Field of the Invention
The present invention relates to a sheet processing apparatus capable of binding a sheet bundle and an image forming apparatus including the same.
Description of the Related Art
Heretofore, there is known an image forming apparatus such as a copier, a printer, a facsimile, and a multi-function printer including a sheet processing apparatus configured to bind a plurality of sheets (sheet bundle) on which images have been formed. Many of the sheet processing apparatuses provided in the image forming apparatus is configured to bind a sheet bundle by using metallic staples. It is because the sheet processing apparatus using the metallic staples can bind the sheet bundle securely at a positioned specified by a user.
However, the sheet bundle bound by the metallic staples necessitates the staples to be removed from the sheet bundle in putting through a shredder or in recycling the sheets. It is a cumbersome work to remove the staples from the sheet bundle, and the removed staples become waste, so that it is costly to use staples as a whole. Then, lately, there is proposed a sheet processing apparatus configured to bind sheets by entangling fibers of the sheets by forming convexities and concavities in a direction of a thickness of the sheet bundle and by joining the sheets with each other (referred to as ‘staple-less biding’ hereinafter) as disclosed in Japanese Patent Application Laid-open NO. 2010-189101.
Here, the sheet processing apparatus described in Japanese Patent Application Laid-open No. 2010-189101 is configured to form the convexities and concavities on the sheet bundle by a pair of tooth-shaped members having upper and lower teeth and to release the bound sheet bundle by moving the upper and lower teeth in directions separating from each other by a compression spring. Therefore, there is a possibility that either one of the upper and lower teeth bites into the sheet, and the sheet may stick to the teeth if an engagement force of the upper and lower teeth is increased. It is because the sheet bundle bites into the teeth and a wedge condition is brought about as the fibers of the compressed sheets get into fine cut steps formed in creating the teeth.
Here, in a case where the bounded sheet bundle is tried to be conveyed by pushing an end portion thereof by a press member, the sheet bundle deflects between a part biting with either one of the upper and lower teeth and the part pressed by a press member. Then, while the sheet bundle is peeled off from either one of the upper and lower teeth and starts to move by being pushed by the press member, there is a possibility that the sheet bundle jumps out as the deflection caused in the sheet bundle is released at once.
According to an aspect of the present invention, a sheet processing apparatus includes a sheet stacking portion on which sheets are stacked, a binding portion binding a plurality of sheets stacked on the sheet stacking portion as a bundle by deforming the sheets without a staple, a moving member moving the sheet bundle bound at a binding position by the binding portion from the binding position, and a restricting member restricting the move of the bound sheet bundle such that a distance between the bound sheet bundle and the moving member is kept to be less than a predetermined distance in moving the bound sheet bundle by the moving member.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An image forming apparatus including a sheet processing apparatus according to embodiments of the present invention will be described with reference to the drawings. The image forming apparatus of the embodiments of the present invention is an image forming apparatus including a finisher as a sheet processing apparatus capable of binding a plurality of sheets (a sheet bundle) such as a copier, a printer, a facsimile, and a multi-function printer. The following embodiments will be explained by using an electro-photographic image forming apparatus.
An image forming apparatus 900 of a first embodiment will be explained with reference to
As shown in
The apparatus body 900A includes photoconductive drums a through d configured to form toner images of each color of yellow, magenta, cyan, and black, and an intermediate transfer belt 902 carrying the toner images formed and transferred from the photoconductive drums a through d. The photoconductive drums a through d are configured to be rotationally driven by motors not shown. Disposed around each of the photoconductive drums are a primary charging unit, a developer, and a transfer charging unit not shown. Each of the photoconductive drums, the primary charging unit, the developer, and the transfer charging unit are unitized as process cartridge 901a through 901d, respectively, and are configured to be removable from the apparatus body 900A. An exposure unit 906 composed of a polygonal mirror and others is disposed under the photoconductive drums a through d.
When an image of a document is read by the image reading apparatus 950 for example, a laser beam of yellow which is a component color of the document is irradiated to the photoconductive drum a through the polygonal mirror and others of the exposure unit 906, and an electrostatic latent image is formed on the photoconductive drum a. Then, the electrostatic latent image is visualized as a yellow toner image by supplying yellow toner from the developer to the electrostatic latent image on the photoconductive drum a. When the photoconductive drum a rotates and comes to the primary transfer portion where the drum comes into contact with the intermediate transfer belt 902, the yellow toner image on the photoconductive drum a is transferred to the intermediate transfer belt 902 by a primary transfer bias applied to the transfer charging member 902a.
When the part of the intermediate transfer belt 902 carrying the yellow toner image moves in a direction indicated by an arrow in
Meanwhile, the sheet P on which the image is to be formed is stored in a cassette 904 provided at a lower part of the apparatus body 900A and is fed one by one from the cassette 904 by a pickup roller 908. The sheet P thus fed out by the pickup roller 908 is synchronized by a registration roller 909 and reaches a second transfer portion 903. Then, the four color toner images on the intermediate transfer belt 902 are transferred collectively to the sheet P by a secondary transfer roller 903a to which a secondary transfer bias is applied.
The sheet P on which the four color toner images have been transferred is conveyed to a fixing roller pair 905 by being guided through a conveyance guide 920. Then, the respective color toners melt and mix by receiving heat and pressure from the fixing roller pair 905 and the toner images are fixed as a full-color print image. The sheet P on which the image has been fixed is conveyed to the finisher 100 by passing through a conveyance guide 921 and by a discharge roller pair 918.
The finisher 100 is configured to take in the sheet P discharged out of the apparatus body 900A one by one, to align and bundle the plurality of sheets thus taken in as one bundle, and to perform a binding process (post-processing) of binding an upstream end (referred to as ‘rear end’ hereinafter) in a conveying direction of the bundled sheet bundle. It is noted that the finisher 100 will be described in detail later.
The sheet P on which the post-processing has been performed by the finisher 100 is discharged out of the apparatus and is stacked on a stacking tray 114. In a case where no post-processing needs to be done by the finisher 100, the sheet P conveyed to the finisher 100 is discharged out of the apparatus by passing through the finisher 100 and is stacked on the stacking tray 114.
Next, a configuration of a controller controlling the image forming apparatus 900 will be explained with reference to
As shown in
Based on the control program stored in the ROM 202, the CPU circuit portion 200 integrally controls a DF (document feeder) control portion 204, an image reader control portion 205, an image signal control portion 206, a printer control portion 207, and the finisher control portion 220. Based on an instruction from the CPU circuit portion 200, the DF control portion 204 drives and controls the document feeder 950A. The image reader control portion 205 drives and controls a scanner unit, an imaging unit and others of the image reading apparatus 950 and transfers an analog image signal outputted from an image sensor to the image signal control portion 206 based on an instruction from the CPU circuit portion 200.
The image signal control portion 206 converts the analog image signal outputted of the image sensor into a digital signal. The image signal control portion 206 also converts the digital signal into a video signal and outputs it to the printer control portion 207. In a case where a digital image signal is inputted to the image signal control portion 206 from a computer 208 through an external I/F 209, the image signal control portion 206 converts the digital image signal thus inputted into a video signal and outputs it to the printer control portion 207. It is noted that the processing operation of the image signal control portion 206 is controlled by the CPU circuit portion 200. Based on the video signal thus inputted, the printer control portion 207 drives and controls the apparatus body 900A (exposure unit and others described above).
A manipulation portion 210 includes a plurality of keys used in setting various functions in forming an image and a display indicating a state thus set, and outputs key signals corresponding to each key thus manipulated to the CPU circuit portion 200 and displays information corresponding to signals from the CPU circuit portion 200 on the display. The finisher control portion 220 is mounted in the finisher 100 and drives and controls the entire finisher 100 by exchanging information with the CPU circuit portion 200.
As shown in
For instance, based signals inputted from various sensors of the finisher 100, the finisher control portion 220 drives and controls various motors of the finisher 100 through a driver 225. The various sensors include an entrance sensor S240, a sheet surface sensor S241, a tray lower limit sensor S242, a paddle HP sensor S243, a assist HP sensor S244, a bundle pressor HP sensor S245, a discharge sensor S246, a STPHP sensor S247 and others. The various motors include a conveying motor M250, a tray elevating motor M251, a paddle elevating motor M252, a aligning motor M253, a assist motor M254, a bundle pressing motor M255, a STP motor M256, a staple-less binding motor M257, a STP moving motor M258, and others.
Next, the finisher 100 described above will be explained in detail with reference to
As shown in
At this time, the discharge sensor S246 provided upstream in the conveying direction of the discharge roller 103 detects the sheet P discharged to the processing tray 107, and based on a detection signal of this time, the finisher control portion 220 controls the staple-less binding unit 102 and others described later. It is noted that a falling time of the sheet P discharged by the discharge roller 103 to the processing tray 107 is shortened by pressing the sheet P from above by the rear end drop 105.
As shown in
The knurling belt 117 urges the sheet P always to the rear end stopper 108 side by conveying, while slipping, the sheet P even after when the sheet P has been conveyed by the paddle 106 to the rear end stopper 108 restricting the rear edge of the sheet P. This slip conveyance enables the rear end of the sheet P to abut against the rear end stopper 108 and a skew of the sheet P to be corrected. The sheet P abutting against the rear end stopper 108 is aligned in a direction orthogonal to the conveying direction (referred to as a ‘width direction’ or ‘moving direction’ hereinafter) by a pair of aligning plates (pair of aligning members) 109 moved in the width direction by the aligning motor M253. A sheet bundle PA aligned on the processing tray 107 is thus formed by repeating this series of operations on the processing tray 107 (see
In a case where a stapling process is to be carried on the bundle PA formed by a predetermined number of sheets stacked on the processing tray 107, the STP motor M256 that drives a stapler 110 is driven, and the sheet bundle PA is then bound. Meanwhile, in a case a staple-less binding job is to be carried out on the sheet bundle PA, the pair of aligning plates 109 is moved in the direction orthogonal to the sheet conveying direction to move the sheet bundle PA thus aligned toward a staple-less binding position. Then, the staple-less binding motor M257 is driven to carry out the staple-less binding job by a staple-less binding unit (binding portion) 102. It is noted that the staple-less binding unit 102 will be described in detail later.
Still further, in a case where no binding process is carried out on the sheet bundle PA, the aligned sheet bundle PA is discharged to the stacking tray 114 without carrying out any binding process. At this time, as shown in
Then, in a case where the sheet bundle PA blocks the sheet surface sensor S241 after completing to press the rear end of the sheet bundle PA, the stacking tray 114 is lowered by the tray elevating motor M251 until when the sheet surface sensor S241 is put into a transmission state to determine a sheet level position.
A required number of sheet bundles can be discharged on the stacking tray 114 by performing the series of operations described above. Still further, in a case where the stacking tray 114 is lowered during the operation and the tray lower limit sensor S242 is blocked, i.e., the stacking tray 114 is fully loaded, a full-load signal is notified from the finisher control portion 220 to the CPU circuit portion 200 and the image forming operation is stopped. If the sheet bundles on the stacking tray 114 are removed after that, the stacking tray 114 is lifted until when the sheet surface sensor S241 is blocked and is then lowered and the sheet surface sensor S241 becomes transmissive. Thereby, the position of the stacking tray 114 is determined and the image forming operation is restarted.
Next, the staple-less binding unit 102 will be explained with reference to
As shown in
The gear 1025 is attached to the rotational shaft 1026 and a cam 1027 is attached to the rotational shaft 1026. The cam 1027 is provided between the upper and lower arms 1029 and 10212. Thereby, when the staple-less binding motor M is rotated, the rotation of the staple-less binding motor M257 is transmitted to the rotational shaft 1026 through the gear 1021, the stepped gears 1022 through 1024 and the gear 1025. Then, the cam 1027 is rotated.
When the cam 1027 rotates, a cam side end portion of the upper arm 1029 which has been in pressure contact with the cam 1027 through the roller 1028 by a bias force of a torsion coil spring 10211a, i.e., a bias member, is lifted as shown in
The staple-less binding unit 102 is configured such that when the cam side end portion of the upper arm 1029 is lifted, the end portion on the side opposite from the cam 1027 of the upper arm 1029 drops and along with that, the upper teeth 10210 drop and engage with the lower teeth 10214, thus sandwiching and pressing the sheets (fibrous sheet) P. The sheet P is extended by being pressed as described above and fibers on a surface of the sheet P are exposed. The fibers of the sheets are entangled and fastened with each other by being pressed further. That is, the sheets binding process is carried out by deforming and fastening the sheets by rocking the upper arm 1029 and by engaging and pressing the sheets by the upper teeth 10210 of the upper arm 1029 and the lower teeth 10214 of the lower arm 10212.
Here, the abovementioned finisher control portion 220 controlling the operation of the staple-less binding unit 102 detects a cam position at first by a sensor not shown in performing the staple-less binding operation on the sheets. Then, in receiving the sheets before performing the staple-less binding operation, the finisher control portion 220 controls the rotation of the staple-less binding motor M257 such that the cam 1027 is located at a bottom dead point (see FIG. TA). When the cam 1027 is located at the bottom dead point, a gap L2 is created between the upper teeth 10210 and the lower teeth 10214, thus enabling the sheet P to enter between them.
Meanwhile, during the binding operation, the staple-less binding motor M257 is rotated and the upper arm 1029 is rocked clockwise centering on an axis 10211 by the cam 1027. Then, when the cam 1027 is located at an upper dead point, the upper teeth 10210 of the upper arm 1029 and the lower teeth 10214 of the lower arm 10212 engage with each other (see
When the cam 1027 rotates further after locating at the upper dead point, the roller 1028 can ride over the upper dead point of the cam 1027 as a deflection portion 1029a provided on the upper arm 1029 deflects. Still further, when the cam 1027 rotates further and reaches the bottom dead point again, a sensor not shown detects the cam 1027 and thereby, the finisher control portion 220 stops the rotation of the staple-less binding motor M257.
It is noted that the staple-less binding unit 102 of the present embodiment is configured such that a longitudinal direction (array direction of the pluralities of convexities and concavities) of the upper and lower teeth 10210 and 10214 is orthogonal to the width direction (substantially in parallel with the conveying direction A) (see
Next, the staple-less binding job (the control made by the finisher control portion 220) of the staple-less binding unit 102 will be explained with reference to
When the staple-less binding job is selected as a print job in Step S10, a force opposite from the conveying direction A is applied to the sheet P discharged by the discharge roller 103 by the paddle 106 and the rear end thereof is returned toward the rear end stopper 108. After that, the sheet P is returned in the direction opposite from the conveying direction A by the knuling belt 117 and the rear end of the sheet P is returned to the rear end stopper 108. Then, the alignment (correction) of the sheet P in a direction orthogonal to the conveying direction is made by holding the sheet (sheets) between the pair of aligning plates (pair of aligning members) 109 capable of aligning both ends of the sheets.
When the aligning operation of each sheet P is carried out by a number of times of a required number of sheets of the sheet bundle PA to be staple-lessly bound, the sheet bundle PA thus aligned is moved to a binding position by the rear end assist 112. The staple-less binding operation of the staple-less binding unit 102 is carried out on the sheet bundle PA thus moved to the binding position in Steps S11 through S13. When the staple-less binding operation is executed, the rear end assist 112 as a restricting portion is moved in a direction separating from the rear end of the sheet bundle PA as shown in
When the second aligning plate 109a and the rear end assist 112 are separated from the sheet bundle PA, the first aligning plate (first aligning member of the pair of aligning members) 109b in contact with the other side surface (other end) of the sheet bundle PA is moved toward the second aligning plate 109a in Step S16 as shown in
If the sheet bundle PA bites into and is being inseparable from the upper or lower teeth 10210 or 10214 of the staple-less binding unit 102 at this time, the sheet bundle PA rotates centering on the upper or lower teeth 10210 or 10214 to which the sheet bundle PA bites as shown in
In a case where the sheet bundle PA is not biting the upper or lower teeth 10210 or 10214 of the staple-less binding unit 102, the sheet bundle PA is pressed by the first aligning plate 109b and moves toward the second aligning plate 109a together with the first aligning plate 109b.
As shown in
In a case where the sheet P is a thin sheet here, the sheet bundle PA deflects as shown in
When the sheet bundle PA is aligned again by the second aligning plate 109a and the first aligning plate 109b, the rear end assist 112 and the discharge claw 113 are driven to push the rear end of the sheet bundle PA and to discharge the sheet bundle PA to the stacking tray 114 in Steps S17 and S18. When the job is continuously carried out after that, the process returns to Start of the flowchart again and the processes in the flowchart are carried out. Meanwhile, in a case where the job ends, the job is finished here in Step S19.
As described above, the image forming apparatus 900 of the first embodiment drives the second aligning plate 109a and the first aligning plate 109b after performing the staple-less binding process by the staple-less binding unit 102 to move the sheet bundle PA from the binding position. Specifically, the sheet bundle PA is moved from the binding position by moving the second aligning plate 109a toward the first aligning plate 109b after separating the second aligning plate 109a from the sheet bundle PA. Therefore, even if the sheet bundle PA bites into the upper or lower teeth 10210 or 10214, the sheet bundle PA can be suitably separated from the upper or lower teeth 10210 or 10214. This arrangement makes it possible to prevent the sheet bundle PA from becoming an obstacle in conveying the sheet bundle PA to the stacking tray 114.
There is a possibility of damaging the sheet bundle PA when the sheet bundle PA is separated from the upper or lower teeth 10210 or 10214 if the sheet bundle PA is to be conveyed to the stacking tray 114 in the state in which the sheet bundle PA bites into the upper or lower teeth 10210 or 10214. This is also caused by the fact that the longitudinal direction of the upper and lower teeth 10210 and 10214 is substantially in parallel with the conveying direction to the stacking tray 114. However, it becomes easily possible to separate the sheet bundle PA from the upper or lower teeth 10210 or 10214 by moving the first aligning plate 109b in the width direction orthogonal to the longitudinal direction of the upper or lower teeth 10210 or 10214. This arrangement makes it possible to suppress the sheet bundle PA from being damaged.
Still further, because the image forming apparatus 900 of the first embodiment separates the rear end assist 112 from the rear end of the sheet bundle PA before when the first aligning plate 109b is moved toward the second aligning plate 109a. This arrangement makes it possible to generate the rotational moment in the sheet bundle PA centering on the upper or lower teeth 10210 or 10214 in pressing the side surface of the sheet bundle PA by the first aligning plate 109b. Thereby, the sheet bundle PA can be suitably separated from the upper or lower teeth 10210 or 10214.
Still further, the image forming apparatus 900 of the first embodiment causes the pair of aligning plates 109 to perform the abovementioned separating operation. Therefore, even if the sheet bundle PA suddenly moves in the direction orthogonal to the conveying direction when the sheet bundle PA is separated from the teeth by the first aligning plate 109b, the second aligning plate 109a exists at the place where the sheet bundle PA is moved, it is possible to prevent the sheet bundle PA from falling down from the processing tray 107.
Next, a second embodiment of the present invention will be explained with reference
Because the processes from the selection of the staple-less binding job in the print job until when the staple-less binding job is executed are the same with those in the first embodiment, an explanation of the processes in Steps S20 through S23 will be omitted here. When the staple-less binding job is executed, then the pair of aligning plates 109 is moved in the direction orthogonal to the conveying direction A while keeping a distance between them (in the alignment state shown in
When the sheet bundle PA is moved from the binding position, the rear end assist 112 and the discharge claw 113 are driven to push the rear end of the sheet bundle PA and to discharge the sheet bundle PA to the stacking tray 114 in Steps S25 and S26. After that, the process returns to Start of the flowchart again and the processes in the flowchart are carried out in a case where the job is carried out continuously. Meanwhile, in a case where the job ends, the job is finished here in Step S27.
As described above, the image forming apparatus 900 of the present embodiment moves the pair of aligning plates 109, i.e., the moving member and the restricting member, in the width direction orthogonal to the conveying direction A while keeping the distance between them (in the state in which the sheet bundle PA is aligned) to move the sheet bundle PA from the binding position. That is, the second aligning plate 109a restricts the move of the sheet bundle such that a distance of the sheet bundle separated from the first aligning plate 109b is kept to be less than a predetermined distance when the sheet bundle is moved by the first aligning plate 109b. More specifically, the second aligning plate 109a restricts the move of the sheet bundle such that the sheet bundle is not separated from the first aligning plate 109b in the second embodiment. Therefore, even if the sheet bundle PA bites into and is inseparable from the upper or lower teeth 10210 or 10214, the sheet bundle PA can be suitably separated from the upper or lower teeth 10210 or 10214.
Next, a third embodiment of the present invention will be explained with reference to
When the staple-less binding job is selected in the print job in Step S30, a force in an inverse direction from the conveying direction A is applied to the sheet P discharged by the discharge roller 103 by the paddle 106 and the rear end of the sheet P is returned toward the rear end stopper 108. On a way in which the rear end of the sheet P is returned toward the rear end stopper 108, the sheet P moves by its own weight until when a side surface thereof abuts against the first aligning plate 109b along the inclination of the processing tray 107.
The correction of the sheet P in the width direction orthogonal to the conveying direction is made by the move of the sheet P by its own weight, and after that, the return to the rear end stopper 108 in the conveying direction A is carried out by the knuling belt 117 in Step S31. When the operation of aligning each sheet P has been carried out by a number of times of a required number of sheets of the sheet bundle PA to be staple-lessly bound as shown in
When the staple-less binding job is executed, then, the rear end assist 112 is moved in the direction separating from the rear end of the sheet bundle PA as shown in
It is noted that in a case where the sheet bundle PA is not biting into the upper or lower teeth 10210 or 10214 of the staple-less binding unit 102, the sheet bundle PA is pressed by the first aligning plate 109b and moves toward the second aligning plate 109a together with the first aligning plate 109b.
The first aligning plate 109b moves until when the side surface of the sheet bundle PA abuts against the second aligning plate 109a again as shown in
When the sheet bundle PA is aligned by the second and first aligning plates 109a and 109b, the rear end assist 112 and the discharge claw 113 are driven to push the rear end of the sheet bundle PA and to discharge the sheet bundle PA to the stacking tray 114 in Steps S36 and S37. After that, the process returns to Start of the flowchart again and the processes in the flowchart are carried out in a case where the job is carried out continuously. Meanwhile, in a case where the job ends, the job is finished here in Step S38.
As described above, according to the third embodiment, the processing tray 107 is inclined downward in the direction of the arrow B as shown in
While embodiments of the present invention have been described above, the present invention is not limited the embodiments described above. Still further, the advantageous effects described in the embodiments of the present invention are merely a numeration of the most suitable effects and effects of the present invention are not limited to those described in the embodiments of the present invention.
For instance, while the configuration in which the first aligning plate 109b is moved widthwise toward the second aligning plate 109a to move the bound sheet bundle from the binding position has been explained in the embodiments described above, the present invention is not limited to such configuration. The present invention is applicable also to a configuration in which the bound sheet bundle is moved from the binding position to the conveying direction as another embodiment of the invention. For instance, the stapler-lessly bound sheet bundle PA may be separated from the upper and lower teeth 10210 or 10214 by moving the sheet bundle PA in the conveying direction toward the rear end stopper 108, i.e., the restricting member, by the knurling belt 117, i.e., the moving member.
Still further, while the present embodiment has been arranged such that the CPU of the finisher control portion 220 mounted in the finisher 100 controls the finisher 100, it is also possible to control the finisher 100 directly by the CPU circuit portion 200 included in the image forming apparatus 900. Still further, the CPU may be a CPU in an information instrument such as a separate personal computer, and the CPU controlling the finisher 100 is always need not be provided in the finisher 100. In a case where the CPU is provided in another information instrument, signals are transmitted/received through telecommunication lines and others (regardless wire or wireless communication) to make various controls. Such aspect is applicable not only to the CPU, but also to the other RAM, ROM and others.
Still further, while image forming apparatus of the present embodiment has been explained by using the electro-photographic type image forming process, the present invention is not limited to that. For instance, the type may be one which uses an ink-jet type image forming process of forming an image on a sheet P by discharging ink droplets from a nozzle.
Still further, while a method of binding a sheet bundle by forming the convexities and concavities by engaging the upper and lower teeth has been used to explain the stapler-less binding process in the embodiments described above, the present invention is not limited to that. The present invention is applicable also to a case where a sheet bundle is bound by forming a half-punched shape by using a half-punching binding portion and by engaging upper and lower teeth. For instance, the present invention may be used in a binding portion performing the half-punch binding process by forming half-punched portions 4 and 9 by biting a sheet bundle PA by punching tooth 10 and 18 of an upper tooth 14 and punched holes 20 and 21 of a lower tooth 22 as shown in
Still further, while the first aligning plate 109b has been moved after moving the rear end assist 112 in the first embodiment, the sheet bundle PA may be moved from the binding position by moving the first aligning plate 109b without moving the rear end assist 112.
While the present invention has been described with reference to the exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiment. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-138108, filed on Jul. 1, 2013, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-138108 | Jul 2013 | JP | national |
This is a continuation of U.S. patent application Ser. No. 14/315,836, filed Jun. 26, 2014.
Number | Name | Date | Kind |
---|---|---|---|
6290220 | Takehara et al. | Sep 2001 | B1 |
6814350 | Saegusa et al. | Nov 2004 | B2 |
7207556 | Saitoh | Apr 2007 | B2 |
7413181 | Iida et al. | Aug 2008 | B2 |
8235375 | Shiraishi | Aug 2012 | B2 |
8246033 | Sato | Aug 2012 | B2 |
8297610 | Shiraishi | Oct 2012 | B2 |
8342497 | Abe | Jan 2013 | B2 |
8444133 | Kimura | May 2013 | B2 |
8459629 | Abe | Jun 2013 | B2 |
8882100 | Awano | Nov 2014 | B2 |
20110304089 | Kimura | Dec 2011 | A1 |
20120090441 | Abe | Apr 2012 | A1 |
20130285303 | Awano | Oct 2013 | A1 |
20140003852 | Abe et al. | Jan 2014 | A1 |
20140077437 | Abe et al. | Mar 2014 | A1 |
20140161565 | Obuchi et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2010-189101 | Sep 2010 | JP |
2014-73681 | Apr 2014 | JP |
Entry |
---|
Office Action dated Mar. 13, 2018, in Japanese Patent Application No. 2014-124927. |
Number | Date | Country | |
---|---|---|---|
20160136917 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14315836 | Jun 2014 | US |
Child | 15001725 | US |