The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2015-104324, filed May 22, 2015. The contents of which are incorporated herein by reference in their entirety.
1. Field of the Invention
The present invention relates to a sheet processing apparatus and an image forming system.
2. Description of the Related Art
In recent years, there have been known sheet processing apparatuses that are connected to an image forming apparatus while in use and that collectively stitch multiple sheets, which have been output from the image forming apparatus and on which images have been formed. Among these sheet processing apparatuses, there are disclosed and already-known sheet processing apparatuses that include both a staple-containing stitching unit, which performs a stitching operation by using staples, and a staple-free stitching unit that performs a stitching operation without using any staples.
However, the above-described sheet processing apparatus has a problem in that it is difficult to perform an operation to supply staples to the staple-containing stitching unit due to the interference with the staple-free stitching unit. Therefore, among the above-described sheet processing apparatuses, there is a disclosed and already-known sheet processing apparatus that is configured such that the staple-containing stitching unit is located on the front side of the apparatus and the staple-free stitching unit is located on the back side of the apparatus and the front side of the apparatus is opened (for example, see Japanese Unexamined Patent Application Publication No. 2015-016974).
However, if the staple-free stitching unit is located on the back side of the apparatus, when the need comes to access the staple-free stitching unit during repair or maintenance of the staple-free stitching unit, or the like, there is a problem in that it is difficult for a user to access the staple-free stitching unit.
According to one aspect of the present invention, there is provided a sheet processing apparatus including: a conveying unit configured to convey a sheet along a sheet conveyance path; a conveyance-path supporting unit configured to support both ends of the sheet conveyance path with respect to a direction perpendicular to a sheet conveying direction; a first stitching unit configured to stitch the sheets conveyed; a second stitching unit configured to stitch the sheets conveyed; a first moving unit configured to move the first stitching unit in a direction perpendicular to the sheet conveying direction; and a second moving unit configured to move the second stitching unit in a direction perpendicular to the sheet conveying direction, wherein any one of the first stitching unit and the second stitching unit is movable to outside of the conveyance-path supporting unit.
According to another aspect of the present invention, there is provided an image forming system including: an image forming apparatus configured to form an image on a sheet; and a sheet processing apparatus configured to stitch a bundle of sheets, on which an image is formed by the image forming apparatus, the sheet processing apparatus including: a conveying unit configured to convey a sheet along a sheet conveyance path; a conveyance-path supporting unit configured to support both ends of the sheet conveyance path with respect to a direction perpendicular to a sheet conveying direction; a first stitching unit configured to stitch the sheets conveyed; a second stitching unit configured to stitch the sheets conveyed; a first moving unit configured to move the first stitching unit in a direction perpendicular to the sheet conveying direction; and a second moving unit configured to move the second stitching unit in a direction perpendicular to the sheet conveying direction, wherein any one of the first stitching unit and the second stitching unit is movable to outside of the conveyance-path supporting unit.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
The accompanying drawings are intended to depict exemplary embodiments of the present invention and should not be interpreted to limit the scope thereof. Identical or similar reference numerals designate identical or similar components throughout the various drawings.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, an and the are intended to include the plural forms as well, unless the context clearly indicates otherwise. In describing preferred embodiments illustrated in the drawings, specific terminology may be employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result. An embodiment of the present invention will be described in detail below with reference to the drawings.
The present invention has an object to facilitate, in a sheet processing apparatus that includes multiple stitching units, user's access to the stitching units.
With reference to the drawings, a detailed explanation is given below of an embodiment of the present invention. First, the overall configuration of an image forming system 1 according to the present embodiment is explained with reference to
The image forming apparatus 2 generates the drawing information on CMYK (cyan magenta yellow key plate) on the basis of input image data, and it uses the generated drawing information to conduct image formation output on a sheet that is fed from the sheet feeding apparatus 3.
A specific form of the image forming mechanism of the image forming apparatus 2 according to the present embodiment is an electrophotographic system or an inkjet system. After an image is formed on a sheet by the image forming apparatus 2, it is conveyed to the stitching processing apparatus 4 or is discharged into a discharge tray 6a so that it is sequentially stacked. The sheet feeding apparatus 3 feeds a sheet to the image forming apparatus 2.
The stitching processing apparatus 4 performs a stitching operation to collectively stitch multiple sheets, which have been conveyed from the image forming apparatus 2 and on which the images have been formed. Furthermore, the stitching processing apparatus 4 according to the present embodiment includes a staple-containing stitching unit, which performs a stitching operation by using a method (hereafter, referred to as “staple-containing stitching”) that uses metallic staples, and includes a staple-free stitching unit, which performs a stitching operation by using a method (hereafter, referred to as “staple-free stitching”) that does not use metallic staples. That is, according to the present embodiment, the stitching processing apparatus 4 serves as a sheet processing apparatus. After the bundle of sheets is stitched by the stitching processing apparatus 4, it is discharged into a discharge tray 6b so that it is sequentially stacked.
The document reading device 5 reads a document by using a linear image sensor, in which multiple photo diodes are arranged in a column and, in parallel to them, light receiving elements, such as charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) image sensors, are arranged, thereby computerizing the document. Furthermore, the document reading device 5 may include an automatic document feeder to automatically convey a document, which is the target to be read, so that it reads the document that is automatically conveyed from the automatic document feeder.
Furthermore, the image forming system 1 according to the present embodiment has an image capturing function, an image forming function, a communication function, or the like, whereby it is a multifunction peripheral (MFP) that may be used as a printer, facsimile, scanner, or copier.
Next, with reference to
As illustrated in
The CPU 10 is a calculating unit, and it controls the overall operation of the image forming system 1. The RAM 20 is a volatile storage medium that is capable of reading and writing information at high speed, and it is used as a working area when the CPU 10 processes information. The ROM 30 is a read-only non-volatile storage medium, and it stores programs, such as firmware.
The HDD 40 is a non-volatile storage medium that is capable of reading and writing information, and it stores various types of data, such as image data, and various programs, such as the operating system (OS), various control programs, or application programs.
The dedicated device 50 is the hardware for implementing a dedicated function in the image forming system 1. Specifically, the dedicated device 50 is the hardware for implementing a dedicated function in the printer, facsimile, scanner, copier, or stitching processing mechanism.
The operating device 60 is a user interface for inputting information to the image forming system 1, and it is implemented by an input device, such as a keyboard, mouse, input button, or touch panel.
The display device 70 is a visual user interface for checking the state of the image forming system 1 by a user, and it is implemented by a display device, such as a liquid crystal display (LCD), or an output device, such as a light emitting diode (LED).
The communication I/F 80 is an interface with which the image forming system 1 communicates with a different device, and an interface, such as Ethernet (registered trademark), universal serial bus (USB), Bluetooth (registered trademark), Wireless Fidelity (Wi-Fi) (registered trademark), FeliCa (registered trademark), Peripheral Component Interconnect Express (PCIe), the Institute of Electrical and Electronics Engineers (IEEE) standard, is used.
With the above-described hardware configuration, a program, stored in a storage medium, such as the ROM 30 or the HDD 40, is read into the RAM 20, and the CPU 10 performs calculations in accordance with the program that is loaded into the RAM 20, whereby a software control unit is configured. The combination of the hardware and the software control unit, which is configured as described above, constitute the functional block that implements the function of the image forming system 1 according to the present embodiment.
Next, with reference to
As illustrated in
The display panel 110 is an output interface that visually displays the state of the image forming system 1, and it is also an input interface as a touch panel when a user directly operates the image forming system 1 or inputs information to the image forming system 1. That is, the display panel 110 has the function to display an image for receiving a user's operation. The display panel 110 is implemented by the operating device 60 and the display device 70, illustrated in
The operation button 120 is an input interface when a user directly operates the image forming system 1 or inputs information to the image forming system 1. The operation button 120 is implemented by the operating device 60, illustrated in
A user operates the display panel 110 or the operation button 120 so as to input setting information, such as sheet information.
The network I/F 130 is an interface for communicating with an information processing apparatus such as a personal computer (PC) that is operated by a user. The network I/F 130 is implemented by the communication I/F 80, illustrated in
The drive unit 140 is a drive unit, such as a motor or sensor that is operated in the image forming apparatus 2, the sheet feeding apparatus 3, the stitching processing apparatus 4, or the document reading device 5.
The controller 100 is configured by using the combination of the software and the hardware. Specifically, the controller 100 is configured by using the hardware, such as an integrated circuit, and the software control unit, which is configured when the CPU 10 loads the program, stored in a storage medium, such as the ROM 30 or the HDD 40, into the RAM 20 and performs calculations in accordance with the program.
The primary control unit 101 has a function to control each unit that is included in the controller 100, and it gives a command to each unit of the controller 100.
The operation-display control unit 102 conducts information display on the display panel 110 or notifies the primary control unit 101 of the information that is input via the display panel 110. Furthermore, the primary control unit 101 causes the setting-information storage unit 106 to store the information, notified from the operation-display control unit 102, or gives a command to each unit of the controller 100 in accordance with the information that is notified from the operation-display control unit 102.
The input/output control unit 103 inputs the information, input via the network I/F 130, to the primary control unit 101. Furthermore, the primary control unit 101 causes the setting-information storage unit 106 to store the information, notified from the input/output control unit 103, or gives a command to each unit of the controller 100 in accordance with the information that is input from the input/output control unit 103.
In this way, the primary control unit 101 acquires various types of information, such as setting information, e.g., sheet information, image data, or print jobs, from the operation-display control unit 102 and the input/output control unit 103.
Under the control of the primary control unit 101, the image processing unit 104 generates, as the output information, the drawing information based on the image information that is described in a page description language (PDL), or the like, for example, document data or image data that is included in input print job. The drawing information is information, such as bitmap data in cyan, magenta, yellow, and black (CMYK), and it is the information for drawing the image to be formed by the image forming system 1 during an image formation operation.
Furthermore, the image processing unit 104 processes the captured-image data, input from the document reading device 5, to generate image data. The image data is the information that is stored as the result of a scanner operation in the image forming system 1 or that is transmitted to a different device via the network I/F 130. Furthermore, in the image forming system 1 according to the present embodiment, the drawing information may be directly input instead of the image information so that image formation output is conducted based on the directly input drawing information.
The signal-input control unit 105 inputs, to the primary control unit 101, a detection signal or a measurement signal that is input from each sensor, such as a staple-containing stitching unit detection sensor 422, a staple-free stitching-unit detection sensor 432, or an encoder. Furthermore, the primary control unit 101 inputs a detection signal or a measurement signal, input from the signal-input control unit 105, to the drive control unit 107.
The setting-information storage unit 106 stores setting information, such as sheet information. The drive control unit 107 controls an operation of the drive unit 140. That is, according to the present embodiment, the drive control unit 107 serves as a first moving unit and a second moving unit.
Next, with reference to
As illustrated in
The trailing-edge alignment stopper 410 aligns a sheet bundle A in a sheet conveying direction when the edge of the sheet, stacked on the sheet stack plate 440, with regard to the sheet conveying direction comes into contact with it.
The staple-containing stitching unit 420 stands by at the home position, which is the reference position, before a stitching operation and, at the stage of the stitching operation, it is moved from the home position to the stitching position along the staple-containing stitching-unit moving guide rail 421, as illustrated in
Then, the staple-containing stitching unit 420 nips the upper and lower sheet surfaces of the sheet bundle A with the stitching recess at multiple stitching positions while it inserts a stitching staple B through the sheet bundle A, thereby stitching the sheet bundle A, as illustrated in
Then, after the stitching operation is finished, the staple-containing stitching unit 420 returns to the home position along the staple-containing stitching-unit moving guide rail 421. At this point, in the stitching processing apparatus 4, the staple-containing stitching-unit detection sensor 422 detects that the staple-containing stitching unit 420 stands by at the home position or that the staple-containing stitching unit 420 returns to the home position.
The staple-free stitching unit 430 stands by at the home position, which is the reference position, before a stitching operation and, at the stage of the stitching operation, it is moved from the home position to the stitching position along the staple-free stitching-unit moving guide rail 431, as illustrated in
Furthermore, as illustrated in
Then, after the stitching operation is finished, the staple-free stitching unit 430 returns to the home position along the staple-free stitching-unit moving guide rail 431. At this point, in the stitching processing apparatus 4, the staple-free stitching-unit detection sensor 432 detects that the staple-free stitching unit 430 stands by at the home position or that the staple-free stitching unit 430 returns to the home position. That is, according to the present embodiment, the staple-free stitching-unit detection sensor 432 serves as a detecting unit.
The sheet stack plate 440 has the bundle of sheets stacked thereon until all the sheets, which are the targets for a stitching operation, are set. As illustrated in
The conveyance roller 470 further conveys the sheet, conveyed to the sheet stack plate 440, to the downstream side in the sheet conveying direction so as to cause the edge of the sheet with regard to the sheet conveying direction to come into contact with the trailing-edge alignment stopper 410. Furthermore, the conveyance roller 470 discharges the sheet bundle A to the discharge tray 6b after the stitching operation. That is, according to the present embodiment, the conveyance roller 470 serves as a conveying unit.
The movable guide plate 460 includes a movable guide-plate rotation fulcrum 461, and it is rotated and moved at the movable guide-plate rotation fulcrum 461 as a rotation fulcrum. Here, the movable guide plate 460 is rotated and moved such that a height P in a thickness direction of the sheet bundle A is changed in accordance with the number of sheets that may be stitched, i.e., it is changed in a case where the sheet bundle A is stitched by the staple-containing stitching unit 420 and a case where it is stitched by the staple-free stitching unit 430.
Specifically, as illustrated in
Conversely, as illustrated in
Here, an explanation is given of the reason why the stitching processing apparatus 4 according to the present embodiment rotates and moves the movable guide plate 460 such that the above-described height P is changed in accordance with the number of sheets that may be stitched, i.e., it is changed in a case where the sheet bundle A is stitched by the staple-containing stitching unit 420 and a case where it is stitched by the staple-free stitching unit 430.
Sometimes, the sheet bundle A, stacked on the sheet stack plate 440, is curled, bent, or the like. Therefore, if the stitching processing apparatus 4 is not provided with the movable guide plate 460, the thickness of the sheet bundle A sometimes becomes more than the receiving width of the stitching recess of the staple-containing stitching unit 420 or the staple-free stitching unit 430, as illustrated in
Therefore, the stitching processing apparatus 4 according to the present embodiment is configured to rotate and move the movable guide plate 460 such that the height P in a sheet thickness direction is changed in accordance with the number of sheets that may be stitched, i.e., it is changed in a case where the sheet bundle A is stitched by the staple-containing stitching unit 420 and a case where it is stitched by the staple-free stitching unit 430.
Therefore, in the stitching processing apparatus 4 according to the present embodiment, even if the sheet bundle A is curled, bent, or the like, the thickness of the sheet bundle A does not become more than the receiving width of the stitching recess of the staple-containing stitching unit 420 or the staple-free stitching unit 430. As a result, in the stitching processing apparatus 4 according to the present embodiment, even if the sheet bundle A is curled, bent, or the like, it is possible to receive the sheet bundle A at the stitching recess of the staple-containing stitching unit 420 or the staple-free stitching unit 430, as illustrated in
Next, with reference to
As illustrated in
Furthermore, the staple-free stitching unit 430 is moved along a staple-free stitching-unit moving guide rail 431 with the driving force of a staple-free stitching-unit drive motor 433 via an endless belt 436 that is extended between a drive pulley 434 and a driven pulley 435.
Furthermore, the jogger fence 450 is moved in a main scanning direction with the driving force of a jogger-fence drive motor 451 via an endless belt 454 that is extended between a drive pulley 452 and a driven pulley 453.
Furthermore, as illustrated in
Next, with reference to
As illustrated in
Furthermore, as illustrated in
Furthermore, as illustrated in
Furthermore, as illustrated in
As described above, the stitching processing apparatus 4 according to the present embodiment is configured such that the staple-containing stitching unit 420 is located on the front side of the apparatus and the front side of the apparatus may be opened and closed by the front-side open/close cover, whereby it is possible to facilitate an operation to supply staples to the staple-containing stitching unit 420.
Furthermore, the staple-free stitching unit 430 may be located on the back side of the apparatus, as there is no need to supply staples and there is no need to make access during the normal time. However, if the staple-free stitching unit 430 is located on the back side of the apparatus, when the need comes to access the staple-free stitching unit 430 during repair or maintenance of the staple-free stitching unit 430, or the like, there is a problem in that it is difficult for a user to access the staple-free stitching unit.
Therefore, as illustrated in
Furthermore, as illustrated in
The back-side open/close cover 485 is fixed to the outer cover 481 or the frame 482 with a fixture, such as a screw, in the stitching processing apparatus 4 according to the present embodiment, and it is not opened and closed at the normal time but it is opened and closed only during maintenance or when the staple-free stitching unit 430 has a failure.
As described above, the stitching processing apparatus 4 according to the present embodiment is configured such that the entire staple-free stitching unit 430 may be moved out of the frame 482 on the back side of the apparatus and the back side of the apparatus may be opened and closed by the back-side open/close cover 485.
Thus, in the stitching processing apparatus 4 according to the present embodiment, it is possible to make access to the staple-free stitching unit 430 in an easy manner without disassembling or removing the frame 482 by a user.
Therefore, in the stitching processing apparatus 4 according to the present embodiment, even if the need comes to access the staple-free stitching unit 430 during repair or maintenance of the staple-free stitching unit 430, or the like, it is possible for a user to easily access the staple-free stitching unit 430.
Furthermore, in the present embodiment, an explanation is given of the stitching processing apparatus 4 that is configured to move the staple-free stitching unit 430 so that the entire staple-free stitching unit 430 is located outside of the frame 482 on the back side of the apparatus.
Alternatively, the stitching processing apparatus 4 according to the present embodiment may be configured to move the staple-free stitching unit 430 so that only part of the staple-free stitching unit 430 is located outside of the frame 482. With this configuration of the stitching processing apparatus 4 according to the present embodiment, it is possible to reduce its size.
Furthermore, the stitching processing apparatus 4 according to the present embodiment is configured such that the staple-free stitching unit 430 is moved to the outside of the frame 482 on the back side of the apparatus; however, a configuration may be such that the home position of the staple-free stitching unit 430 is set on the outside of the frame 482. With this configuration of the stitching processing apparatus 4 according to the present embodiment, it is possible to omit the process to move the staple-free stitching unit 430 to the outside of the frame 482 during access to the staple-free stitching unit 430.
Furthermore, in the present embodiment, an explanation is given of the stitching processing apparatus 4, in which the staple-containing stitching unit 420 is located on the front side of the apparatus and the staple-free stitching unit 430 is located on the back side of the apparatus. Alternatively, with the stitching processing apparatus 4 according to the present embodiment, there may be a case where the staple-containing stitching unit 420 is located on the back side of the apparatus and the staple-free stitching unit 430 is located on the front side of the apparatus. With this configuration of the stitching processing apparatus 4 according to the present embodiment, it is possible to facilitate access to the staple-free stitching unit 430.
Furthermore, in the present embodiment, an explanation is given of the stitching processing apparatus 4 that is configured such that the staple-free stitching unit 430 may be moved to the outside of the frame 482 on the back side of the apparatus. Alternatively, the stitching processing apparatus 4 according to the present embodiment may be configured such that the staple-containing stitching unit 420 is movable to the outside of the frame 482 on the front side of the apparatus. With this configuration of the stitching processing apparatus 4 according to the present embodiment, it is possible to facilitate an operation to supply staples to the staple-containing stitching unit 420.
With reference to the drawings, a detailed explanation is given below of an embodiment of the present invention. Furthermore, the component, attached with the same reference numeral as that in the first embodiment, indicates the same or equivalent unit, and detailed explanations are omitted. First, with reference to
As is the case with the first embodiment, the stitching processing apparatus 4 according to the present embodiment is configured such that the staple-containing stitching unit 420 is located on the front side of the apparatus and the staple-free stitching unit 430 is located on the back side of the apparatus.
Furthermore, the stitching processing apparatus 4 according to the present embodiment is configured such that sheets are conveyed with reference to the front side of the apparatus or with reference to the center of the apparatus. This is because, if sheets are conveyed with reference to the back of the apparatus and if a sheet is jammed, an operation to remove the jammed sheet is associated with difficulty. Particularly, if a small-sized sheet is jammed, the removing operation becomes further difficult.
Therefore, in the stitching processing apparatus 4 according to the present embodiment, the staple-free stitching unit 430, located on the back side of the apparatus, needs to move in a main scanning direction so as to handle an operation to stitch both minimum-sized sheets and maximum-sized sheets.
Furthermore, in the stitching processing apparatus 4 according to the present embodiment, the staple-free stitching unit 430 is configured to conduct staple-free stitching while it is tilted relative to a sheet, e.g., while it is tilted at 45 degrees, so as to increase the stitching force.
Furthermore, the stitching processing apparatus 4 according to the present embodiment is configured such that the width of the sheet stack plate 440 in a main scanning direction is smaller than the width of a maximum-sized sheet in a main scanning direction and is larger than the width of a minimum-sized sheet in a main scanning direction.
Therefore, in the staple-free stitching unit 430, when a minimum-sized sheet is stitched, the back side of the stitching recess sometimes hits the corner of the sheet stack plate 440 while it is moved from the home position to the stitching position.
Therefore, in order to prevent the above-described hit, it is considered to have a configuration such that the depth of the stitching recess of the staple-free stitching unit 430 is made longer. However, the staple-free stitching unit 430 needs to conduct pressure bonding on sheets with an extremely large force, e.g., 200 N; therefore, it is necessary to have a configuration such that the distance between the fulcrum and the point of action, i.e., the depth of the stitching recess is short as much as possible.
Therefore, as illustrated in
However, if the sheet stack plate 440 is configured as described above, the sheet bundle A sometimes hangs down at the cutout section of the sheet stack plate 440, as illustrated in
Then, if the stitching processing apparatus 4 moves the staple-free stitching unit 430 from the home position to the stitching position in the above state, the stitching recess of the staple-free stitching unit 430 hits the end of the sheet bundle A with regard to the main scanning direction. Therefore, in such a case, it is difficult for the stitching processing apparatus 4 to perform a stitching operation properly by using the staple-free stitching unit 430.
Therefore, as illustrated in
With this configuration of the stitching processing apparatus 4 according to the present embodiment, it is possible to receive the sheet bundle A at the stitching recess of the staple-free stitching unit 430 without making a hit between the back side of the stitching recess of the staple-free stitching unit 430 and the corner of the sheet stack plate 440, as illustrated in
Furthermore, in the present embodiment, an explanation is given of the stitching processing apparatus 4 that is configured such that the movable sheet supporting plate 441 is fixed to the staple-free stitching unit 430. Alternatively, as illustrated in
Furthermore, alternatively, the stitching processing apparatus 4 according to the present embodiment may be configured to include a drive unit that drives the movable sheet supporting plate 441 so that the movable sheet supporting plate 441 and the staple-free stitching unit 430 are individually moved although they are moved in conjunction with each other.
Furthermore, in the present embodiment, an explanation is given of the stitching processing apparatus 4, in which the staple-containing stitching unit 420 is located on the front side of the apparatus and the staple-free stitching unit 430 is located on the back side of the apparatus. Alternatively, with the stitching processing apparatus 4 according to the present embodiment, there may be a case where the staple-containing stitching unit 420 is located on the back side of the apparatus and the staple-free stitching unit 430 is located on the front side of the apparatus.
According to the present invention, in a sheet processing apparatus that includes multiple stitching units, it is possible to facilitate user's access to the stitching units.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, at least one element of different illustrative and exemplary embodiments herein may be combined with each other or substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2015-104324 | May 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5100119 | Komada | Mar 1992 | A |
8170446 | Matsui | May 2012 | B2 |
8246033 | Sato | Aug 2012 | B2 |
20070045923 | Moriyama | Mar 2007 | A1 |
20100226683 | Yamaguchi | Sep 2010 | A1 |
20130300050 | Suzuki | Nov 2013 | A1 |
20150003938 | Morinaga et al. | Jan 2015 | A1 |
20150014386 | Obuchi | Jan 2015 | A1 |
20150030414 | Takahashi et al. | Jan 2015 | A1 |
20150076759 | Kosuge et al. | Mar 2015 | A1 |
20150093214 | Takahashi et al. | Apr 2015 | A1 |
20150165809 | Komiyama | Jun 2015 | A1 |
20160185149 | Kenjo | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
11349159 | Dec 1999 | JP |
2015-016974 | Jan 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20160340144 A1 | Nov 2016 | US |