42 to the branch path 70, keeping one or more sheets waiting in the branch path 70 and convey the sheet or sheets from the branch path 70 together with the next sheet shall be referred to as “wait conveyance”. Most sheets undergoing the wait conveyance to be side-bound are relatively short, such as A4-size, B5-size and letter-size sheets. Hence, these sheets can be switched back without extending greatly into the downstream area of the sheet tray 54. Nor will they be bent while they are conveyed. Even if they are bent a little, they can be straightened up as they are aligned by the aligning plates 58 since the distance to the sheet tray 54 is comparatively short.
When the completion of the side binding means not only the completion of sheet delivery from the sheet tray 54 to the first accumulating tray 24, but also the initial setting of the aligning plates 58 provided on the sheet tray 54 and the returning of the reference-surface moving belt 64 to its initial position or the setting of each mechanism at the initial position to receive the next sheet.
It will be explained how the sheets saddle-bound in the saddle binder 82 are conveyed to the stacker 84 in order to fold them double by the folding roller 92 and folding blade 94 into a folded sheet bundle. The sheets conveyed to the conveyance path 42 via the feed-in path 32 are first switched back in the conveyance path 42 and then conveyed from the branch path 70 to the stacker 84. The step of conveying the switched-back sheets from the branch path 70 to the stacker 84 shall be called “second tray conveyance” hereinafter.
In this embodiment, the “wait conveyance” of a sheet is achieved by first detecting the rear end of the sheet by the sheet sensor 42S provided at the branch position between the conveyance path 42 and the branch path 70. Then, the sheet is switched back to the branch path 70 and nipped by the branch rollers 72 positioned at the branch path 70, and the branch rollers 72 are stopped rotating. To perform the “second tray conveyance” for collecting the sheets in the stacker 84 positioned downstream the branch path 70, the sheets switched back by the conveyance rollers 44 are conveyed to the branch rollers 72 provided at the branch path 70 and then continuously conveyed to the stacker 84.
The delivery rollers 48 can rotate in both the forward direction and the reverse direction. When the rear end of a following sheet (i.e., sheet waiting in the branch path 70, sheet conveyed from the feed-in path or a sheet overlapping another) comes out of the conveyance rollers 44, it is nipped by the delivery rollers 48. When the delivery rollers 48 are rotated in the reverse direction, the following sheet is switched back and stored into the sheet tray 54.
Here, it will be described how the position the front end of any following sheet switched back at the sheet tray 54 takes with respect to the reference surface 57. In the sheet bundle of following sheets switched back on the sheet tray 54, the front end of the first following sheet should be nearest to the reference surface 57, and the front ends of the second and third following sheets should be far from the reference surface 57. This is because when the sheets are being conveyed by the gathering roller 56, if the uppermost following sheet reaches the reference surface 57 earlier, any lower following sheet will slip with the other lower following sheet and will no longer be conveyed. Consequently, the sheets will be bound with their front ends not aligned, forming an untidy sheet bundle. Thus, the above-mentioned order in which the sheets are conveyed is important to prevent a sheet-alignment failure.
As explained above, the upper delivery roller 48a can be moved up and down. When it moves down to the position (indicated by the broken line in
The sheet bundle delivered by the delivery rollers 48 is processed in the sheet processing unit provided at the sheet tray. The sheet processing includes two processes. The first process is a side binding performed in the side-binding unit 62. The second process is a so-called jog process of first arranging the sheets at different positions on the sheet tray 54 by using the aligning plates 58, then delivering the sheets to the first accumulating tray 24, and finally sorting the sheets without binding them. The sheet processing further includes a sheet bonding process of bonding the sheets with glue and punching process of punching the sheets.
The sheet tray 54 has, on the upper frame thereof, a bundle thickness sensor 230 configured to acquire data representing the thickness of the sheet bundle (sheet-bundle thickness data BPt) that is laid on the sheet tray 54. The sensor 230 is a reflection-type sensor. The reflection-type sensor may be replaced by a sensor having a lever that may enter the space between the two sensor elements.
The sensor 42S may be used to count the sheets delivered onto the sheet tray 54, and the count data acquired may be used as thickness data (i.e., sheet-bundle thickness data Bpt). The thickness data may be acquired from the image forming apparatus A. The thickness data (i.e., sheet-bundle thickness data Bpt) is used, setting the space between the sheets switched back and waiting, or the space between the sheets waiting in the branch path 70. Therefore, the thickness data (i.e., sheet-bundle thickness data Bpt) is acquired before the sheets are bundled at the sheet tray 54, more precisely before the following sheets are switched back and kept waiting in the branch path 70.
With reference to
Next, as shown in
In the step of
Upon receiving the bundle-thickness data BPt, a unit (i.e., sheet conveyance control unit 210 to be described later) sets an offset distance wp11 for any two following sheets. In
As shown in
While the branch rollers 72 are conveying the sheet P3, the sheet sensor 42S may detect the rear end of the fourth sheet wp1 (as viewed in the conveyance direction). If the rear end of the fourth sheet wp1 is detected, a counter (not shown) detects the distance the rear end of the fourth sheet has moved. When the distance is found wp11 from the sheet sensor 42S, the branch rollers 72 are stopped rotating, and the branch rollers 72 wait for the fifth sheet wp2.
As shown in
The setting of the offset distance is described in
While the following fourth sheet wp1 (P4) waiting at the branch path 70 and the fifth sheet wp2 (P5) conveyed from the feed-in rollers are spaced by distance wp11. This distance wp11 is an important factor that enhances the alignment of the sheets switched back onto the sheet tray 54 and bent in the form of inverted V.
At this point, the switching gate 37 assuming the branch position 36 closes the feed-in path 32, guiding the two following sheets wp1 and wp2 (P4 and P5), respectively, to the branch path 70. Eventually, the rear end of the following fifth sheet wp3 (P5) is detected by the sheet sensor 42S, and the sheet wp2 set off by distance wp11 is conveyed to the branch path 70. Then, the branch rollers 72 are stopped, and the following sixth sheet wp3 (P6) is fed to have its front end detected by the sheet sensor 42S.
Since the three following sheets wp1 to wp3 have the same length, the uppermost following sheet wp3, the intermediate following sheet wp2 and the lowermost following sheet wp1 are set off toward the accumulating tray 24 by distance wp11. In other words, the uppermost sheet wp3 is farthest from the reference surface 57, the lowermost sheet wp1 is nearest to the reference surface 57, and the sheet wp2 is at an intermediate distance from the reference surface 57 while they are being switched back on the sheet tray 54. This state is described In
In this process, the rear ends of the following sheets wp1 to wp3 are set off by distance wp11 and are bent in the form of inverted V, as described above (see the enlarged part of
The switch back position is set so that the sheet bundle BP1 may be delivered before the rear end of the following sheet wp1 (i.e., sheet nearest to the reference surface 57) reaches a position away from the sheet sensor 42S by distance SB11, and the following sheets wp1 to wp3 may then be switched back. The distance SB11 is not influenced so much by the delivering of the sheet bundle BP1, and the following sheets remains on the sheet tray 54. In
[Delivering of a Bundle, along with a Relatively Thick Bundle (Large Number of Sheets)]
It will be explained how a sheet bundle is delivered together with a relatively thick sheet bundle (i.e., bundle composed of many sheets), with reference to
While the following 66th sheet wp1 is being conveyed in the branch path 70, its rear end is detected by the sheet sensor 42S. Then, a counter (not shown) detects the distance the rear end of the sheet wp1 has moved. When it is found that the sheet wp1 has moved by distance wp12, the branch rollers 72 are stopped rotating and wait for the 67th sheet wp2 coming.
If the sheet bundle on the sheet tray 54 as shown in
As shown in
In
As seen from
At this point, the switching gate 37 at the branch position 36 closes the feed-in path 32, guiding the two following sheets wp1 and wp2 (P66 and P67), to the branch path 70. Eventually, the sheet sensor 42S detects the rear end of the following 67th sheet wp2 (P67). When the sheet wp2 is conveyed to the branch path 70, set off by distance wp12, the branch rollers 72 are stopped, the sheet following 68th sheet wp3 (P68) is conveyed in, and the front end of the sheet wp3 will be detected by the sheet sensor 42S.
Since the three following sheets wp1 to wp3 have the same length, the uppermost sheet wp3, intermediate sheet wp2 and lowermost sheet wp1 extend toward the first accumulating tray 24, one from another by distance wp12, in the order they are mentioned. In other words, when they are switched back on the sheet tray 54, the uppermost sheet wp3 and the intermediate sheet wp2 are remotest and second remotest from the reference surface 57, respectively, and the lowermost sheet wp1 is nearest to the reference surface 57. This state is described in
The following sheets wp1 to wp3 are set off one from another by distance Bp1 and are bent in the form of inverted V (see the enlarged part of
The switch back position is so set that the sheet bundle BP1 may be delivered before the rear end of the following sheet wp1 (nearest to the reference surface 57) moves from the sheet sensor 42S by distance SB12 and the following sheets wp1 to wp3 may be switched back. The following sheets wp1 to wp3 move toward the reference surface 57 as the sheet bundle BP1 is delivered. From the distance the following sheets wp1 to wp3 so move, too, the switch back position (SB1) of the following sheets wp1 to wp3 is determined. That is, if the sheet bundle BP1 is thin as described in
This state is described in
In the process of
As may be seen from
The position where any sheet is switched back onto the sheet tray 54 is set at the distance SB12 from the sheet sensor 42S toward the delivery rollers 48. The following sheets wp1 to wp3 contacting the upper delivery roller 48a to be delivered together with the sheet bundle BP are set off by the offset distance wp12. The offset distance wp12 is longer than the offset distance wp11 by which the following sheets wp1 to wp3 to be nipped together with a relatively thin sheet bundle BP are set off. Further, the switch back position is remote from the sheet sensor 42S. At the switch back position, the following sheets may be switched back more slowly than the case where the sheet bundle is thin.
The image forming apparatus A incorporates a control system. The control system will be described with reference to
The sheet-processing control section 204 is a control CPU designed to make the sheet processing apparatus B process sheets in the sheet processing mode designated. The sheet-processing control section 204 comprises a ROM 206 storing an operation program and a RAM 207 storing control data. The sheet-processing control section 204 receives signals from a sensor-input unit 208. The sensor-input unit 208 receives signals from various sensors such as a feed-in sensor 30S configured to detect any sheet existing in the feed-in path 32, a sheet sensor 42S configured to detect any sheet existing the conveyance path 42, a branch sensor 70S configured to detect any sheet in the branch path 70, a sheet-surface sensor 24S configured to detect the surface of any sheet on the first accumulating tray 24, a sheet vacancy sensor 25 and a bundle thickness sensor 230 configured to detect the thickness of the sheet bundle mounted on the sheet tray 54.
The sheet-processing control section 204 comprises a sheet conveyance control unit 210. The sheet conveyance control unit 210 controls a feed-in roller motor 34M provided in the feed-in path 32, the conveyance roller motor 44M arranged at the conveyance path 42, the delivery roller motor 48M arranged at the outlet port of the sheet tray 54, and the arm motor 160M used to move up and down the upper delivery roller 48a. The sheet-processing control section 204 further comprises a punch drive control unit 211 and a sheet tray (process tray) control unit 212. The punch drive control unit 211 controls a punch motor 31M in the punching unit 31 to make holes in a sheet. The sheet tray control unit 212 controls the aligning plates 58 to align the sheets on the sheet tray 54. The sheet-processing control section 204 comprises a side-binding control unit 213 and a first accumulating-tray lift control unit 214, too. The side-binding control unit 213 controls the side-binding motor 62M of the side-binding unit 62 that binds the sides of a sheet bundle on the sheet tray 54. The first accumulating-tray lift control unit 214 controls motor 24M that can move up and down the first accumulating tray 24 in accordance with the number of sheets mounted on the first accumulating tray 24.
The sheet-processing control section 204 has a stacker control unit 216 and a saddle-binding control unit 217. The stacker control unit 216 controls the alignment plates 81 and the stopper 85 to align the sheets and stop the front end of each sheet, respectively, on the stacker 84 (i.e., second tray). The saddle-binding control unit 217 controls the saddle binder 82 that binds the sheets at the part middle in the conveyance direction.
The sheet-processing control section 204 further has a folding unit and a saddle-folding/delivering control unit 218. The folding unit folds the saddle-bound sheet bundle double and then delvers the sheet bundle to the second accumulating tray 26. The saddle-folding/delivering control unit 218 controls the folding roller, folding blade and a delivery motor 92M that drive the bundle delivering rollers 98. How these control units are connected to the various sheet sensors and various drive motors and how the sheets are conveyed and delivered have been explained above in conjunction with the function of each control unit.
The sheet-processing control section 204 so configured as described above controls the sheet processing apparatus B, causing the same to operate in, for example, “printout mode,” “side binding mode (first process),” “sorting mode (jog mode)” and “saddle binding mode.” The setting of any of these processing modes is carried out by a mode setting means 201 by way of the input unit 203 of the control panel 18. The sheet processing modes will be described blow.
In this mode, the sheet processing apparatus B receives a sheet having an image formed on it, and the conveyance rollers 44 and delivery rollers 48 deliver the sheet onto the first accumulating tray 24.
In this mode, sheets conveyed from the outlet port 3, each having an image formed on it, are received on the sheet tray 54, aligned and bundled. The resultant bundle is side-bound at the side-binding unit 62 and mounted on the first accumulating tray 24. During the side binding, “wait conveyance” is performed, switching back the following sheets and making the following sheets wait for some time in the branch path 70, so that the delivery of the following sheets coming out of the outlet port 3 are not stopped. Further, the offset distance wp1 is set for the following sheets, and the switch back position SB1 is shifted from the sheet sensor 42S.
In this mode, the sheet tray 54 receives the sheets, each having an image formed on it, from the outlet port 3 of the image forming apparatus. The sheets are held on the first accumulating tray 24 and aligned at the front or rear end by the aligning plates 58, but are not bound together.
The stacker 84 receives the sheets each having an image formed on it, from the outlet port 3 of the image forming apparatus. In the stacker 84, the sheets are aligned to form a bundle. The saddle binder 82 binds the sheets at the part substantially middle in the conveyance direction and then folds the sheets, forming a booklet. The sheets so bound are placed on the second accumulating tray 26. In the saddle binding, the sheets delivered from the outlet port 3 of the image forming apparatus are temporarily held on the first accumulating tray 24, then switched back into the branch path 70 and conveyed to the stacker 84, performing “second-tray conveyance”.
As described above, the embodiment can provide an apparatus in which the offset of the following sheets can be changed in accordance with the thickness of the sheet bundle held on the sheet tray 54, to prevent sheet-alignment failure on the sheet tray 54.
Other embodiments of the invention will be described hereinafter. The second embodiment will be described with reference to
The wait roller 170 is supported by a wait roller arm 172. The wait roller arm 172 is pivotally secured to the shaft 174 of the wait roller 170. Immediately after the feed-in rollers 34, a sheet holder 176 is provided to hold the end of a following sheet, preventing the following sheet from being moved by the next following sheet switched back and waiting. The feed-in rollers 34 can rotate at a solenoid SoL around a lower feed-in roller shaft 180. Right below the feed-in rollers 34, a sheet stopper 178 is positioned, functioning as a control member on which the first following sheet switched back may abut at the end.
To make two following sheets wait in the conveyance path 42, the first following sheet wp1 is held at the end near the feed-in rollers 34 and the second following sheet wp2 is positioned below the wait roller 170. Since the sheet holder 176 holds the following sheet at position (wpn), the offset distance wp1 can be set. The sheet tray 54 can be positioned and the switch back position above the sheet tray 54 can be changed in accordance with distance SB (SBarea) from the sheet sensor 42S as in the first embodiment.
[Setting of the Offset Distance between the Following Sheets in the Second Embodiment]
How the thickness of the sheet bundle BP on the sheet tray 54 and the distance between the following sheets are changed in the sheet processing apparatus B according to the second embodiment will be explained with reference to
In view of this, an offset distance wp12 longer than the distance wp11 is set for the following sheets wp1 and wp2 and the conveyance distance determining the switch back position is SB12 that is longer than the distance SB11. In other words, when the sheet bundle on the sheet tray 54 is thick, the switch back position between the conveyance rollers 44 and the delivery rollers 48 is set closer to the delivery rollers 48 than in the case where the sheet bundle is thin. The displacement of the following sheets wp1 and wp2 and the influence of the sheet conveyance at the switch back position are thus predicted. Therefore, the sheet processing apparatus B can align sheets well even if the upper delivery roller 48a is rotated greatly after the roller 48a has delivered the sheet bundle BP.
As shown in
Also In the sheet processing apparatus B, i.e. the third embodiment, following sheets cannot be conveyed onto the sheet tray 54 while the sheet bundle BP is being bound on the sheet tray 54. Therefore, the following sheets wait in the branch path 70 as a wait path and are then nipped and delivered by the delivery rollers 48, together with the sheet bundle after completion of, e.g., binding process. Therefore, the following sheets wp1 to wp3 are set off by the offset distance wp1 from one another and by the distance BP1 from the sheet bundle BP mounted on the sheet tray 54 as in the first and second embodiments. Since the upper delivery roller 48a is rotated in the direction opposite to the direction it is rotated in the first and second embodiments, the delivery rollers 48 switch back and convey the following sheets wp1 to wp3 to the sheet tray 54 in the direction opposite to the direction they are switched back and conveyed in the first and second embodiments. This will be explained with reference to
It will be explained how the distance between the following sheets is changed in accordance with the thickness of the sheet bundle BP mounted on the sheet tray 54 in the sheet processing apparatus B according to the third embodiment, in which the fulcrum of the upper delivery roller 48a is located downstream the delivery rollers 48. As shown in
As shown in
In view of the above, the following sheets wp1 and wp2 are set off from each other by distance wp11 shorter than distance wp12. (Note, wp11<wp12, and the distance SB11 the switch back position is moved from the sheet sensor 42S is shorter than distance SB12.) In other words, the following sheets are positioned between the conveyance rollers 44 and the delivery rollers 48, closer to the conveyance rollers 44, if the sheet bundle BP on the sheet tray 54 is thick. The displacement of the following sheets wp1 and wp2 and the influence of the sheet conveyance at the switch back position are thus predicted. Therefore, the sheet processing apparatus B can align sheets well even if the upper delivery roller 48a is rotated greatly after the roller 48a has delivered the sheet bundle BP.
As has been described, in the first and third embodiments, the following sheets wp1 to wp3 can be aligned well when they are switched back to the sheet tray 54, because the delivery rollers 48 changes the distances among the sheets wp1 to wp3 in accordance the thickness of the sheet bundle laid on the sheet tray 54. When the following sheets wp1 to wp3 are switched back onto the sheet tray 54, they are aligned well, never insufficiently aligned or laid in disorder on the sheet tray 54.
The present invention is not limited to the embodiments described above. Accordingly, various modifications may be made without departing from the spirit or scope of this invention. The technical points contained in the idea described in the following claims pertain to the present invention. The embodiments described above are preferred examples. Based on the technical disclosure of the specification, any person with ordinary skill in the art may make various alternatives, modifications, changes or improvements, which are in the technical scope of the claims attached hereto.
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2016-206436 filed Oct. 21, 2016, Japanese Patent Application No. 2016-206437 filed on the same day, and Japanese Patent Application No. 2016-206438 filed on the same day, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2016-206436 | Oct 2016 | JP | national |
2016-206437 | Oct 2016 | JP | national |
2016-206438 | Oct 2016 | JP | national |