This invention relates to a sheet processing apparatus for performing a post-processing on sheets each having an image formed on it, and relates to an image forming system comprising the sheet processing apparatus.
Hitherto used is a sheet processing apparatus that is configured to bind sheets each having an image formed by an image forming apparatus such as a printer or a copier. Generally, sheet processing apparatuses of this type are configured to lay a plurality of sheets ejected from an image forming apparatus, one upon another, on the processing tray provided downstream the sheet ejecting passage, to staple-bind the sheets at one part or some parts, and to store the sheets in the accumulating tray arranged still downstream the sheet ejecting passage.
With regard to the binding process mentioned above, a sheet processing apparatus is available, in which not only the binding process using staples, but also a non-stable binding process using no staples can be selected. Such a sheet processing apparatus is configured to select the staple binding or non-staple binding, in order to bind the sheets transported from the sheet ejecting passage onto the processing tray and aligned with one another on the processing tray.
The sheet processing apparatus described above can perform various binding operations on the sheets accumulated on the processing tray, such as one-part binding of binding sheets at the left corner or right corner and two-part binding of binding sheets at one long side or one short side of each sheet. In the non-stable binding process, the sheets are bound at one part, either the left corner or the right corner, because the number of sheets that can be bound together is limited. That is, only a few sheets can be bound together.
In the non-stable binding process, no staples are used. The number of sheets that can be bound together is therefore limited as described above. Further, the non-stable binding process is performed less frequently than the staple binding process. In order to perform the non-stable binding process automatically as the stable binding mechanism is performed, the apparatus must be massive and disadvantageous in terms of cost and performance.
Further, in the conventional sheet processing apparatus, either the staple binding process or the non-staple binding process is selected for the sheets accumulated on the tray for the post-processing. Therefore, the non-needle binding may be performed in some cases even if the number of sheets exceeds the prescribed value. If the non-staple binding is performed on more sheets than the prescribed number, it will result in an undesirable sheet binding.
This invention relates to a sheet-binding apparatus for binding sheets together. The apparatus comprises: a first insertion section having a slit through which sheets may be manually inserted from outside; a staple-binding mechanism for staple-binding the sheets inserted into the first insertion section; a second insertion section having a slit through which sheets may be manually inserted from outside; and a non-staple binding mechanism for binding the sheets inserted into the second insertion section, without using staples.
The embodiments of this invention will be described below in detail, with reference to the accompanying drawings.
The image forming system 1 comprises various mechanisms for forming images. The original reading section 7 reads the original laid on the platen 30, and the image forming section 6 prints the image on the sheets sequentially transported from the sheet supplying section 5. The sheets, each having an image printed on it, are transported into the space 3. The sheets are then bound together in one of various ways in the sheet processing apparatus 2 arranged in the space 3.
The sheet supplying section 5 comprises at least one cassette 5a for holding sheets. A plurality of sheets is held in the cassette 5a. The sheet supplying section 5 may have, by option, two or more cassettes. Therefore, sheets of one size can be held in one cassette, and sheets of another size can be held in another cassette. The cassette 5a incorporates sheet feeding rollers 32 for feeding sheets and a sheet separating unit (not shown) for separating one sheet from another.
The image forming section 6 comprises an image forming mechanism 33 of, for example, electrostatic type. The image forming mechanism 33 has a plurality of drums for the color components, respectively, each composed of photosensitive material (photoconductor). For each drum, there are arranged a light-emitting device (e.g., laser head), a developing device, and the like. On each drum, a latent image (electrostatic image) is formed by the light-emitting device. In the developing device, toner ink is applied to each drum, forming an ink image. The ink images are transferred from the drums onto transfer belts and are synthesized on the sheet.
The original reading section 7 comprises a platen 30 and a reading carriage 34 which moves back and forth along the platen 30. The platen 30 is made of transparent glass. The reading carriage 34 has a light-source lamp 35, a reflection mirror 36 for guiding the light reflected from the original, and a photoelectric transducer element 37. The photoelectric transducer element 37 is constituted by a line sensor which is arranged in the widthwise direction (i.e., main scanning direction) of the original mounted on the platen 30. As the reading carriage 34 moves back and forth in the sub-scanning direction, namely the direction at right angles to the widthwise direction (i.e., main scanning direction) of the platen 30, the photoelectric transducer element 37 reads the image formed on the original. Above the platen 30, an original pushing plate 31 is arranged, covering the original.
The image forming section 6 transfers the image read by the original reading section 7, to the sheet transported from the sheet supplying section 5. The sheet to which the image has been transferred is ejected into a first transport path 8a or into a second transport path 8b which is provided in the sheet processing apparatus 2 shown in
As shown in
The binding section 11 comprises a transporting unit (third transport passage) 13, a passage exit port 14, an ejecting unit (pair of ejecting rollers) 60, a processing tray 15, a paddle rotary member 16a, an aligning plate 17a, a pair of side-aligning plates 17b and 17c, a stapler 18, and a sheet ejecting belt 61. The transporting unit 13 transports any sheet coming from the punching process section 9. The passage exit port 14 is provided downstream the transporting unit 13. The ejecting unit 60 ejects any sheet from the passage exit port 14. The processing tray 15 is arranged downstream the passage exit port 14 and configured to hold the sheets ejected by the ejecting rollers 60. The paddle rotary member 16a takes sheets from the processing tray 15 and moves them in a take-up direction different from the sheet transporting direction. The aligning plate 17a aligns the sheets, at the leading end, in the sheet-taking direction (at the trailing end, in the sheet transporting direction). The side-aligning plates 17b and 17c align the sheets on the processing tray 15, at both sides in the widthwise direction at right angles to the sheet transporting direction. The stapler 18 binds together the sheets aligned on the processing tray 15. The sheet ejecting belt 61 ejects the sheets bound together by the stapler 18, onto the accumulating tray 12.
The paddle rotary member 16a has a band-shaped elastic member, and is secured to the distal end of a lifting/lowering arm 16c. The lifting/lowering arm 16c has a support axle 16b at the base part. The lifting/lowering arm 16c rotates around the support axle 16b functioning as fulcrum, and moves the paddle rotary member 16a up and down between the sheet take-in position where it contacts the sheet placed on the processing tray 15 and the sheet releasing position where it releases the sheet placed on the processing tray 15.
The binding section 11 has a binding mechanism 19. The binding mechanism 19 has the function of staple-binding the sheets aligned by the aligning plate 17a and pair of side-aligning plates 17b and 17c, by using the stapler 18. That is, the stapler 18 automatically performs staple-binding on the sheets which are aligned on the processing tray 15. In the staple binding, one stapler 18 can move to the corner of each sheet aligned with any other, and bind the sheets at one part, and can move to along the long side of the sheets and bind the sheets at two parts.
As shown in
The binding section 11 and the first manual binding section 21 are formed integral with each other, constituting a staple-binding unit. As shown in
The stapler 18 has its home position at the manual stapling position in the first manual binding section 21. That is, the stapler 18 usually stays at the manual stapling position, i.e., home position. The stapler 18 moves in the widthwise direction of the sheet, stops at the sheet binding position, and binds the sheets together on the processing tray 15.
The first manual binding section 21 operates in a specific sequence. The first manual binding section 21 starts operating when sheets A aligned at one end are inserted through the first insertion port 25. When each sheet A has its corner abut on the first and second control plates 40a and 40b, the first sheet-detecting sensor S2 detects one end of each sheet A, and the LED lamp 65 is turned on. The user can therefore recognize that the sheets A are at the position where they can be bound together. The user then pushes the operation button 41. The stapler 18 therefore starts binding the sheets A. The first insertion port 25 has such a width that more than 30 sheets of ordinary type cannot be inserted at a time, because the stapler 18 cannot bind more than 30 sheets.
As shown in
As shown in
As shown in
The second manual binding section 22 has an operation button 41 and an LED lamp 66. The operation button 41 may be pushed to make the non-staple mechanism 28 bind sheets. The LED lamp 66 is turned on when the first sheet-detecting sensor S2 detects a sheet. The second manual binding unit 22 starts a sequence of operations when the sheets B aligned at one end are inserted into the second insertion port 26. When the sheets B so inserted abut, at a corner, on the first and second control plates 42a and 42b, the second sheet-detecting sensor S3 detects one end of each sheet B, and the LED lamp 66 is turned on. Seeing the LED lamp 66 turned on, the user recognizes that the sheets B are at the position where they can be bound together. Then, the user may push the second operation button 43. When the second operation button 43 is pushed, the non-staple mechanism 28 is driven, binding the sheets B together.
The second manual binding section 22 used in this embodiment is a non-staple binding unit formed integral and comprising, as shown in
In the sheet processing apparatus 2a according to this embodiment, the second manual binding section 22 is arranged in front (F) of the accumulating tray 12 and at the side of the first manual binding section 21 in left-to-right direction. Therefore, the front surfaces of the first manual binding section 21 and second manual binding section 22 can be substantially flush with each other, preventing the apparatus from becoming large. Further, since the first insertion port 25 is located higher than the second insertion port 26 and the upper surface 27 of the second manual binding section 22 is arranged, supporting the sheet inserted through the first insertion port 25 of the first manual binding section 21, the sheets can be stabilized as they are bound by the first manual binding section 21. Moreover, the binding failure can be reduced, because the first and second manual binding sections 21 and 22 have the first and second insertion ports 25 and 26, respectively, and because the first and second insertion ports 25 and 26 have a width for passing sheets in number appropriate for the binding method.
In the embodiments described above, the stapler 18 is provided in the first manual binding section 21, and the non-staple mechanism 28 is provided in the second manual binding section 22. In a third embodiment, the non-staple mechanism 28 may be provided in the first manual binding section 21, and the stapler 18 may be provided in the second manual binding section 22. In the third embodiment, the non-staple mechanism 28 is configured to move between the binding section 11 and the second manual binding section 22 as is illustrated in
In the sheet processing apparatuses 2a and 2b according to the first and second embodiments, respectively, the first manual binding section 21 and the second manual binding section 22 can be arranged in the space at one side of the binding section 11 and one side of the accumulating tray 12, each protruding a little therefrom. The sheet processing apparatuses can therefore be made compact, and can be easily incorporated into a small image forming system having a small space 3. Further, the second manual binding section 22 may be arranged in front of the first manual binding section 21 or the punching process section 9, though the section 22 is arranged adjacent to the front or rear of the accumulating tray 12 in the first and second embodiments. Still further, sheets can be easily hand-fed, because the first manual binding section 21 and the second manual binding section 22 are arranged in an open space provided at the operation side (i.e., front) of the image forming system 1. Furthermore, the second manual binding section 22 is a mechanism independent of the binding mechanism 19 provided in the binding section 11, and can therefore be arranged in front of the accumulating section 12 or at the rear thereof, and can be used, if necessary, as an optional component.
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2018-075555, filed Apr. 10, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2018-075555 | Apr 2018 | JP | national |