The present invention relates to a sheet processing apparatus which processes a sheet and to an image forming apparatus.
Hitherto, a sheet processing apparatus such as a sorter which sorts a sheet having an image formed thereon is connected to an image forming apparatus such as an electrophotographic copying machine or a laser beam printer. This kind of sheet processing apparatus is equipped with not only a sorting function, but also a function of aligning a plurality of sheets or producing a sheet bundle by a stapler that staples a plurality of sheets. For example, in the sheet processing apparatus equipped with the aligning function and the stapling function, the sheets conveyed from the image forming apparatus are aligned one by one by an aligning portion and the plurality of aligned sheets is bound by the stapler.
In recent years, Japanese Patent Laid-Open No. 10-194569 discloses a technique of saving a process time of a preceding sheet bundle stacked on a process tray, where first several sheets among sheets constituting a subsequent sheet bundle become a standby state and several sheets being in a standby state after processing the preceding sheet bundle are conveyed to the process tray in a superimposed state.
Japanese Patent Laid-Open No. 10-194569 discloses a configuration in which a large conveying roller causing conveyed sheets to be in a standby state is disposed inside a sheet processing apparatus. First, the large conveying roller rotates at a timing at which the first conveyed sheet is detected by a sheet detecting sensor, and the first sheet is wound on the large conveying roller. Next, the large conveying roller rotates at a timing at which a second sheet is detected by the sheet detecting sensor, and the second sheet is wound on the large conveying roller. Further, the large conveying roller rotates at a timing at which a third sheet is detected by the sheet detecting sensor, and the third sheet is wound on the large conveying roller. In this case, the second sheet is wound on the surface of the large conveying roller so as to advance in the rotation direction compared to the first sheet, and the third sheet is wound thereon so as to advance in the rotation direction compared to the second sheet. Then, after three sheets are wound on the large conveying roller, three sheets are peeled from the large conveying roller by a flapper and are conveyed to the process tray in a superimposed state. According to such a configuration, the second sheet is shifted by a predetermined amount to the downstream side with respect to the first sheet in the conveying direction, and the third sheet is shifted by a predetermined amount to the downstream side with respect to the second sheet in the conveying direction. Then, three sheets are conveyed in a superimposed state.
Further, conventionally, a method of causing sheet ends to bump into a sheet bumping surface is generally used in order to align the superimposed sheets in the conveying direction. At this time, the sheet end of the lower sheet of the superimposed sheets first bumps into the sheet bumping surface. This is because a unit for allowing the sheet end to bump into the sheet bumping surface is installed so as to act on the front surface of the upper sheet of the superimposed sheets. When the bumping unit acts on the front surface of the upper sheet of the superimposed sheets, the lower sheet is conveyed along with the upper sheet of the superimposed sheets by the friction generated between the sheets of the superimposed sheets, and the sheet end of the lower sheet first bumps into the sheet bumping surface. Subsequently, the upper sheet is conveyed onto the lower sheet by the bumping unit and the sheet end reliably bumps into the sheet bumping surface. Accordingly, the superimposed sheets are completely aligned in the conveying direction.
However, in the configuration of Japanese Patent Laid-Open No. 10-194569, there is a possibility that three sheets may be nipped between a pair of rollers so that three sheets may not be conveyed while being shifted by a predetermined amount. In a state where a pair of rollers nips three sheets, the second sheet is nipped between the first sheet and the third sheet, so that the second sheet may not directly come into contact with the pair of rollers. As a result, the second sheet may not be directly conveyed by the pair of rollers, and the second sheet is conveyed by the friction between the sheets. That is, three sheets may not be accurately conveyed, so that the sheets may not be conveyed while being shifted by a predetermined amount.
When three sheets may not be conveyed while being shifted by a predetermined amount, there is a possibility that the shift direction may be reversed until the superimposed sheet bundle is conveyed toward the sheet bumping surface. As illustrated in
As illustrated in
When the shift direction is reversed, the third sheet is conveyed by the aligning roller 18 until the third sheet S3 advances farther than the second sheet S2 and reaches the aligning wall 19 at the timing at which the second sheet S2 is supposed to advance farther than the third sheet S3. At the time point at which the third sheet S3 reaches the aligning wall 19, no conveying force generated by the friction between the sheets of the third sheet S3 is transmitted to the second sheet S2, and the second sheet S2 stops before reaching the aligning wall 19, so that the second sheet S2 may not come into contact with the aligning wall 19.
Due to these reasons, in order to prevent a change in the shift direction of the superimposed sheets, the configuration disclosed in Japanese Patent Laid-Open No. 10-194569 may suppose a countermeasure in which the shift amount is set sufficientlyin advance so as to maintain the shift direction even when a slight externalinfluence occurs during the conveying operation. For this reason, the diameter of thelarge conveying roller needs to be large so as to ensure a circumferential length including the shift amount set to be sufficient for the sheet length of the maximum wound sheet. Thus, there is a problem in which the apparatus increases in size or the number of sheets per unit time is small, that is, the productivity is degraded when outputting the shorter sheet.
Therefore, it is an object of the invention to provide a sheet processing apparatus capable of highly precisely managing a shift amount or a shift direction of a plurality of sheets which is conveyed while being superimposed on each other in a step shape.
A sheet processing apparatus includes: a conveying unit which conveys sheets in order from a first sheet, a second sheet, and a third sheet; a pair of first conveying rollers which is installed at the downstream of the conveying unit and conveys the sheets while nipping the sheets at a nip portion; a superimposing unit which is installed between the conveying unit and the pair of first conveying rollers and superimposes a subsequent sheet on a preceding sheet in the conveying direction, the superimposing unit being configured to superimpose the second sheet on the first sheet and superimpose the third sheet on the second sheet; and a control unit which controls the rotation of the pair of first conveying rollers, wherein the control unit controls the rotation of the pair of first conveying rollers so that a tail end of the first sheet passes the nip portion of the pair of first conveying rollers by conveying the first sheet before a leading end of the third sheet superimposed on the second sheet reaches the nip portion between the pair of first conveying rollers nipping the first sheet and the second sheet superimposed on the first sheet.
A sheet processing apparatus includes: a conveying unit which conveys sheets in order from a first sheet, a second sheet, and a third sheet; a pair of first conveying rollers which is installed at a downstream side of the conveying unit and conveys the sheets while nipping the sheets at a nip portion; a superimposing unit which is installed between the conveying unit and the pair of first conveying rollers and superimposes a subsequent sheet on a preceding sheet in the conveying direction, the superimposing unit being configured to superimpose the second sheet on the first sheet and superimpose the third sheet on the second sheet; a pair of second conveying rollers which is installed at a downstream side of the pair of first conveying rollers and conveys the sheets while nipping the sheets at the nip portion; and a control unit which controls a rotation of the pair of first conveying rollers and a rotation of the pair of second conveying rollers, wherein the control unit controls the rotation of the pair of first conveying rollers and the pair of second conveying rollers so that a leading end of the second sheet reaches the nip portion between the pair of second conveying rollers nipping the first sheet by conveying the second sheet to a downstream side before a leading end of the third sheet superimposed on the second sheet reaches the nip portion between the pair of first conveying rollers nipping the first sheet and the second sheet superimposed on the first sheet.
According to the configuration of the invention, the shift amount or the shift direction of the plurality of sheets conveyed while being superimposed on each other in a step shape is highly precisely managed.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, referring to the drawings, a mode for carrying out the invention will be exemplarily described in detail based on embodiments. Here, since the dimension, the material, the shape, the relative position, and the like of the components described in the embodiments are appropriately changed by the configuration or various conditions of the apparatus to which the invention is applied, the scope of the invention is not limited thereto unless a particular description is made.
The image forming apparatus 100 includes an accommodating cassette 2, a feeding roller 3, a registration roller 4, the primary transfer roller 6, an intermediate transfer belt 7, a secondary transfer roller 8, the process cartridge 9, an optical unit 10, a fixing unit 11, a pair of discharge rollers 12, and a sheet processing apparatus 13. The process cartridge 9 includes the photosensitive drum 5, a primary charger 31, and a developing device 32.
In the image forming portion, first, the primary charger 31 evenly charges the surface of the photosensitive drum 5. Next, the optical unit 10 forms an electrostatic image by irradiating a laser beam to the surface of the photosensitive drum 5. Next, the developing device 32 develops the electrostatic image by toner. The image forming process is performed by the process cartridge 9 of respective colors of yellow, magenta, cyan, and black. The toner image on the surface of the photosensitive drum 5 is sequentially transferred in a superimposed manner onto the surface of the intermediate transfer belt 7 which rotates and travels. Then, the entire toner image of the surface of the intermediate transfer belt 7 is secondarily transferred onto the conveyed sheet S at the nip portion between the secondary transfer roller 8 and a secondary transfer counter roller 33.
On the other hand, the sheets S are stacked inside the accommodating cassette 2, are fed to the feeding roller 3, and are conveyed to the registration roller 4. Then, the toner image is transferred onto the sheet S at the nip portion between the secondary transfer roller 8 and the secondary transfer counter roller 33. After the toner image is transferred, the sheet S is conveyed to the fixing unit 11. The toner is melted by heat and a pressure, and is fixed onto the sheet S. Subsequently, the sheet S passes the pair of discharge rollers 12, and is conveyed to the sheet processing apparatus 13 as the sheet conveying apparatus.
The sheet processing apparatus 13 is connected to the apparatus body 100A, and is controlled so that the sheet processing apparatus functions as the image forming system. A controller 50 which controls the driving of various built-in units is disposed inside the apparatus body 100A. Further, a controller 51 is also separately installed in the sheet processing apparatus 13, and controls the sheet processing apparatus 13 by the communication with the controller 50 in the apparatus body 100A (see
Furthermore, the controller 50 may be configured to directly control the sheet processing apparatus 13. The sheet processing apparatus 13 may be integrally mounted on the apparatus body 100A or may be provided as an external option. Hereinafter, in the description of the sheet processing apparatus 13, the downstream end of the conveyed sheet S in the sheet conveying direction J will be referred to as a “downstream end” or a “leading end”, and the upstream end of the conveyed sheet S in the sheet conveying direction J will be referred to as an “upstream end” or a “tail end”. Further, with regard to the relation between a first sheet S1 and a second sheet S2 which are sequentially conveyed, the first sheet S1 corresponds to a “preceding sheet” and the second sheet S2 corresponds to a “subsequent sheet”. Further, with regard to the relation between the second sheet S2 and a third sheet S3 which are sequentially conveyed, the second sheet S2 corresponds to a “preceding sheet” and the third sheet S3 corresponds to a “subsequent sheet”.
The sheet processing apparatus 13 includes a conveying portion 13X which serves as a “sheet conveying portion”, and a processing portion 13Y which is disposed at the downstream of the conveying portion 13X in the sheet conveying direction J and serves as a “sheet processing portion” for processing a sheet. The conveying portion 13X includes a pair of superimposing rollers 14 and a pair of bundle conveying rollers 17. The processing portion 13Y includes an aligning roller 18 and an aligning wall 19 which align the sheets S. Furthermore, the controller 51 is characterized in that the conveying portion 13X buffers the subsequent sheet while the processing portion 13Y handles the preceding job. Further, the sheet processing apparatus 13 includes a pair of discharge rollers 12 as a sheet conveying unit which conveys the sheets having an image formed thereon by the image forming portion in order of the first sheet, the second sheet, and the third sheet. Further, the sheet processing apparatus 13 includes a sensor 23 as a detecting unit which is disposed at the downstream of the pair of discharge rollers 12 in the sheet conveying direction J so as to detect the sheet which is conveyed to the upstream of the pair of superimposing rollers 14 in the sheet conveying direction J. Further, the sheet processing apparatus 13 includes a step 20 which causes the sheets to be superimposed on each other at the downstream of the sensor 23 and the upstream of the pair of superimposing rollers 14. In the embodiment, the subsequent sheet which is conveyed by the step 20 and the pair of discharge rollers 12 may be superimposed on the preceding sheet on the step 20.
The pair of superimposing rollers 14 as the “pair of first conveying rollers” is a pair of rollers which is disposed at the downstream of the pair of discharge rollers 12 in the sheet conveying direction and causes the plurality of sheets to be superimposed on each other. The pair of superimposing rollers 14 has a function of temporarily holding (buffering) the plurality of sheets by an operation described later. Furthermore, the buffering is performed so as to cause the subsequent sheet, which is immediately and continuously output during the process operation of the preceding job, to be in a standby state.
The pair of superimposing rollers 14 includes a lower roller 16 as a “first roller” disposed at the lower side and an upper roller 15 as a “second roller” disposed at the upper side. The upper roller 15 and the lower roller 16 are so-called passage rollers which face each other and have a roller portion throughout the entire region of the sheet width direction M (the direction perpendicular to the paper surface of
The lower roller 16 forms the upper roller 15 and a nip by pressurizing bearing portions (not illustrated) of both end portions through springs (not illustrated). The driving and the stopping of the upper roller 15 and the lower roller 16 can be both controlled. The respective rollers may be connected to a motor (see
The pair of bundle conveying rollers 17 as the “pair of second conveying rollers” is disposed on the downstream of the pair of superimposing rollers 14 in the sheet conveying direction J. The pair of bundle conveying rollers 17 conveys the sheet bundle which is conveyed from the pair of superimposing rollers 14. The pair of bundle conveying rollers 17 is able to come into contact with each other or separate from each other, and separates from each other so as to release the nip when aligning the sheets.
The aligning roller 18 is disposed at the downstream of the pair of bundle conveying rollers 17 in the sheet conveying direction J, comes into contact with the surface of the conveying surface 21, and moves the sheet S to the aligning wall 19 so that the sheet bumps thereinto. The aligning wall 19 is a wall which is disposed at the downstream of the aligning roller 18 in the sheet conveying direction J and aligns the conveyed sheet bundle in the conveying direction. When the controller 51 controls the driving of the pair of superimposing rollers 14, the sheets from the first sheet to the n-th sheet (n is a natural number equal to or larger than 2) enters the aligning roller 18 in order from the preceding conveyed sheet, bumps into the aligning wall 19, and is aligned in the sheet conveying direction J. A stapler 27 (a stapling device) is provided between the aligning roller 18 and the aligning wall 19 in the sheet conveying direction J.
The stapler 27 which is disposed in the aligning wall 19 staples the sheet bundle which is aligned by bumping into the aligning wall 19 by the aligning roller 18. Subsequently, the aligning wall 19 is retracted after the stapling is completed and the sheet bundle is discharged to the discharge tray 22 by a discharging unit (not illustrated). Next, referring to
Although it will be described later in detail, the controller 51 as the “control unit” controls the rotation of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17. Here, as described above, the controller 50 may control the rotation of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17 by using the controller 50 as the “control unit”.
The controller 51 drives the upper roller 15 and the lower roller 16 so as to match the timing at which the leading end of the sheet S1 reaches the pair of superimposing rollers 14 in response to the detection signal from the sensor 23 that detects the leading end of the sheet S1 (see the timing a). At this time, the upper roller 15 and the lower roller 16 are rotationally driven at the same circumferential velocity. Incidentally, the controller 51 may rotate the upper roller 15 in a driven manner just by rotationally driving the lower roller 16.
When the tail end of the sheet S1 which is conveyed by rotationally driving the upper roller 15 and the lower roller 16 passes the sensor 23, the sensor 23 is turned off. The controller 51 stops the driving of the upper roller 15 and the lower roller 16 in response to the detection signal from the sensor 23 that detects the tail end of the sheet S1 (see the timing b). Accordingly, the sheet S1 is conveyed by a predetermined distance by the pair of superimposing rollers 14, and then is maintained to be nipped between the pair of superimposing rollers 14. Furthermore, since the sheet S2 is superimposed on the sheet S1, the stop position of the sheet S1 is set as a position at which the tail end of the sheet S1 slightly passes by the step 20 (see
Subsequently, the sheet S2 having an image formed thereon is conveyed toward the processing apparatus 13 by the pair of discharge rollers 12. The sheet S2 which is conveyed by the pair of discharge rollers 12 may be superimposed on the sheet S1 in the sheet conveying direction J by passing the step 20. Further, when the leading end of the sheet S2 passes the sensor 23, the sensor 23 is turned on. The controller 51 drives the upper roller 15 and the lower roller 16 so as to match the timing at which the leading end of the sheet S2 reaches the pair of superimposing rollers 14 in response to the detection signal from the sensor 23 that detects the leading end of the sheet S2 (see the timing c). Accordingly, the sheet S2 is conveyed into the nip portion between the pair of superimposing rollers 14 along the front surface of the sheet S1.
Subsequently, the controller 51 immediately stops the driving of the lower roller 16. Specifically, the controller 51 drives the lower roller 16 only for the time f, and stops the driving of the lower roller 16 (see the timing a1). In this way, since the controller 51 rotates both the upper roller 15 and the lower roller 16 when the sheet S2 is conveyed into the nip portion between the pair of superimposing rollers 14, the posture of the sheet S1 is not disturbed by the influence generated when the sheet S2 is conveyed thereinto.
Subsequently, since the controller 51 drives only the upper roller 15, the sheet S2 is conveyed to the downstream while being superimposed on the stopped sheet S1. Then, when the tail end of the sheet S2 passes the sensor 23, the sensor 23 is turned off. In this way, since the controller 51 drives only upper roller 15, the superimposed amount of the sheet S2 superimposed on the sheet S1 in the conveying direction is controlled.
During a time at which the controller 51 just rotates the upper roller 15 so as to convey the sheet S2, the lower roller 16 is stopped while being braked by a torque limiter (not illustrated).
Here, the friction between the upper roller 15 and the second sheet S2 is denoted by m1, the friction between the lower roller 16 and the first sheet S1 is denoted by m2, and the friction between the first sheet S1 and the second sheet S2 is denoted by m3. Then, since the relation of m(mu)1>m(mu)3 and m(mu)2>m(mu)3 is established, the sheet S2 can be conveyed while rubbing the stopped sheet S1 just by rotating the upper roller 15.
The controller 51 performs control so that the timing of driving the upper roller 15 changes based on the information of the timing at which the sensor 23 detects the passage of the sheet S2. For this control, as for the stopped position of the sheet S2, the leading end of the sheet S2 is disposed on the upstream side by a predetermined shift amount L in the sheet conveying direction J in relation to the leading end of the sheet S1 (the timing a1 to the timing d).
Subsequently, the sheet S3 having an image formed thereon is conveyed toward the processing apparatus 13 by the pair of discharge rollers 12. The sheet S3 which is conveyed by the pair of discharge rollers 12 may be superimposed on the sheet S2 in the sheet conveying direction J by passing the step 20. Further, when the leading end of the sheet S3 passes the sensor 23, the sensor 23 is turned on. The controller 51 drives the upper roller 15 and the lower roller 16 so as to match the timing at which the leading end of the sheet S3 reaches the pair of superimposing rollers 14 in response to the detection signal from the sensor 23 that detects the leading end of the sheet S3 (see the timing e). Accordingly, the sheet S3 is conveyed into the nip portion between the pair of superimposing rollers 14 along the front surface of the sheet S2.
The controller 51 controls the driving of the pair of superimposing rollers 14 so that the tail end of the sheet S1 in the sheet conveying direction J passes before the leading end of the sheet S3 in the sheet conveying direction J reaches the nip portion between the pair of superimposing rollers 14. Specifically, the controller 51 rotates the upper roller 15 and the lower roller 16 at the same circumferential velocity (the timing e). Accordingly, the sheet S1 and the sheet S2 are conveyed in a superimposed bundle state by the upper roller 15 and the lower roller 16.
Subsequently, an operation will be described in which the sheet S1, the sheet S2, and the sheet S3 superimposed on each other as three sheets are conveyed. As illustrated in
The sheets which are conveyed by the pair of bundle conveying rollers 17 are conveyed to the aligning roller 18. The sheets may bump into the aligning wall 19 in order from the first sheet by rotationally driving the aligning roller 18. Here, the aligning roller 18 slightly sets the pressure applied to the sheet and the friction m4 against the sheet so that the sheet is not buckled when the sheet bumps into the aligning wall 19.
When the friction between the rear surface of the sheet S1 and the conveying surface 21 (see
Further, after the tail end of the sheet S1 comes out from the pair of bundle conveying rollers 17, the sheet S1 is conveyed farther only by the aligning roller 18 until the leading end bumps into the aligning wall 19.
As in the sheet S1, the sheet S2 and the sheet S3 are also conveyed by the pair of bundle conveying rollers 17 and the aligning roller 18 so as to bump into the aligning wall 19, so that the leading ends of the sheets are aligned. Furthermore, in a case where the number of sheets forming one job is four or more, the fourth sheet and the subsequent sheets are continuously conveyed one by one, and hence the sheets sequentially are superimposed on the preceding conveyed sheet so that the leading ends of the sheets are aligned.
Next, referring to
As illustrated in
Since the shift amount L is set to be larger than the dimension D, the leading end of the sheet S1 conveyed by the aligning roller 18 bumps into the aligning wall 19, and then the leading end of the sheet S2 conveyed to the pair of bundle conveying rollers 17 reaches the front side of the aligning roller 18. At this time, the sheet S3 is also conveyed to the downstream side by the pair of bundle conveying rollers 17 together with the sheet S2. Similarly, the leading end of the sheet S2 conveyed to the aligning roller 18 bumps into the aligning wall 19, and then the leading end of the sheet S3 conveyed to the pair of bundle conveying rollers 17 reaches the front side of the aligning roller 18.
The relation between the dimension D and the shift amount L will be summarized. The distance from the nip portion of the aligning roller 18 to a contact surface 19a of the aligning wall 19 in the sheet conveying direction J is denoted by D. The shift amount of the downstream end of the n-th sheet and the downstream end of the n+1-th sheet in the sheet conveying direction J is denoted by L. Then, since the relation between D and L is D< and =L (D is less than L.), the sheets may bump into the aligning wall 19 one by one by the aligning roller 18, and hence the sheets may be reliably aligned. Incidentally, n is an integer of 1 or more.
At this time, when the shift amount L becomes smaller than the dimension D, the subsequent sheet reaches the nip of the aligning roller 18 before the aligning roller 18 allows the preceding sheet to bump into the aligning wall 19. Then, the aligning roller 18 simultaneously conveys two sheets of the preceding sheet and the subsequent sheet, and hence the sheets may not be stably conveyed.
Furthermore, since the apparatus body 100A is formed in a small size, the shift amount L is set as small as possible. In a case where the shift amount L is excessively large, the dimension (particularly in the sheet conveying direction) of the apparatus body 100A increases. That is, when the shift amount L becomes small, the sheet superimposed amount becomes large.
The sheets which are aligned by coming into contact with the aligning wall 19 are stapled by the stapler 27. Then, the aligning wall 19 is retracted, the sheet bundle is discharged to the discharge tray 22 by a conveying unit (not illustrated), and then the process ends.
As described above, according to the configuration of the first embodiment, the number of sheets nipped between the pair of rollers is normally two or less when the sheets are superimposed on each other in a buffering manner (the sheets are temporarily kept so as to wait for the job). Specifically, even when there are the nip portion between the pair of superimposing rollers 14 and the nip portion between the pair of bundle conveying rollers 17, three sheets are not nipped. Accordingly, the sheets may be stably conveyed, and the shift amount of the leading ends of the sheets necessary to be aligned by the aligning roller 18 may be accurately managed. Further, according to the configuration of the first embodiment, the number of sheets nipped between the pair of rollers is two or less and three sheets may be superimposed on each other as illustrated in
Furthermore, in the description of the first embodiment above, a configuration has been described in which the controller 51 stops the lower roller 16 and rotates only the upper roller 15 so as to be superimposed on the sheets, but the invention is not limited thereto. For example, a configuration may be adopted in which the controller 51 stops the upper roller 15 and reversely rotates the lower roller 16 so as to be superimposed on the sheets. Further, even when the lower roller 16 is not stopped, the sheets may be superimposed on each other by rotating the upper roller 15 at the lower speed.
Further, in the description of the first embodiment above, a configuration has been described in which the controller 51 rotates both the upper roller 15 and the lower roller 16 so that the leading end of the sheet reaches the pair of superimposing rollers 14, but the lower roller 16 may not necessarily rotate. In a case of the configuration of stopping the lower roller 16, the friction between the upper roller 15 and the sheet S2 is set to be smaller than the friction between the lower roller 16 and the sheet S1. By this setting, the posture of the sheet S1 may not change at the time of driving the upper roller 15 when the sheet S2 is conveyed into the pair of superimposing rollers 14.
Next, a second embodiment will be described. In the description of the second embodiment, the same configuration or the same operation as that of the first embodiment will not be appropriately repeated.
In the first embodiment, a configuration has been described in which the number of sheets nipped between the pair of superimposing rollers 14 is controlled, but in the second embodiment, not only the number of sheets nipped between the pair of superimposing rollers 14 but also the number of sheets nipped between the pair of bundle conveying rollers 17 are controlled. Specifically, in the first embodiment, a configuration has been described in which the number of sheets nipped between the pair of superimposing rollers 14 does not become three, but in the second embodiment, three sheets are temporarily nipped between the pair of superimposing rollers 14 or the pair of bundle conveying rollers 17.
Here, in the second embodiment, when three sheets are nipped between one of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17, two sheets are nipped between the other of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17. That is, even in the second embodiment, since three sheets respectively and directly come into contact with the rollers as in the first embodiment, the sheets may be stably conveyed.
Referring to
Further, the operation and the control until the second sheet S2 is discharged by the pair of discharge rollers 12, is superimposed on the sheet S1, and stops are also the same as those of the first embodiment. That is, the timing i of the second embodiment corresponds to the timing c of the first embodiment, and the timing j of the second embodiment corresponds to the timing d of the first embodiment. Further, the timing a2 of the second embodiment corresponds to the timing a1 of the first embodiment.
Since the upper roller 15 is rotated while the controller 51 stops the driving of the lower roller 16 from the timing a2 to the timing j, the sheet S2 may be superimposed on the sheet S1.
Further, the operation and the control in which the sheet S3 discharged by the pair of discharge rollers 12 is conveyed while being nipped between the upper roller 15 and the lower roller 16 are also the same as those of the first embodiment. That is, the timing k of the second embodiment corresponds to the timing e of the first embodiment.
In the second embodiment, the controller 51 starts the driving of the pair of superimposing rollers 14 at the timing k and also starts the driving of the pair of bundle conveying rollers 17. Furthermore, at this time, the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17 have the same circumferential velocity.
In contrast, when the dimension A is longer than the dimension B in
Further, in
In the second embodiment, since the dimension C is set to be longer than the dimension D, when the leading end of the sheet S3 reaches the nip portion between the pair of bundle conveying rollers 17 as illustrated in
In contrast, when the relation of the dimension C< and =the dimension D (C is less than D.) is set, three sheets of the sheet S1, the sheet S2, and the sheet S3 may be simultaneously nipped between both the pair of bundle conveying rollers 17 and the pair of superimposing rollers 14. Then, the sheet S2 is nipped between the sheet S1 and the sheet S3, and may not come into contact with any roller. For this reason, the accuracy in the conveying of the sheet S2 is degraded. The operation after
As described above, according to the sheet processing apparatus of the embodiment, since three sheets respectively come into contact with any roller of the pair of superimposing rollers 14 or the pair of bundle conveying rollers 17 when superimposing three sheets on each other, the sheets may be stably conveyed.
Further, in the second embodiment, since three sheets may be superimposed on each other in an overlapping manner in the range of the dimension D, much buffer time may be saved.
Further, since the sheet leading end shift amount necessary for aligning the sheets by the aligning roller 18 may be accurately managed as in the first embodiment, a reliable aligning operation and a decrease in the size of the apparatus may be realized.
Next, a third embodiment will be described. In the description of the third embodiment, the same configuration or the same operation as that of the first embodiment will not be appropriately repeated.
In the second embodiment, a control has been described in which the number of sheets nipped between the pair of bundle conveying rollers 17 or the pair of superimposing rollers 14 is three. The third embodiment is characterized in that the length of three sheets superimposed in the sheet conveying direction J further increases.
Hereinafter, referring to
The operation and the control until the first sheet S1 conveyed by the pair of discharge rollers 12 is conveyed by a predetermined distance by the pair of superimposing rollers 14 and the driving of the pair of superimposing rollers 14 is stopped are the same as those of the first and second embodiments. That is, the timing m of the third embodiment corresponds to the timing a of the first embodiment, and the timing n of the third embodiment corresponds to the timing b of the first embodiment.
Further, the operation and the control until the sheet S2 is discharged by the pair of discharge rollers 12, is superimposed on the sheet S1, and is stopped are also the same as those of the first and second embodiments. That is, the timing o of the third embodiment corresponds to the timing c of the first embodiment, and the timing p of the third embodiment corresponds to the timing d of the first embodiment. Further, the timing a3 of the third embodiment corresponds to the timing a1 of the first embodiment.
Since the controller 51 rotates the upper roller 15 while stopping the driving of the lower roller 16 from the timing a3 to the timing p, the sheet S2 may be superimposed on the sheet S1. This operation is also the same as those of the first and second embodiments.
Subsequently, the controller 51 drives the upper roller 15, the lower roller 16, and the pair of bundle conveying rollers 17 which are stopped (see the timing q), and immediately stops them (see the timing s). Accordingly, the sheet S1 and the sheet S2 are conveyed to the downstream, and the tail end of the sheet S2 passes the nip portion between the pair of superimposing rollers 14 as illustrated in
Furthermore, at this time, the leading end of the sheet S2 reaches the nip portion between the pair of bundle conveying rollers 17 and is nipped between the pair of bundle conveying rollers 17 as illustrated in
Subsequently, the controller 51 drives the upper roller 15 and the lower roller 16 before the leading end of the sheet S3 conveyed by the pair of discharge rollers 12 reaches the nip portion between the pair of superimposing rollers 14 (see the timing t). The timing t of the third embodiment corresponds to the timing e of the first embodiment. Accordingly, the sheet S3 is conveyed into the nip portion between the pair of superimposing rollers 14 along the front surface of the sheet S2. Further, the controller 51 also drives the pair of bundle conveying rollers 17 (the timing t).
Subsequently, the controller 51 stops the driving of the lower roller 16 and the pair of bundle conveying rollers 17 (see the timing a4). Accordingly, since only the upper roller 15 is driven, the sheet S3 is conveyed by the upper roller 15 so as to be superimposed on the sheet S2.
After the sheet S3 is nipped between the pair of superimposing rollers 14, the controller 51 stops the driving of the lower roller 16 (the timing a4) and drives only the upper roller 15. In this way, the sheet S3 is conveyed by the upper roller 15 and is superimposed on the sheet S2 from the timing a4 to the timing u.
Before the leading end of the sheet S3 conveyed by the upper roller 15 reaches the nip portion between the pair of bundle conveying rollers 17, the controller 51 drives the lower roller 16 and the pair of bundle conveying rollers 17 (see the timing u). In the description of the third embodiment above, the sheet S3 is nipped between the pair of superimposing rollers 14, and the driving of the upper roller 15 does not stop. However, in a case where the more standby time needs to be saved, the driving of the upper roller 15 may be stopped after the sheet S3 is nipped between the pair of superimposing rollers 14. Furthermore, although it is also illustrated in the timing chart of
Here, in order to obtain the longest buffer time, there is a need to increase a region in which three sheets are superimposed on each other. Specifically, when the dimension E is set to be small and the dimension G is set to be large as illustrated in
In this way, the controller 51 discharges the sheet bundle to the aligning wall 19 by rotationally driving the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17 after superimposing three sheets on each other (see the timing u). As illustrated in
According to the sheet processing apparatus of the embodiment, since three sheets respectively and directly come into contact with any roller of the pair of superimposing rollers 14 or the pair of bundle conveying rollers 17 when superimposing three sheets on each other, the sheets may be stably conveyed.
Further, in the third embodiment, since the overlapping amount of the sheet S3 may be made large compared to the second embodiment, the longer buffer time may be obtained, and hence this is advantageous in an increase in speed of the operation. Further, since the sheet leading end shift amount necessary for aligning the sheets by the aligning roller 18 may be accurately managed as in the first embodiment, a reliable aligning operation and a decrease in the size of the apparatus may be realized.
Next, a fourth embodiment will be described. In the description of the fourth embodiment, the same configuration or the same operation as that of the first embodiment will not be appropriately repeated.
When the sheet S1 is discharged from the pair of discharge rollers 12, the sheet is conveyed while being nipped between the pair of superimposing rollers 24. The controller 51 drives the upper roller 25 and the lower roller 26 so that the rollers rotate at the same circumferential velocity in the opposite directions (see the timing “A”). That is, the upper roller 25 and the lower roller 26 move in the same direction at the nip portion, and both rollers rotate in a direction facing the sheet conveying direction J. For example, when the upper roller 25 may rotate in the positive direction, the lower roller 26 may rotate in the reverse direction.
The controller 51 stops both the upper roller 25 and the lower roller 26 after the tail end of the sheet S1 comes out from the pair of discharge rollers 12 (see the timing “I”). In this way, the sheet S1 is maintained to be nipped between the pair of superimposing rollers 24. Furthermore, the stop position of the sheet S1 is controlled based on the time at which the tail end of the sheet S1 passes by the sensor 23, and is set as a position where the tail end of the sheet S1 slightly passes by the step 20 (see
Subsequently, the sheet S2 is discharged from the pair of discharge rollers 12, and is conveyed into the pair of superimposing rollers 24. The pair of superimposing rollers 24 maintains the stop state or the deceleration state until the sheet S2 reaches the rollers, and the driving thereof is started again immediately before or immediately after the sheet S2 reaches the rollers (see the timing “U”), so that the sheet S1 and the sheet S2 are conveyed while being superimposed on each other. In this way, even when the sheet S2 is conveyed while being superimposed on the sheet S1, the lower roller 26 rotates along with the upper roller 25 at the moment when both sides of the sheet S2 are nipped or after the moment. This point is different from the control of the first embodiment.
Furthermore, in the fourth embodiment, the pair of superimposing rollers 24 is disposed at a position away from the pair of discharge rollers 12 compared to the configuration of the first embodiment. The reason is as below. In the first embodiment, the shift amount in the conveying direction when superimposing two sheets on each other is controlled in a manner such that the controller 51 rotates only the upper roller 15 while the lower roller 16 is stopped so as to superimpose the sheet S2 on the sheet S1.
On the other hand, in the fourth embodiment, the controller 51 does not perform control in which only the upper roller 25 is rotated while the lower roller 26 is stopped. That is, in the fourth embodiment, no relative velocity difference occurs between the sheets S1 and S2 after the sheet S2 is conveyed into the pair of superimposing rollers 24. That is, the shift amount in the conveying direction when superimposing two sheets on each other becomes the distance from the nip between the pair of superimposing rollers 24 to the downstream end of the sheet S1 in the conveying direction at the position where the sheet S1 is stopped at the timing. Accordingly, since the shift amount of two sheets is obtained as small as possible, there is a need to set a comparatively long distance between the pair of superimposing rollers 24 and the pair of discharge rollers 12 in consideration of the length of the sheet. Due to the above-described reason, in the fourth embodiment, the distance between the pair of superimposing rollers 24 and the pair of discharge rollers 12 is set to be longer than that of the first embodiment.
After the sheet S1 and the sheet S2 are superimposed on each other, the pair of superimposing rollers 24 may not be stopped and convey a bundle of two sheets to the aligning wall 19 at the downstream in the sheet conveying direction J. Alternatively, in order to perform the buffer, as illustrated in the timing chart of
In this way, even in a state where three sheets are superimposed on each other, the number of sheets nipped between the pair of superimposing rollers 24 may be two or less at all times. For this reason, any sheet may be stably conveyed. The reason why the sheets may be stably conveyed when the number of nipped sheets is two or less is the same as that of the first embodiment.
After the sheet S3 is conveyed into the pair of superimposing rollers 24, all sheets are discharged without stopping the rotational driving of the pair of superimposing rollers 24. The subsequent operations are the same as those of the first embodiment.
As described above, since three sheets may be superimposed on each other so as not to overlap each other by using the sheet processing apparatus of the image forming apparatus according to the embodiment, the sheets may be stably conveyed. Further, in the fourth embodiment, since the sheet leading end shift amount necessary for aligning the sheets by the aligning roller 18 may be accurately managed, the reliable aligning operation and a decrease in the size of the apparatus may be realized. In the fourth embodiment, there is no need to provide a configuration of a clutch or a torque limiter for rotating the upper roller 25 while the lower roller 26 is stopped. Further, in the fourth embodiment, since the operation in which the sheets are superimposed on each other just by rotating the upper roller 25 is not performed, there is a low possibility of a defective image when superimposing the sheets on each other.
Hereinafter, the analysis of the effects of the first to fourth embodiments will be summarized.
According to the configuration of the first embodiment or the fourth embodiment, the following effects may be obtained. The controller 51 drives the pair of superimposing rollers 14 so that the upstream end of the first sheet S1 in the sheet conveying direction J comes out from the nip between the pair of superimposing rollers 14 before the downstream end of the third sheet S3 in the sheet conveying direction J reaches the pair of superimposing rollers 14. Accordingly, in a case where three sheets are conveyed in a superimposed state, the first sheet S1 and the third sheet S3 are conveyed as a bundle while being superimposed on each other and being shifted in the sheet conveying direction J so as not to overlap each other. For this reason, the pair of superimposing rollers 14 always nips two or less sheets, and at this time, three sheets all respectively and directly come into contact with the pair of superimposing rollers 14 while the sheets are conveyed. As a result, the superimposed sheets are conveyed as a bundle with high precision, and the shift amount or the shift direction of the superimposed sheets may be managed.
According to the configuration of the second embodiment or the third embodiment, the pair of bundle conveying rollers 17 nips the sheet S2, and then the pair of superimposing rollers 14 nips the sheet S3. Accordingly, in a case where three sheets are conveyed in a superimposed state, even when the pair of superimposing rollers 14 nips three sheets of the first sheet to the third sheet, the pair of bundle conveying rollers 17 nips only two sheets of the first sheet S1 and the second sheet S2. At this time, three sheets all directly come into contact with any roller of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17. As a result, the superimposed sheets are conveyed as a bundle with high precision, and hence the shift amount or the shift direction of the superimposed sheets may be managed.
According to the configuration of the first embodiment or the third embodiment, it is controlled so that the first sheet S1 comes out from the pair of superimposing rollers 14 before the pair of superimposing rollers 14 nips the third sheet S3. For this reason, even when three sheets are conveyed in a superimposed state, the pair of superimposing rollers 14 always nips only two or less sheets. As a result, all sheets are conveyed while coming into contact with the upper roller 15 or the lower roller 16 of the pair of superimposing rollers 14.
According to the configuration of the second embodiment, the following effects may be obtained. In a case where three sheets are conveyed in a superimposed state, even when the pair of bundle conveying rollers 17 nips three sheets of the first sheet to the third sheet in an overlapping state, the pair of superimposing rollers 14 nips only two sheets of the second sheet S2 and the third sheet S3. At this time, three sheets all directly come into contact with any roller of the pair of superimposing rollers 14 and the pair of bundle conveying rollers 17. As a result, the superimposed sheets are conveyed as a bundle with high precision, and hence the shift amount or the shift direction of the superimposed sheets may be managed.
According to the configuration of the third embodiment, the controller 51 performs control so that the pair of superimposing rollers 14 decelerates the first sheet S1 and the second sheet S2 in a nipping state and the pair of discharge rollers 12 conveys the third sheet in a nipping state. Accordingly, it is possible to increase a region in which the third sheet further overlaps a region in which the first sheet S1 and the second sheet S2 are superimposed on each other. For this reason, it is possible to increase a region in which the first sheet S1 to the third sheet S3 overlap each other. As a result, the much buffer time may be made, and the high output speed may be handled.
According to the configurations of the first to third embodiments, in a state where the rotation velocity of the upper roller 15 is fast and the rotation velocity of the lower roller 16 is slow, the second sheet S2 may easily slide on the first sheet S1.
According to the configuration of the fourth embodiment, the lower roller 16 and the upper roller 15 rotate at the same rotation velocity so as to rotate in the opposite directions. As a result, the register-correction is performed in a manner such that the second sheet S2 superimposed on the first sheet S1 in a shifted state forms a loop. Further, the register-correction is performed in a manner such that the third sheet S3 superimposed on the second sheet S2 in a shifted state forms a loop.
According to the configurations of the first to fourth embodiments, the aligning roller 18 and the aligning wall 19 are provided. For this reason, the plurality of sheets is conveyed as a bundle while the shift amount is managed with high precision. As a result, in order to align the leading ends of the plurality of sheets, the shift amount which is minimally required is set. As a result, compared to the buffer mechanism in which the sheet is wound on the large roller of the related art, it is possible to realize a decrease in size and prevent degradation in the process yield caused by a difference in the length of the sheet in the sheet conveying direction or a decrease in the gap between the sheets.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-221742, filed Oct. 6, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2011-221742 | Oct 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/006449 | 10/5/2012 | WO | 00 | 4/3/2014 |